Academic literature on the topic 'Structure-activity relationship (QSAR) models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structure-activity relationship (QSAR) models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Structure-activity relationship (QSAR) models"

1

Reddy, Badinehal Asrith. "COMMERCIALIZATION OF A QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP TOOL - SARCHITECT." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1295637833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Fang. "Chlorine Contribution to Quantitative Structure and Activity Relationship Models of Disinfection By-Products' Quantum Chemical Descriptors and Toxicities." FIU Digital Commons, 2009. http://digitalcommons.fiu.edu/etd/174.

Full text
Abstract:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbi
APA, Harvard, Vancouver, ISO, and other styles
3

Hobocienski, Bryan Christopher. "Locality-Dependent Training and Descriptor Sets for QSAR Modeling." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577716259011585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sköld, Christian. "Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models." Doctoral thesis, Uppsala universitet, Avdelningen för organisk farmaceutisk kemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.

Full text
Abstract:
Rational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT2 receptor. The bioactive conformation of a peptide can provide important guidance in peptidomi
APA, Harvard, Vancouver, ISO, and other styles
5

Bloyet, Nicolas. "Caractérisation et plongement de sous-graphes colorés : application à la construction de modèles structures à activité (QSAR)." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS546.

Full text
Abstract:
Dans le domaine de la chimie, il est intéressant de pouvoir estimer des propriétés physico- chimiques de molécules, notamment pour des applications industrielles. Celles-ci sont difficiles à estimer par simulations physique, présentant une complexité temporelle prohibitive. L'émergence des données (publiques ou privées) ouvre toutefois de nouvelles perspectives pour le traitement de ces problèmes par des méthodes statistiques et d'apprentissage automatique. La principale difficulté réside dans la caractérisation des molécules : celles-ci s'apparentent davantage à un réseau d'atomes (autrement
APA, Harvard, Vancouver, ISO, and other styles
6

Sköld, Christian. "Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models." Doctoral thesis, Uppsala University, Organic Pharmaceutical Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7823.

Full text
Abstract:
<p>Rational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT<sub>2</sub> receptor.</p><p>The bioactive conformation of a peptide can provide important g
APA, Harvard, Vancouver, ISO, and other styles
7

Schaal, Wesley. "Computational Studies of HIV-1 Protease Inhibitors." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5213-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Mark David. "A quantitative structure-activity relationship (QSAR) study of the Ames mutagenicity assay." Thesis, University of Portsmouth, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343333.

Full text
Abstract:
In-vitro mutagenicity assays have traditionally been used for first line identification of potential genotoxic hazard, purporting to chemical carcinogenesis and heritable genetic damage. The recent advances m combinatorial chemistry and high throughput screening technologies have led to a massive explosion in numbers of possible therapeutic candidates being produced at the early stages of drug discovery. This rapid increase in the number of chemicals to be classified results in a greater need for to acquire alternative methods for the prediction of toxicity. Quantitative StructureActivity Rela
APA, Harvard, Vancouver, ISO, and other styles
9

Lanevskij, Kiril. "Absorption and Tissue Distribution of Drug-Like Compounds: Quantitative Structure-Activity Relationship Analysis." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111003_114235-89858.

Full text
Abstract:
The objective of this work was to develop mechanistic quantitative structure activity relationship models that would facilitate the assessment of drug properties related to their absorption and distribution in the body. The analysis involved several parameters reflecting the rate of passive diffusion across brain endothelium and intestinal epithelium, and thermodynamic constants related to drug distribution between plasma and tissues. Permeation through cellular transport barriers was modeled by nonlinear equations relating the passive diffusion rate to physicochemical properties of drugs: lip
APA, Harvard, Vancouver, ISO, and other styles
10

FAN, WEIGUO. "USING MOLECULAR SIMILARITY ANALYSIS FOR STRUCTURE-ACTIVITY RELATIONSHIP STUDIES." Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1353964351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!