Academic literature on the topic 'Structure lattice'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structure lattice.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structure lattice"
Abusabir, Ahmed, Muhammad A. Khan, Muhammad Asif, and Kamran A. Khan. "Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures." Polymers 14, no. 3 (February 5, 2022): 618. http://dx.doi.org/10.3390/polym14030618.
Full textLi, He, Lingjie Li, Haozhang Zhong, Hanxuan Mo, and Mengyuan Gu. "Hierarchical lattice: Design strategy and topology characterization." Advances in Mechanical Engineering 15, no. 6 (June 2023): 168781322311796. http://dx.doi.org/10.1177/16878132231179623.
Full textLi, Yuhua, Deyu Jiang, Rong Zhao, Xin Wang, Liqiang Wang, and Lai-Chang Zhang. "High Mechanical Performance of Lattice Structures Fabricated by Additive Manufacturing." Metals 14, no. 10 (October 12, 2024): 1165. http://dx.doi.org/10.3390/met14101165.
Full textDong, Wei, Yang Li, Kehao Xin, Dezheng Yin, Longlong Song, and Tong Gao. "A method of designing plate structure consisting of lattices and stiffeners based on topology optimization." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 39, no. 6 (December 2021): 1233–39. http://dx.doi.org/10.1051/jnwpu/20213961233.
Full textKhan, Numan, Valerio Acanfora, and Aniello Riccio. "Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing." Materials 17, no. 7 (March 23, 2024): 1470. http://dx.doi.org/10.3390/ma17071470.
Full textLi, You Tong, and Hui Wang. "The Influence of Rapid Prototyping Technology on Optimization of Automobile Energy-Absorbing Box." Key Engineering Materials 871 (January 2021): 153–58. http://dx.doi.org/10.4028/www.scientific.net/kem.871.153.
Full textShatabda, Swakkhar, M. A. Hakim Newton, Mahmood A. Rashid, Duc Nghia Pham, and Abdul Sattar. "How Good Are Simplified Models for Protein Structure Prediction?" Advances in Bioinformatics 2014 (April 29, 2014): 1–9. http://dx.doi.org/10.1155/2014/867179.
Full textLiu, Tinghao, and Guangbo Hao. "Design of Deployable Structures by Using Bistable Compliant Mechanisms." Micromachines 13, no. 5 (April 19, 2022): 651. http://dx.doi.org/10.3390/mi13050651.
Full textRachůnek, Jiří. "Structure spaces of lattice ordered groups." Czechoslovak Mathematical Journal 39, no. 4 (1989): 686–91. http://dx.doi.org/10.21136/cmj.1989.102345.
Full textJiang, Cho-Pei, Alvian Toto Wibisono, and Tim Pasang. "Selective Laser Melting of Stainless Steel 316L with Face-Centered-Cubic-Based Lattice Structures to Produce Rib Implants." Materials 14, no. 20 (October 11, 2021): 5962. http://dx.doi.org/10.3390/ma14205962.
Full textDissertations / Theses on the topic "Structure lattice"
Dinter, Simon. "Nucleon structure from lattice QCD." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16629.
Full textIn this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a^2) discretization effects.
Renner, Dru Bryant 1977. "Exploring proton structure using lattice QCD." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/29448.
Full textIncludes bibliographical references (leaves 219-222).
We calculate moments of the generalized parton distributions of the nucleon using lattice QCD. The generalized parton distributions determine the angular momentum decomposition of the nucleon and the transverse distributions of partons within the nucleon. Additionally, the generalized parton distributions reduce to the elastic form factors and ordinary parton distributions in particular kinematic limits. Thus by calculating moments of the generalized parton distributions in lattice QCD we can explore many facets of the structure of the nucleon. In this effort, we have developed the building block method to determine all the lattice correlation functions which con- tribute to the off forward matrix elements of the twist two operators. These matrix elements determine the generalized form factors of the nucleon which in turn give the moments of the generalized parton distributions. Thus we use our building block method to calculate all the matrix elements of the lowest twist two operators. Fur- thermore, we use our method to construct an overdetermined set of matrix elements allowing a more accurate calculation of the generalized form factors.
by Dru Bryant Renner.
Ph.D.
Blair, Stuart R. "Lattice Boltzmann Methods for Fluid Structure Interaction." Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/17325.
Full textThe use of lattice Boltzmann methods (LBM) for fluid flow and its coupling with finite element method (FEM) structural models for fluid-structure interaction (FSI) is investigated. A body of high performance LBM software that exploits graphic processing unit (GPU) and multiprocessor programming models is developed and validated against a set of two- and three-dimensional benchmark problems. Computational performance is shown to exceed recently reported results for single-workstation implementations over a range of problem sizes. A mixed-precision LBM collision algorithm is presented that retains the accuracy of double-precision calculations with less computational cost than a full double-precision implementation. FSI modelling methodology and example applications are presented along with a novel heterogeneous parallel implementation that exploits task-level parallelism and workload sharing between the central processing unit (CPU) and GPU that allows significant speedup over other methods. Multi-component LBM fluid models are explicated and simple immiscible multi-component fluid flows in two-dimensions are presented. These multi-component fluid LBM models are also paired with structural dynamics solvers for two-dimensional FSI simulations. To enhance modeling capability for domains with complex surfaces, a novel coupling method is introduced that allows use of both classical LBM (CLBM) and a finite element LBM (FELBM) to be combined into a hybrid LBM that exploits the flexibility of FELBM while retaining the efficiency of CLBM.
Xue, Boyu. "3D Printed Lattice Structure for Driveline Applications." Thesis, KTH, Materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299270.
Full textGitterstrukturer har fått mycket uppmärksamhet som cellulära material under de senaste åren på grund av deras enastående egenskaper, t.ex. hög hållfasthet i förhållande till vikt, värmeöverföring, energiabsorption och förmåga att förbättra buller-, vibrations- och bullerskador (NVH-beteende). Denna typ av struktur har fått ett uppsving av tekniken för additiv tillverkning (AM), som kan tillverka geometrier i praktiskt taget vilken form som helst. På grund av ekonomiska och miljömässiga krav används lättviktsdesign i allt större utsträckning inom bilindustrin och byggnadsutrustning. NVH-egenskaperna är en viktig fråga för anläggningsutrustning. De konventionella konstruktionernas NVH-beteende bestäms dock huvudsakligen av massan, vilket innebär att tystnad ofta kräver tunga system, vilket leder till ökad energiförbrukning och större utsläpp. Miljötrenderna och den ekonomiska konkurrens som följer av detta har därför begränsat de traditionella (tunga) lösningarna för att förbättra NVH-egenskaperna och gjort lättviktsdesignen svårare. Nya lösningar är nödvändiga för att lösa svårigheten och utmaningen med att kombinera NVH- och lättviktskrav. I den här forskningen genomfördes topologioptimering på en komponent för en ny ledad transportörtransmission (NAHT) för att balansera lättvikts- och NVH-beteende. Den topologioptimerade 3D-modellen fylldes med en icke-homogen gitterstruktur med optimal gittertäthet via storleksoptimering. Gitterstrukturoptimering är en typ av topologioptimering, och det är termen för att beskriva dessa förfaranden. För att tillverka den komplicerade gitterstrukturen krävs additiv tillverkning (eller 3D-utskrift) (efter topologi- och gitterstrukturoptimering). De nya modellerna analyserades med hjälp av finita elementmetoden (FEM), och resultaten av analysen jämfördes med resultaten av de ursprungliga modellerna. Efter jämförelsen erhölls positiva resultat, vilket visar att optimering av topologi och gitterstruktur kan tillämpas vid utformning av komponenter för byggutrustning. Enligt resultaten kan optimering av gitterstrukturen skapa en tillförlitlig lättviktsdesign med bra NVH-beteende. Dessutom har gitterstrukturens organisering och layout en betydande inverkan på den totala prestandan.
ASHOK, RAMYA. "A DATABASE SYSTEM TO STORE AND RETRIEVE A CONCEPT LATTICE STRUCTURE." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130552767.
Full textCAPOBIANCO, Silvio. "Structure and invertibility in cellular automata." Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/917108.
Full textMcConaha, Matthew. "Graded Lattice Structure Density Optimization for Additive Manufacturing." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1523634949822303.
Full textDownie, Lewis James. "Structure and properties of some triangular lattice materials." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/4423.
Full textSouvatzis, Petros. "Electronic Structure and Lattice Dynamics of Elements and Compounds." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8198.
Full textMisawa, Masaki, Naoki Takada, Hiroshi Yamashita, Shingo Satake, and Kazuhiro Yamamoto. "Lattice Boltzmann simulation on porous structure and soot accumulation." Elsevier, 2006. http://hdl.handle.net/2237/20046.
Full textBooks on the topic "Structure lattice"
H, Sowa, ed. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Find full textMitrjushkin, V., and G. Schierholz, eds. Lattice Fermions and Structure of the Vacuum. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4124-6.
Full textMitrjushkin, V. Lattice Fermions and Structure of the Vacuum. Dordrecht: Springer Netherlands, 2000.
Find full textV, Mitrjushkin, Schierholz G, and NATO Advanced Research Workshop on Lattice Fermions and Structure of the Vacuum (1999 : Dubna, Chekhovskiĭ raĭon, Russia), eds. Lattice fermions and structure of the vacuum. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textV, Mitrjushkin, Schierholz G, and NATO Advanced Research Workshop on Lattice Fermions and Structure of the Vacuum (1999 : Dubna, Chekhovskiĭ raĭon, Russia), eds. Lattice fermions and structure of the vacuum. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textStokes, Finn M. Structure of Nucleon Excited States from Lattice QCD. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25722-4.
Full textAkademii͡a nauk SSSR. I͡Akutskiĭ nauchnyĭ t͡sentr. Otdel prikladnoĭ matematiki i vychislitelʹnoĭ tekhniki, ed. Matematicheskie metody sinteza mnogosloĭnykh struktur pri vozdeĭstvii voln. I͡Akutsk: I͡Akutskiĭ nauchnyĭ t͡sentr SO AN SSSR, 1990.
Find full textNhani, José L. Marcolino. La structure des sous-espaces de treillis. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 2001.
Find full textCook, Norman D. Models of the Atomic Nucleus: Unification through a lattice of nucleons. 2nd ed. Berlin: Springer Verlag, 2010.
Find full textEducational Resources Information Center (U.S.), ed. Quantifying the characteristics of knowledge structure representations: A lattice-theoretic framework. Los Angeles, CA: Center for the Study of Evaluation, National Center for Research on Evaluation, Standards, and Student Testing, Graduate School of Education & Information Studies, University of California, Los Angeles, 1998.
Find full textBook chapters on the topic "Structure lattice"
Massa, Werner. "The Reciprocal Lattice." In Crystal Structure Determination, 27–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04248-9_4.
Full textMassa, Werner. "The Reciprocal Lattice." In Crystal Structure Determination, 27–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06431-3_4.
Full textXu, Yang, Keyun Qin, Da Ruan, and Jun Liu. "Topological Structure of Filter Spaces." In Lattice-Valued Logic, 135–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44847-1_6.
Full textGattringer, Christof, and Christian B. Lang. "Hadron structure." In Quantum Chromodynamics on the Lattice, 267–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01850-3_11.
Full textVainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. "Lattice Dynamics and Phase Transitions." In Structure of Crystals, 289–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97512-7_4.
Full textGlass, A. M. W., and W. Charles Holland. "Homomorphisms, Prime Subgroups, Values and Structure Theorems." In Lattice-Ordered Groups, 11–22. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2283-9_2.
Full textKrüger, Timm, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and Erlend Magnus Viggen. "Boundary Conditions for Fluid-Structure Interaction." In The Lattice Boltzmann Method, 433–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44649-3_11.
Full textCan, K. U., A. Kusno, E. V. Mastropas, and J. M. Zanotti. "Hadron Structure on the Lattice." In Lattice QCD for Nuclear Physics, 69–105. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08022-2_3.
Full textPhan-Luong, V., T. TPham, and R. Jeansoulin. "Integrating Information under Lattice Structure." In Lecture Notes in Computer Science, 83–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39592-8_12.
Full textStrauch, D. "C: crystal structure, lattice parameters." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 282. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_156.
Full textConference papers on the topic "Structure lattice"
Tang, Tsz Ling Elaine, Yan Liu, Da Lu, Erhan Batuhan Arisoy, and Suraj Musuvathy. "Lattice Structure Design Advisor for Additive Manufacturing Using Gaussian Process." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67282.
Full textChen, Jiangce, Martha Baldwin, Sneha Narra, and Christopher McComb. "Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models." In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Full textSyritsyn, Sergey. "Hadron Structure Review." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0009.
Full textLiu, Lingyun, Yizhou Liao, and Shuming Gao. "Stress Field Guided Lattice Structure Design Based on Hexahedral Mesh." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97248.
Full textNajjar, Johannes, Gunnar Bali, Sara Collins, Benjamin Glaessle, Meinulf Goeckeler, Rudolf Heinrich Roedl, Andreas Schafer, Andre Sternbeck, and Wolfgang Soeldner. "Nucleon structure from stochastic estimators." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0271.
Full textJavadi-Motaghi, Narjes, Gunnar Bali, Sara Collins, Benjamin Glaessle, Meinulf Goeckeler, Johannes Najjar, Wolfgang Soeldner, and Andre Sternbeck. "Pion structure from lattice QCD." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0447.
Full textMenadue, Ben, Waseem Kamleh, Derek Leinweber, Md Selim Mahbub, and Benjamin Owen. "Electromagnetic Structure of the $\Lambda(1405)$." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0280.
Full textAlexandrou, Constantia, Martha Constantinou, Vincent Drach, Karl Jansen, Christos Kallidonis, and Giannis Koutsou. "Nucleon structure with twisted mass fermions." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0292.
Full textHathcock, Megan, Bogdan Popa, and Kon-Well Wang. "Continuous Dirac Cone Evolution in Modulated Phononic Crystal." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95839.
Full textZanotti, James, Roger Horsley, Ashley Cooke, Yoshifumi Nakamura, Dirk Pleiter, Paul E. L. Rakow, Phiala Shanahan, Gerrit Schierholz, and Hinnerk Stuben. "SU(3) flavour breaking and baryon structure." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0278.
Full textReports on the topic "Structure lattice"
Liu, Keh-Fei, and Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1323029.
Full textBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur, and A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/179299.
Full textWilliams, James H., Nagem Jr., and Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada185387.
Full textHart, W. E., and S. Istrail. Lattice and off-lattice side chain models of protein folding: Linear time structure prediction better than 86% of optimal. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/425317.
Full textDavid Richards, Colin Morningstar, John Negele, Konstantinos Orginos, and Martin Savage. Nuclear Physics from Lattice QCD: The Spectrum, Structure and Interactions of Hadrons. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/899162.
Full textSingh, David J., and I. I. Mazin. Experimental Evidence for Nematic Order of Cuprates in Relation to Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada524031.
Full textLeemann, B., and E. Forest. Systematic study of the dependence of lattice dynamics on cell structure parameters. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6813269.
Full textBLUM, T., D. BOER, M. CREUTZ, S. OHTA, and K. ORGINOS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18 - 22, 2002, BROOKHAVEN NATIONAL LABORATORY. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/803412.
Full textSegletes, Steven B. Application of Force and Energy Approaches to the Problem of a One-Dimensional, Fully Connected, Nonlinear-Spring Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada626102.
Full textFry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England, and C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, July 2023. http://dx.doi.org/10.47120/npl.mat119.
Full text