Dissertations / Theses on the topic 'Structure - méthodes : analyse de données'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Structure - méthodes : analyse de données.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Raynaud, Jean-Louis. "Exploitation simultanée des données spatiales et fréquentielles dans l'identification modale linéaire et non-linéaire." Besançon, 1986. http://www.theses.fr/1987BESA2013.
Full textIlponse, Fabrice. "Analyse du bruit dû aux couplages capacitifs dans les circuits intégrés numériques fortement submicroniques." Paris 6, 2002. http://www.theses.fr/2002PA066417.
Full textBuzmakov, Aleksey. "Analyse formelle de concepts et structures de patrons pour la fouille de données structurées." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0112/document.
Full textNowadays, more and more data of different kinds is becoming available. Formal concept analysis (FCA) and pattern structures are theoretical frameworks that allow dealing with an arbitrary structured data. But the number of concepts extracted by FCA is typically huge. To deal with this problem one can either simplify the data representation, which can be done by projections of pattern structures, or by introducing constraints to select the most relevant concepts. The manuscript starts with application of FCA to mining important pieces of information from molecular structures. With the growth of dataset size good constraints begin to be essential. For that we explore stability of a concept, a well-founded formal constraint. Finding stable concepts in this dataset allows us finding new possible mutagenetic candidates that can be further interpreted by chemists. However for more complex cases, the simple attribute representation of data is not enough. Correspondingly, we turn to pattern structures that can deal with many different kinds of descriptions. We extend the original formalism of projections to have more freedom in data simplification. We show that this extension is essential for analyzing patient trajectories, describing patients hospitalization histories. Finally, the manuscript ends by an original and very efficient approach that enables to mine stable patterns directly
Jean, Villerd. "Représentations visuelles adaptatives de connaissances associant projection multidimensionnelle (MDS) et analyse de concepts formels (FCA)." Paris, ENMP, 2008. https://pastel.archives-ouvertes.fr/pastel-00004559.
Full textInformation retrieval tools are faced with the constant increase of data both in volume and in dimensionality and the traditional list of results no longer meet many applications' requirements. New visual representation techniques are needed. These new techniques have to provide an overview of large and multidimensional data sets that gives insights into the underlying trends and structures. They must also be able to represent, in detail, portions of the original data from different standpoints. The aim is to assist the user in her data exploration task by designing a shrewd link between general and local views, that maintains her mental map. In order to achieve this goal, we develop a combination of data analysis techniques that identify pertinent portions of data as well as information visualization techniques that intuitively and dynamically explore these portions of data in detail. In addition, a formalization of the visualization process is needed. We introduce a formal frame that is used to specify visualizations from data structures. Concretely, the solution proposed is an original navigation method that combines techniques from Formal Concept Analysis (FCA) and Multi-Dimensional Scaling (MDS) visualization approaches to suggest navigation paths in the data. This method is based on the "overview + detail" paradigm: One component is an overall view which summarises the underlying structure of the data. A second component is a local view showing an element of the overall view in detail. We take advantage of the classification skills of the Galois lattice by using it as the overall view that reveals the inner data structure and suggests possible navigation paths. The local view uses Multi-Dimensional Scaling to display the objects in the extent of a selected concept. We illustrate and discuss the pertinence of our method on concrete data sets, provided by our industrial partners, and show how hybridisation of FCA and traditional data visualization approaches, which have sometimes been considered distinct or incompatible, can be complementary
Limasset, Benjamin. "Action des flavonoïdes et de leurs métabolites au cours du stress oxydant : étude des relations structure activité sur le modèle de la chimiluminescence des polymorphonucléaires et analyse des données par des méthodes multiparamétriques." Montpellier 1, 1994. http://www.theses.fr/1994MON13521.
Full textMarchal, Antoine. "On the multiphase structure of the turbulent neutral interstellar medium." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS249.
Full textStar formation in galaxies is strongly linked to the physical processes that govern the evolution of the interstellar medium. Stars form by gravitational collapse of dense and cold structures in molecular clouds but the process that leads to the formation of these over-densities is still unclear. One key element seems to be related to the efficiency of the formation of cold clouds of neutral hydrogen (HI) also called the Cold Neutral Medium (CNM).Several studies have aimed at understanding the production of the CNM through the condensation of the Warm Neutral Medium (WNM) in a turbulent and thermally unstable flow using numerical simulations. In general, these studies indicate the presence of a significant fraction of the mass being in the thermally unstable regime, (i.e., with a temperature mid-way between the CNM and WNM stable states). However, the thermodynamical conditions of the gas remain largely unexplored from the observational point of view.To go further, and really compare with numerical simulation that are, for now, under-constrained by observation, it is mandatory to map the column density structure of each phase and study the spatial variations of their centroid velocity and velocity dispersion. This calls for methods that can extract the information of each HI phase from fully sampled 21 cm emission data only.An original Gaussian decomposition algorithm, named ROHSA, is presented is this thesis. Based on a multi-resolution process from coarse to fine grid, and using a regularized non-linear least-square criterion to take into account simultaneously the spatial coherence of the emission and the multiphase nature of the gas, this method allows us to infer a spatially coherent vision of the three-phase neutral ISM.A detailed analysis is then presented on a high latitude HI field centred on the North Ecliptic Pole. In particular we provide new constraints on the thermodynamical properties of the WNM, and the statistical properties of the turbulent cascade acting in the fluid. Finally, we discuss under which condition the condensation mode of the thermal instability can grow in this medium and converge toward the cold phase of the neutral ISM, the CNM
Cury, Alexandre. "Techniques d'anormalité appliquées à la surveillance de santé structurale." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00581772.
Full textMaciejewski, Michal. "Structures de l'espace des phases des halos de matière noire." Paris 6, 2008. http://www.theses.fr/2008PA066476.
Full textTelle, Emmanuel. "Parallélisation du traitement de la méthode du lancer de rayons : définition d'une structure de données adaptée à une architecture de type réseau." Compiègne, 1987. http://www.theses.fr/1987COMPD077.
Full textEl, Shabrawy Atef. "Comportement des ouvrages historiques soumis à des sollicitations sismiques : apport de la modélisation numérique par la méthode des éléments distincts." Vandoeuvre-les-Nancy, INPL, 1996. http://www.theses.fr/1996INPL121N.
Full textCorus, Mathieu. "Amélioration de méthodes de modification structurale par utilisation de techniques d'expansion et de réduction de modèle." Phd thesis, Ecole Centrale Paris, 2003. http://tel.archives-ouvertes.fr/tel-00011298.
Full textLes concepts fondamentaux utilisés dans cette thèse sont ensuite présentés. Les relations de la dynamique des structures pour les problèmes discrets sont rappelées, ainsi que les principes de la synthèse modale, de la sous-structuration dynamique et de la réduction de modèle, tout comme la notion de modes d'interface. Les formulations classiques des méthodes de modification structurale sont ensuite détaillées pour en illustrer les limitations et les restrictions.
Une formulation originale permettant de prendre en compte les incompatibilités entre les mesures et les DDL de l'interface structure/modification et de régulariser la construction d'un modèle de comportement couplé est alors proposée. Cette première contribution de la thèse repose sur l'utilisation des techniques d'expansion de données et de réduction de modèle. Des indicateurs sont également construits pour estimer la cohérence de la prédiction réalisée. Les évolutions sont appliquées au cas d'un démonstrateur numériques et les résultats sont comparés avec les prédictions réalisées par les méthodes classiques. La méthodologie associée à cette nouvelle formulation est alors largement exposée.
L'influence des différents facteurs intervenant dans la construction du modèle couplé et la qualité de la prédiction est ensuite analysée en détail. Cette analyse permet de dresser une liste non exhaustive des précautions à prendre lors de la mise en œuvre de la méthode proposée, depuis la réalisation pratique de l'analyse modale expérimentale jusqu'à l'interprétation des premiers résultats.
Enfin, plusieurs applications sont présentées. Une première structure académique démontre la faisabilité de la méthode. Une deuxième étude, réalisée sur un cas industriel, illustre les gains de temps potentiels en comparant la prédiction avec les résultats d'une étude basée sur un modèle EF recalé de la structure. La troisième étude illustre l'application de la méthode dans un cas type. L'analyse modale de la structure cible permet de comprendre le problème, une modification est conçue, réalisée et mise en place. La prédiction est ensuite comparée aux résultats de l'analyse modale de la structure modifiée. Enfin, la dernière application montre les limites de la méthodologie. L'étude multi-objectifs sur une large bande de fréquences d'une structure industrielle permet de faire une ouverture vers la suite des travaux et montre la nature des difficultés à surmonter.
Bertoglio, Cristobal. "Problèmes Directs et Inverses en Interaction Fluide-Structure. Application à l'hémodynamique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00768188.
Full textKodi, Ramanah Doogesh. "Bayesian statistical inference and deep learning for primordial cosmology and cosmic acceleration." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS169.
Full textThe essence of this doctoral research constitutes the development and application of novel Bayesian statistical inference and deep learning techniques to meet statistical challenges of massive and complex data sets from next-generation cosmic microwave background (CMB) missions or galaxy surveys and optimize their scientific returns to ultimately improve our understanding of the Universe. The first theme deals with the extraction of the E and B modes of the CMB polarization signal from the data. We have developed a high-performance hierarchical method, known as the dual messenger algorithm, for spin field reconstruction on the sphere and demonstrated its capabilities in reconstructing pure E and B maps, while accounting for complex and realistic noise models. The second theme lies in the development of various aspects of Bayesian forward modelling machinery for optimal exploitation of state-of-the-art galaxy redshift surveys. We have developed a large-scale Bayesian inference framework to constrain cosmological parameters via a novel implementation of the Alcock-Paczyński test and showcased our cosmological constraints on the matter density and dark energy equation of state. With the control of systematic effects being a crucial limiting factor for modern galaxy redshift surveys, we also presented an augmented likelihood which is robust to unknown foreground and target contaminations. Finally, with a view to building fast complex dynamics emulators in our above Bayesian hierarchical model, we have designed a novel halo painting network that learns to map approximate 3D dark matter fields to realistic halo distributions
Tami, Myriam. "Approche EM pour modèles multi-blocs à facteurs à une équation structurelle." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT303/document.
Full textStructural equation models enable the modeling of interactions between observed variables and latent ones. The two leading estimation methods are partial least squares on components and covariance-structure analysis. In this work, we first describe the PLS and LISREL methods and, then, we propose an estimation method using the EM algorithm in order to maximize the likelihood of a structural equation model with latent factors. Through a simulation study, we investigate how fast and accurate the method is, and thanks to an application to real environmental data, we show how one can handly construct a model or evaluate its quality. Finally, in the context of oncology, we apply the EM approach on health-related quality-of-life data. We show that it simplifies the longitudinal analysis of quality-of-life and helps evaluating the clinical benefit of a treatment
Carvalho, Francisco de. "Méthodes descriptives en analyse de données symboliques." Paris 9, 1992. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1992PA090025.
Full textBelghiti, Moulay Tayeb. "Modélisation et techniques d'optimisation en bio-informatique et fouille de données." Thesis, Rouen, INSA, 2008. http://www.theses.fr/2008ISAM0002.
Full textThis Ph.D. thesis is particularly intended to treat two types of problems : clustering and the multiple alignment of sequence. Our objective is to solve efficiently these global problems and to test DC Programming approach and DCA on real datasets. The thesis is divided into three parts : the first part is devoted to the new approaches of nonconvex optimization-global optimization. We present it a study in depth of the algorithm which is used in this thesis, namely the programming DC and the algorithm DC ( DCA). In the second part, we will model the problem clustering in three nonconvex subproblems. The first two subproblems are distinguished compared to the choice from the norm used, (clustering via norm 1 and 2). The third subproblem uses the method of the kernel, (clustering via the method of the kernel). The third part will be devoted to bioinformatics, one goes this focused on the modeling and the resolution of two subproblems : the multiple alignment of sequence and the alignment of sequence of RNA. All the chapters except the first end in numerical tests
Lazar, Cosmin. "Méthodes non supervisées pour l’analyse des données multivariées." Reims, 2008. http://theses.univ-reims.fr/exl-doc/GED00000846.pdf.
Full textMany scientific disciplines deal with multivariate data. Different recordings of the same phenomenon are usually embedded in a multivariate data set. Multivariate data analysis gathers efficient tools for extracting relevant information in order to comprehend the phenomenon in study. Gathering data into groups or classes according to some similarity criteria is an essential step in the analysis. Intrinsic dimension or dimension reduction of multivariate data, the choice of the similarity criterion, cluster validation are problems which still let open questions. This work tries to make a step further concerning two of the problems mentioned above: the choice of the similarity measure for data clustering and the dimension reduction of multivariate data. The choice of the similarity measure for data clustering is investigated from the concentration phenomenon of metrics point of view. Non Euclidean metrics are tested as alternative to the classical Euclidian distance as similarity measure. We tested if less concentrated metrics are more discriminative for multivariate data clustering. We also proposed indices which take into account the inter-classes distance (e. G. Davies-Bouldin index) in order to find the optimal metric when the classes are supposed to be Gaussian. Blind Source Separation (BSS) methods are also investigated for dimension reduction of multivariate data. A BSS method based on a geometrical interpretation of the linear mixing model is proposed. BSS methods which take into account application constraints are used for dimension reduction in two different applications of multivariate imaging. These methods allow the extraction of meaningful factors from the whole data set; they also allow reducing the complexity and the computing time of the clustering algorithms which are used further in analysis. Applications on multivariate image analysis are also presented
Tang, Ahanda Barnabé. "Extension des méthodes d'analyse factorielle sur des données symboliques." Paris 9, 1998. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1998PA090047.
Full textRoyer, Jean-Jacques. "Analyse multivariable et filtrage des données régionalisées." Vandoeuvre-les-Nancy, INPL, 1988. http://www.theses.fr/1988NAN10312.
Full textTu, Xiao-Wei. "Détection et estimation des objets mobiles dans une séquence d'images." Compiègne, 1987. http://www.theses.fr/1987COMPD063.
Full textAboa, Yapo Jean-Pascal. "Méthodes de segmentation sur un tableau de variables aléatoires." Paris 9, 2002. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2002PA090042.
Full textBar, Romain. "Développement de méthodes d'analyse de données en ligne." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00943148.
Full textJeria, Caceres Maria. "Représentations simultanées en analyse de données structurées : étude de diverses solutions." Paris, EHESS, 1994. http://www.theses.fr/1994EHES0059.
Full textThis dissertation deals with methods of structured data analysis in social sciences. It examines in detail non-symmetric binary square and ternary cubic tables in order to review the different representations of lines and collumns profiles in a same space. In those analyses a proeminent place is given to the french methods of data analysis. A comparison is made with mds, used by anglo-saxons in similar cases. We also compare the log-linear and linear models on a sociological set of secondary data. All those comparisons are based on a same single posterior method of interpretation. Both french and anglo-saxon methods produce geometric representations in a a euclidean framework whose interpretation is made in terms of distances along the line of research developed by the group mathematics and psychology around the language for interrogating data. Thus a request of this language generates a detailed visual exploration of the data in parallel with calculations of contributions and importances of effects (analysis of variance is here used as a post-factorial method). This strategy is used here not only for data exploration but also as a tool for comparing methods
Afonso, Filipe. "Méthodes prédictives par extraction de règles en présence de données symboliques." Paris 9, 2005. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2005PA090067.
Full textWe first extend linear regression methods to the case of interval, diagram, histogram, taxonomical and hierarchical variables. Second, association rules are extended to the case of interval, diagram, taxonomical and hierarchical variables. We will be able to discover rules at the level of the concepts thanks to these methods. For example, instead of mining rules between different items of some transactions recorded in a retail organization like in the classical case, we discover rules at the level of the customers in order to study their purchase behavior. The Apriori algorithm for the extraction of association rules is extended to these symbolic data. The symbolic linear regression is, then, used in order to study and select the symbolic association rules. Afterwards, we give a mathematical support to these association rules using Galois lattices theory
Betta, Mohammed. "Les données évolutives et le décalage : l'analyse statique et l'analyse dynamique." Rennes 2, 1995. http://www.theses.fr/1995REN20010.
Full textThe objective of this thesis is to analyse three index data tables. We are especially interested in the analysis of these data in the case where the third index indicates time. In the first part of this study, we present some of methods used for anlysing three way data. One chapter will be given over to all those that incorporate contiguity structure in their approach. In the second part, we develop a new method of evolutive data analysis under a temporal contiguity constraint. This method is elaborated in two indepedent and complementary steps. First, we introduce the notion of an interval matrix on the left or the right which is used to define a group of similarity indices on individual tables. This is known as static analysis in the second stage, we suggest a new critiria which allows us to determine the subspace where trajectories are represented. This critiria is also defined taking the order structure of time into considerations. We call this dynamic analysis. This thesis concludes by anamysing two examples of evolutive data using two methods, the one we developed and the statis method. A comparison of the obtained results using the two methods is given
Gu, Co Weila Vila. "Méthodes statistiques et informatiques pour le traitement des données manquantes." Phd thesis, Conservatoire national des arts et metiers - CNAM, 1997. http://tel.archives-ouvertes.fr/tel-00808585.
Full textKhamlichi, Jamal. "Modélisation de déformations d'images tridimensionnelles : application aux structures de données de visages." La Rochelle, 1995. http://www.theses.fr/1995LAROS002.
Full textSabatier, Robert. "Méthodes factorielles en analyse des données : approximation et prise en compte de variables concomitantes." Montpellier 2, 1987. http://www.theses.fr/1987MON20256.
Full textRigouste, Loïs. "Méthodes probabilistes pour l'analyse exploratoire de données textuelles." Phd thesis, Télécom ParisTech, 2006. http://pastel.archives-ouvertes.fr/pastel-00002424.
Full textGuedj, Mickaël. "Méthodes Statistiques pour l’analyse de données génétiques d’association à grande échelle." Evry-Val d'Essonne, 2007. http://www.biblio.univ-evry.fr/theses/2007/2007EVRY0015.pdf.
Full textThe increasing availability of dense Single Nucleotide Polymorphisms (SNPs) maps due to rapid improvements in Molecular Biology and genotyping technologies have recently led geneticists towards genome-wide association studies with hopes of encouraging results concerning our understanding of the genetic basis of complex diseases. The analysis of such high-throughput data implies today new statistical and computational problematic to face, which constitute the main topic of this thesis. After a brief description of the main questions raised by genome-wide association studies, we deal with single-marker approaches by a power study of the main association tests. We consider then the use of multi-markers approaches by focusing on the method we developed which relies on the Local Score. Finally, this thesis also deals with the multiple-testing problem: our Local Score-based approach circumvents this problem by reducing the number of tests; in parallel, we present an estimation of the Local False Discovery Rate by a simple Gaussian mixed model
Machmouchi, Mouzid. "Contributions à la mise en oeuvre des méthodes d'analyse des données de dissimilarité." Grenoble 2, 1992. http://www.theses.fr/1992GRE21025.
Full textThis work presents a comparative study of several methods for resolving problem of multidimensional scaling (mds), and proposes new methods and new solving strategies. First, we present many methods based on the optimisation of the function kruskal stress. The development of these methods shows important problems due to the necessity of the optimisation of no convex and no differentiable functions. Next, we propose an algorithm based on the two phases alternate iteration. The first one solves a no differentiable programmation problem by introducing an heuristic step proposed by. Kruskal. The second phase solves a regression problem. Then, we prove by using simulated annealing methods that we improve the numerate quality of solutions, we propose an efficace strategy to exit from situations of local optimates, and we find especially a way to solve elegantly past problems caused by the necessity to activate present mds algorithms from many initial configurations sufficiently distinct. Then, we suggest a new resolving strategy of mds problem with the creation of algorithm s. E. M. Scal. This igorithm applies the method s. E. M. (stochastique estimation, maximisation) by estimating the configuration matrix x with maximise the likelihood of observed dissimilarities
Rebecq, Antoine. "Méthodes de sondage pour les données massives." Thesis, Paris 10, 2019. http://www.theses.fr/2019PA100014/document.
Full textThis thesis presents three different parts with ties to survey sampling theory. In the first part, we present two original results that led to practical applications in surveys conducted at Insee (French official statistics Institute). The first chapter deals with allocations in stratified sampling. We present a theorem that proves the existence of an optimal compromise between the dispersion of the sampling weights and the allocation yielding optimal precision for a specific variable of interest. Survey data are commonly used to compute estimates for variables that were not included in the survey design. Expected precision is poor, but a low dispersion of the weights limits risks of very high variance for one or several estimates. The second chapter deals with reweighting factors in calibration estimates. We study an algorithm that computes the minimal bounds so that the calibration estimators exist, and propose an efficient way of resolution. We also study the statistical properties of estimates using these minimal bounds. The second part studies asymptotic properties of sampling estimates. Obtaining asymptotic guarantees is often hard in practice. We present an original method that establishes weak convergence for the Horvitz-Thompson empirical process indexed by a class of functions for a lot of sampling algorithms used in practice. In the third and last part, we focus on sampling methods for populations that can be described as networks. They have many applications when the graphs are so big that storing and computing algorithms on them are very costly. Two applications are presented, one using Twitter data, and the other using simulated data to establish guidelines to design efficient sampling designs for graphs
De, Vitis Alba Chiara. "Méthodes du noyau pour l’analyse des données de grande dimension." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4034.
Full textSince data are being collected using an increasing number of features, datasets are of increasingly high dimension. Computational problems, related to the apparent dimension, i.e. the dimension of the vectors used to collect data, and theoretical problems, which depends notably on the effective dimension of the dataset, the so called intrinsic dimension, have affected high dimensional data analysis. In order to provide a suitable approach to data analysis in high dimensions, we introduce a more comprehensive scenario in the framework of metric measure spaces. The aim of this thesis, is to show how to take advantage of high dimensionality phenomena in the pure high dimensional regime. In particular, we aim at introducing a new point of view in the use of distances and probability measures defined on the data set. More specifically, we want to show that kernel methods, already used in the intrinsic low dimensional scenario in order to reduce dimensionality, can be investigated under purely high dimensional hypotheses, and further applied to cases not covered by the literature
Zinovieva-Leroux, Eléna. "Méthodes symboliques pour la génération de tests de systèmes réactifs comportant des données." Rennes 1, 2004. https://tel.archives-ouvertes.fr/tel-00142441.
Full textGuillemot, Vincent. "Application de méthodes de classification supervisée et intégration de données hétérogènes pour des données transcriptomiques à haut-débit." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00481822.
Full textElhadji, Ille Gado Nassara. "Méthodes aléatoires pour l’apprentissage de données en grande dimension : application à l'apprentissage partagé." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0032.
Full textThis thesis deals with the study of random methods for learning large-scale data. Firstly, we propose an unsupervised approach consisting in the estimation of the principal components, when the sample size and the observation dimension tend towards infinity. This approach is based on random matrices and uses consistent estimators of eigenvalues and eigenvectors of the covariance matrix. Then, in the case of supervised learning, we propose an approach which consists in reducing the dimension by an approximation of the original data matrix and then realizing LDA in the reduced space. Dimension reduction is based on low–rank approximation matrices by the use of random matrices. A fast approximation algorithm of the SVD and a modified version as fast approximation by spectral gap are developed. Experiments are done with real images and text data. Compared to other methods, the proposed approaches provide an error rate that is often optimal, with a small computation time. Finally, our contribution in transfer learning consists in the use of the subspace alignment and the low-rank approximation of matrices by random projections. The proposed method is applied to data derived from benchmark database; it has the advantage of being efficient and adapted to large-scale data
Hebert, Pierre-Alexandre. "Analyse de données sensorielles : une approche ordinale floue." Compiègne, 2004. http://www.theses.fr/2004COMP1542.
Full textSensory profile data aims at describing the sensory perceptions of human subjects. Such a data is composed of scores attributed by human sensory experts (or judges) in order to describe a set of products according to sensory descriptors. AlI assessments are repeated, usually three times. The thesis describes a new analysis method based on a fuzzy modelling of the scores. The first step of the method consists in extracting and encoding the relevant information of each replicate into a fuzzy weak dominance relation. Then an aggregation procedure over the replicates allows to synthesize the perception of each judge into a new fuzzy relation. Ln a similar way, a consensual relation is finally obtained for each descriptor by fusing the relations of the judges. So as to ensure the interpretation of fused relations, fuzzy preference theory is used. A set of graphical tools is then proposed for the mono and multidimensional analysis of the obtained relations
Le, Floch Edith. "Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00753829.
Full textYahia, Hussein. "Analyse des structures de données arborescentes représentant des images." Paris 11, 1986. http://www.theses.fr/1986PA112292.
Full textLimam, Mohamed Mehdi. "Méthodes de description de classes " minimisant " le débordement combinant classification et discrimination en analyse de données symboliques." Paris 9, 2005. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2005PA090053.
Full textLagarde, Thierry. "Nouvelle approche des méthodes d'assimilation de données : les algorithmes de point selle." Toulouse 3, 2000. http://www.theses.fr/2000TOU30113.
Full textBailleul, Marc. "Analyse statistique implicative : variables modales et contribution des sujets : application a la modelisation de l'enseignant dans le systeme didactique." Rennes 1, 1994. http://www.theses.fr/1994REN10061.
Full textVo-Van, Claudine. "Analyse de données pharmacocinétiques fragmentaires : intégration dans le développement de nouvelles molécules." Paris 5, 1994. http://www.theses.fr/1994PA05P044.
Full textLe, floch Edith. "Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112214/document.
Full textBrain imaging is increasingly recognised as an interesting intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. Our first contribution is to improve the sensitivity of the univariate approach by taking advantage of the multivariate nature of the genetic data in a local way. Indeed, we adapt cluster-inference techniques from neuroimaging to Single Nucleotide Polymorphism (SNP) data, by looking for 1D clusters of adjacent SNPs associated with the same imaging phenotype. Then, we push further the concept of clusters and we combined voxel clusters and SNP clusters, by using a simple 4D cluster test that detects conjointly brain and genome regions with high associations. We obtain promising preliminary results on both simulated and real datasets .Our second contribution is to investigate exploratory multivariate methods to increase the detection power of imaging genetics studies, by accounting for the potential multivariate nature of the associations, at a longer range, on both the imaging and the genetics sides. Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse genetic and transcriptomic data. Here, we propose to transpose this idea to the genetics vs. imaging context. Moreover, we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA, to face the overfitting issues due to the very high dimensionality of the data. We propose a comparison study of the different strategies on both a simulated dataset and a real fMRI and SNP dataset. Univariate selection appears to be necessary to reduce the dimensionality. However, the generalisable and significant association uncovered on the real dataset by the two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful imaging genetics associations calls for a multivariate approach
Leonardis, Eleonora De. "Méthodes pour l'inférence en grande dimension avec des données corrélées : application à des données génomiques." Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0033/document.
Full textThe availability of huge amounts of data has changed the role of physics with respect to other disciplines. Within this dissertation I will explore the innovations introduced in molecular biology thanks to statistical physics approaches. In the last 20 years the size of genome databases has exponentially increased, therefore the exploitation of raw data, in the scope of extracting information, has become a major topic in statistical physics. After the success in protein structure prediction, surprising results have been finally achieved also in the related field of RNA structure characterisation. However, recent studies have revealed that, even if databases are growing, inference is often performed in the under sampling regime and new computational schemes are needed in order to overcome this intrinsic limitation of real data. This dissertation will discuss inference methods and their application to RNA structure prediction. We will discuss some heuristic approaches that have been successfully applied in the past years, even if poorly theoretically understood. The last part of the work will focus on the development of a tool for the inference of generative models, hoping it will pave the way towards novel applications
Gonzalez, Ignacio. "Analyse canonique régularisée pour des données fortement multidimensionnelles." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/99/.
Full textMotivated by the study of relationships between gene expressions and other biological variables, our work consists in presenting and developing a methodology answering this problem. Among the statistical methods treating this subject, Canonical Analysis (CA) seemed well adapted, but the high dimension is at present one of the major obstacles for the statistical techniques of analysis data coming from microarrays. Typically the axis of this work was the research of solutions taking into account this crucial aspect in the implementation of the CA. Among the approaches considered to handle this problem, we were interested in the methods of regularization. The method developed here, called Regularised Canonical Analysis (RCA), is based on the principle of ridge regularization initially introduced in multiple linear regression. RCA needing the choice of two parameters of regulation for its implementation, we proposed the method of M-fold cross-validation to handle this problem. We presented in detail RCA applications to high multidimensional data coming from genomic studies as well as to data coming from other domains. Among other we were interested in a visualization of the data in order to facilitate the interpretation of the results. For that purpose, we proposed some graphical methods: representations of variables (correlations graphs), representations of individuals as well as alternative representations as networks and heatmaps. .
Yuan, Shuning. "Méthodes d'analyse de données GPS dans les enquêtes sur la mobilité des personnes : les données manquantes et leur estimation." Paris 1, 2010. http://www.theses.fr/2010PA010074.
Full textEl, Golli Aicha. "Extraction de données symboliques et cartes topologiques : Application aux données ayant une structure complexe." Paris 9, 2004. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2004PA090026.
Full textBallester, Pascal. "Méthodes d'étalonnage pour la spectrographie échelle : application aux instruments de l'Observatoire Européen Austral (ESO)." Aix-Marseille 3, 1998. http://www.theses.fr/1998AIX30101.
Full textLeroux, (zinovieva) Elena. "Méthodes symboliques pour la génération de tests desystèmes réactifs comportant des données." Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00142441.
Full textde transitions ne permet pas de le faire. Ceci oblige à énumérer les valeurs des données avant de construire le modèle de système de transitions d'un système, ce qui peut provoquer le problème de l'explosion de l'espace d'états. Cette énumération a également pour effet d'obtenir des cas de test où toutes les données sont instanciées. Or, cela contredit la pratique industrielle où les cas de test sont de vrais programmes avec des variables et des paramètres. La génération de tels
cas de test exige de nouveaux modèles et techniques. Dans cette thèse, nous atteignons deux objectifs. D'une part, nous introduisons un modèle appelé système symbolique de transitions à entrée/sortie qui inclut explicitement toutes les données d'un système réactif. D'autre part, nous proposons et implémentons une nouvelle technique de génération de test qui traite symboliquement les données d'un système en combinant l'approche de génération de test proposée auparavant par notre groupe de recherche avec des techniques d'interprétation abstraite. Les cas de test générés automatiquement par notre technique satisfont des propriétés de correction: ils émettent toujours un verdict correct.