Academic literature on the topic 'Structure interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structure interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structure interaction"
Kolaki, Aravind I., and Basavaraj M. Gudadappanavar. "Performance Based Analysis of Framed Structure Considering Soil Structure Interaction." Bonfring International Journal of Man Machine Interface 4, Special Issue (July 30, 2016): 106–11. http://dx.doi.org/10.9756/bijmmi.8165.
Full textToma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky, and Wenbin Mao. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics." Biology 10, no. 3 (March 2, 2021): 185. http://dx.doi.org/10.3390/biology10030185.
Full textPatil, K. S., and Ajit K. Kakade. "Seismic Response of R.C. Structures With Different Steel Bracing Systems Considering Soil - Structure Interaction." Journal of Advances and Scholarly Researches in Allied Education 15, no. 2 (April 1, 2018): 411–13. http://dx.doi.org/10.29070/15/56856.
Full textLee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati, and Sang-Eul Han. "The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method." Journal of Clean Energy Technologies 3, no. 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.
Full textPattanashetti, Prateek, and M. S. Bhandiwad. "Seismic Performance of Regular and Irregular Flat Slab Structure with Soil Structure Interaction." Bonfring International Journal of Man Machine Interface 4, Special Issue (July 30, 2016): 215–19. http://dx.doi.org/10.9756/bijmmi.8186.
Full textCacciola, Pierfrancesco, Maria Garcia Espinosa, and Alessandro Tombari. "Vibration control of piled-structures through structure-soil-structure-interaction." Soil Dynamics and Earthquake Engineering 77 (October 2015): 47–57. http://dx.doi.org/10.1016/j.soildyn.2015.04.006.
Full textRoy, Christine, Said Bolourchi, and Daniel Eggers. "Significance of structure–soil–structure interaction for closely spaced structures." Nuclear Engineering and Design 295 (December 2015): 680–87. http://dx.doi.org/10.1016/j.nucengdes.2015.07.067.
Full textMasia, Mark J., Peter W. Kleeman, and Robert E. Melchers. "Modeling Soil/Structure Interaction for Masonry Structures." Journal of Structural Engineering 130, no. 4 (April 2004): 641–49. http://dx.doi.org/10.1061/(asce)0733-9445(2004)130:4(641).
Full textVeletsos, A. S., A. M. Prasad, and G. Hahn. "Fluid-structure interaction effects for offshore structures." Earthquake Engineering & Structural Dynamics 16, no. 5 (July 1988): 631–52. http://dx.doi.org/10.1002/eqe.4290160502.
Full textZhuo, Chen, Chengwei Zeng, Haoquan Liu, Huiwen Wang, Yunhui Peng, and Yunjie Zhao. "Advances and Mechanisms of RNA–Ligand Interaction Predictions." Life 15, no. 1 (January 15, 2025): 104. https://doi.org/10.3390/life15010104.
Full textDissertations / Theses on the topic "Structure interaction"
Plessas, Spyridon D. "Fluid-structure interaction in composite structures." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.
Full textIn this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Mawson, Mark. "Interactive fluid-structure interaction with many-core accelerators." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/interactive-fluidstructure-interaction-with-manycore-accelerators(a4fc2068-bac7-4511-960d-41d2560a0ea1).html.
Full textViolette, Michael A. "Fluid structure interaction effect on sandwich composite structures." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5533.
Full textThe objective of this research is to examine the fluid structure interaction (FSI) effect on composite sandwich structures under a low velocity impact. The primary sandwich composite used in this study was a 6.35-mm balsa core and a multi-ply symmetrical plain weave 6 oz E-glass skin. The specific geometry of the composite was a 305 by 305 mm square with clamped boundary conditions. Using a uniquely designed vertical drop-weight testing machine, there were three fluid conditions in which these experiments focused. The first of these conditions was completely dry (or air) surrounded testing. The second condition was completely water submerged. The final condition was a wet top/air-backed surrounded test. The tests were conducted progressively from a low to high drop height to best conclude the onset and spread of damage to the sandwich composite when impacted with the test machine. The measured output of these tests was force levels and multi-axis strain performance. The collection and analysis of this data will help to increase the understanding of the study of sandwich composites, particularly in a marine environment.
Lea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure." Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.
Full textMethods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.
A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.
Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.
Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.
Zäll, Emma. "Footbridge Dynamics : Human-Structure Interaction." Licentiate thesis, KTH, Bro- och stålbyggnad, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224527.
Full textPå grund av estetiska skäl och en ökad efterfrågan på kostnadseffektiva och miljövänliga konstruktioner är merparten av de gångbroar som konstrueras idag förhållandevis lätta och slanka. Med anledning av detta ökar risken för att stora svängningar uppstår på grund av dynamisk belastning från människor på bron. För att motverka att detta inträffar kräver dagens normer att komforten verifieras för gångbroar med egenfrekvenser inom området för människans stegfrekvens. Komforten verifieras genom att säkerställa att ett visst accelerationskriterium inte överskrids. För detta ändamål finns handböcker som tillhandahåller förenklade beräkningsmetoder för uppskattning av accelerationsnivåer. Brister i dessa beräkningsmetoder har emellertid identifierats. För det första kan olika typer av människa-bro-interaktion (HSI) ha en betydande inverkan på responsen hos vissa broar. Exempel på en HSI-effekt är att brons modala egenskaper förändras när människor befinner sig på bron; i huvudsak sker en ökning av brons dämpning. Om denna effekt inte tas i beaktande föreligger stor risk att överskatta förväntade accelerationsnivåer. För det andra är kraften från en löpare större än kraften från en gående person vilket gör att en ensam löpare på en gångbro kan ge upphov till accelerationsnivåer som överskrider gränsvärdena för komfort. Löpande personer är därför ett mycket relevant lastfall. Befintliga normer uttrycker inte explicit att någon av dessa aspekter bör tas i beaktande. Behovet av förbättrade riktlinjer för hur normerna bör tillämpas är därför mycket stort och i framtiden kan det bli nödvändigt att kräva att både HSI-effekter och löparlaster tas i beaktande. Därför syftar denna licentiatavhandling till att bidra till en fördjupad förståelse inom dessa två ämnen, med huvudfokus på ovan nämnda HSI-effekt i allmänhet och hur den kan beaktas på ett enkelt, noggrant och tidseffektivt sätt i synnerhet. En numerisk undersökning av HSI-effekten och dess inverkan på den vertikala responsen hos en gångbro genomfördes. Resultaten visar att HSI-effekten reducerar den maximala accelerationen och att störst reduktion erhålls då folksamlingen och bron har ungefär samma egenfrekvens och då folksamlingens massa är stor i förhållande till brons massa. Vidare utvärderades två förenklade metoder för beaktande av HSI-effekten vilka kan implementeras av konstruktörer med grundläggande kunskaper inom strukturdynamik. Det konstaterades att båda metoderna uppskattar HSI-effekten såväl som brons respons förhållandevis väl samtidigt som de reducerar beräkningstiden något jämfört med mer avancerade metoder. Effekten av löpare på gångbroar studerades genom en fallstudie med fältmätningar. Utifrån resultaten från dessa fältmätningar kunde det konstateras att accelerationsgränsen som anges i normerna överskreds när en ensam löpare sprang över bron men inte när en grupp på sju personer gick i takt över samma bro. Därför drogs slutsatsen att löparlaster bör tas i beaktande vid dimensionering av en gångbro.
QC 20180320
Fernandez, Carlos Javier. "Pile-structure interaction in GTSTRUDL." Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/21418.
Full textHowell, Richard Martyn. "Snoring : a flow-structure interaction." Thesis, University of Warwick, 2006. http://wrap.warwick.ac.uk/101139/.
Full textEl, Baroudi Adil. "Modélisation en interaction fluide-structure." Rennes 1, 2010. http://www.theses.fr/2010REN1S140.
Full textThis thesis is essentially constituted of two parts. The first part focuses on modeling the skull-brain system during an impact. In this system, the fluid acts as a buffer between the two elastic solids with completely different material properties. During an impact, we are not able to understand untill now some phenomena of brain injury, which is a major challenge in traffic accident. The study used on an existing experimental device from which models were developed. Two models were proposed : inertial coupling and viscous coupling. These have been solved analytically and numerically. The second part deals with the dynamics of the aortic system during a shock. Initially, we study the dynamic response of the ascending branch of the aorta where an analytical solution of the modal problem associated is proposed in order to subsequently use a modal projection technique. Then, the whole system is subjected to a shock. Indeed, in accident research, we observe in some cases, a break at the end portion of descending branch of the aorta : the isthmic rupture phenomenon. In all the study, the heterogeneous character of the aortic wall is taken into account. Various parametric studies have been conducted
Thiriat, Paul. "FLUID-STRUCTURE INTERACTION : EFFECTS OF SLOSHING IN LIQUID-CONTAINING STRUCTURES." Thesis, KTH, Bro- och stålbyggnad, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125353.
Full textSribalaskandarajah, Kandiah. "A computational framework for dynamic soil-structure interaction analysis /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.
Full textBooks on the topic "Structure interaction"
Kwon, Young W. Fluid-Structure Interaction of Composite Structures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57638-7.
Full textBungartz, Hans-Joachim, and Michael Schäfer, eds. Fluid-Structure Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34596-5.
Full textJones, Stephen, Joy Tillotson, Richard F. McKenna, and Ian J. Jordaan, eds. Ice-Structure Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84100-2.
Full textSigrist, Jean-François. Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118927762.
Full textBULL, JOHN W. SOIL STRUCTURE INTERACTION. Abingdon, UK: Taylor & Francis, 1988. http://dx.doi.org/10.4324/9780203474891.
Full textS, Cakmak A., ed. Soil-structure interaction. Amsterdam: Elsevier, co-published with Computational Mechanics, 1987.
Find full textS, Cakmak A., and International Conference on Soil Dynamics and Earthquake Engineering (3rd : 1987 : Princeton University), eds. Soil-structure interaction. Amsterdam: Elsevier, 1987.
Find full textS, Cakmak A., ed. Soil-structure interaction. Amsterdam: Elsevier, co-published with Computational Mechanics, 1987.
Find full textNational Research Council (U.S.). Transportation Research Board., ed. Soil-structure interaction. Washington, D.C: Transportation Research Board, National Research Council, 1987.
Find full text1941-, Chakrabarti Subrata K., and Brebbia C. A, eds. Fluid structure interaction. Southampton: WIT Press, 2001.
Find full textBook chapters on the topic "Structure interaction"
Boyl, Brian L. M. "Structure." In Interaction for Designers, 121–40. New York, NY : Routledge, 2019. | bibliographical references and index.: Routledge, 2019. http://dx.doi.org/10.4324/9781315226224-7.
Full textBoeyens, Jan C. A. "Covalent Interaction." In Structure and Bonding, 93–135. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31977-8_5.
Full textDolejší, Vít, and Miloslav Feistauer. "Fluid-Structure Interaction." In Discontinuous Galerkin Method, 521–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.
Full textDoyle, James F. "Structure-Fluid Interaction." In Wave Propagation in Structures, 243–74. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1832-6_8.
Full textKleinstreuer, Clement. "Fluid–Structure Interaction." In Fluid Mechanics and Its Applications, 435–79. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_8.
Full textVrettos, Christos. "Soil-Structure Interaction." In Encyclopedia of Earthquake Engineering, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36197-5_141-1.
Full textBlevins, R. D. "Vortex-Structure Interaction." In Fluid Mechanics and Its Applications, 533–74. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0249-0_12.
Full textJia, Junbo. "Soil–Structure Interaction." In Soil Dynamics and Foundation Modeling, 177–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40358-8_5.
Full textSouli, Mhamed. "Fluid-Structure Interaction." In Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction, 51–108. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557884.ch2.
Full textVrettos, Christos. "Soil-Structure Interaction." In Encyclopedia of Earthquake Engineering, 3315–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_141.
Full textConference papers on the topic "Structure interaction"
"Structure/Flow Interaction in Inflatable Structures." In 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-u.3.a.06.
Full textTeich, M., and N. Gebbeken. "Aerodynamic damping and fluid-structure interaction of blast loaded flexible structures." In Fluid Structure Interaction 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/fsi110081.
Full textFares, Reine, Maria Paola Santisi d'Avila, Anne Deschamps, and Evelyne Foerster. "STRUCTURE-SOIL-STRUCTURE INTERACTION ANALYSIS FOR REINFORCED CONCRETE FRAMED STRUCTURES." In XI International Conference on Structural Dynamics. Athens: EASD, 2020. http://dx.doi.org/10.47964/1120.9231.19162.
Full textYurkovich, Rudy. "Wing-tail interaction flutter revisited." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1447.
Full textRocha, Renata, Hélio Ribeiro Neto, Pedro Ricardo Corrêa Souza, Aristeu Silveira Neto, Aldemir Ap Cavalini Jr, and João Marcelo Vedovoto. "Fluid-Structure Interaction Simulation Of Marine Structures." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-1131.
Full textLiu, Hongjun, Jie Liu, and Jun Teng. "Control-Structure Interaction in Structural Vibration Control." In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)196.
Full textDale, Jason J., and A. E. Holdo̸. "Fluid Structure Interaction Modelling." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2858.
Full textGaul, Lothar. "Acoustic Fluid-Structure Interaction." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63601.
Full textHeller, R., and S. Thangjitham. "Probabilistic service life prediction for creep-fatigue interaction." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1560.
Full textJecl, R., L. Škerget, and J. Kramer. "Heat and mass transfer in compressible fluid saturated porous media with the boundary element method." In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090011.
Full textReports on the topic "Structure interaction"
Benaroya, Haym, and Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada382782.
Full textIsaac, Daron, and Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada435321.
Full textLove, E., and R. L. Taylor. Acoustic-structure interaction problems. Final report. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/110709.
Full textMiller, C., C. Costantino, A. Philippacopoulos, and M. Reich. Verification of soil-structure interaction methods. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5507213.
Full textZhu, Minjie, and Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Full textBarone, Matthew Franklin, Irina Kalashnikova, Daniel Joseph Segalman, and Matthew Robert Brake. Reduced order modeling of fluid/structure interaction. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/974411.
Full textSchunk, Peter. Fluid-Structure Interaction of Deforming Porous Media. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1411752.
Full textWood, Stephen L., and Ralf Deiterding. Shock-driven fluid-structure interaction for civil design. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1041422.
Full textLiu, Wing K. Multiresolution Analysis of Compressible Viscous Flow-Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada377739.
Full textCostantino, C., and A. Philippacopoulos. Influence of ground water on soil-structure interaction. Office of Scientific and Technical Information (OSTI), December 1987. http://dx.doi.org/10.2172/5529456.
Full text