Academic literature on the topic 'Structured Sparse Signal Estimation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structured Sparse Signal Estimation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structured Sparse Signal Estimation"

1

Castro, Rui M., and Ervin Tanczos. "Adaptive Sensing for Estimation of Structured Sparse Signals." IEEE Transactions on Information Theory 61, no. 4 (April 2015): 2060–80. http://dx.doi.org/10.1109/tit.2015.2396917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, Nisar. "Data-Free/Data-Sparse Softmax Parameter Estimation With Structured Class Geometries." IEEE Signal Processing Letters 25, no. 9 (September 2018): 1408–12. http://dx.doi.org/10.1109/lsp.2018.2860238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Xiaoyong, Shaojing Su, Junyu Wei, Xiaojun Guo, and Xiaopeng Tan. "Monitoring of OSNR Using an Improved Binary Particle Swarm Optimization and Deep Neural Network in Coherent Optical Systems." Photonics 6, no. 4 (October 25, 2019): 111. http://dx.doi.org/10.3390/photonics6040111.

Full text
Abstract:
A novel technique is proposed to implement optical signal-to-noise ratio (OSNR) estimation by using an improved binary particle swarm optimization (IBPSO) and deep neural network (DNN) based on amplitude histograms (AHs) of signals obtained after constant modulus algorithm (CMA) equalization in an optical coherent system. For existing OSNR estimation models of DNN and AHs, sparse AHs with valid features of original data are selected by IBPSO algorithm to replace the original, and the sparse sets are used as input vector to train and test the particle swarm optimization (PSO) optimized DNN (PSO-DNN) network structure. Numerical simulations have been carried out in the OSNR ranges from 10 dB to 30 dB for 112 Gbps PM-RZ-QPSK and 112 Gbps PM-NRZ-16QAM signals, and results show that the proposed algorithm achieves a high OSNR estimation accuracy with the maximum estimation error is less than 0.5 dB. In addition, the simulation results with different data input into the deep neural network structure show that the mean OSNR estimation error is 0.29 dB and 0.39 dB under original data and 0.29 dB and 0.37 dB under sparse data for the two signals, respectively. In the future dynamic optical network, it is of more practical significance to reconstruct the original signal and analyze the data using sparse observation information in the face of multiple impairment and serious interference. The proposed technique has the potential to be applied for optical performance monitoring (OPM) and is helpful for better management of optical networks.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Tao, Jian Yang, Weitong Wang, and Muran Guo. "Generalized Sparse Polarization Array for DOA Estimation Using Compressive Measurements." Wireless Communications and Mobile Computing 2021 (March 30, 2021): 1–10. http://dx.doi.org/10.1155/2021/5539709.

Full text
Abstract:
The compressive array method, where a compression matrix is designed to reduce the dimension of the received signal vector, is an effective solution to obtain high estimation performance with low system complexity. While sparse arrays are often used to obtain higher degrees of freedom (DOFs), in this paper, an orthogonal dipole sparse array structure exploiting compressive measurements is proposed to estimate the direction of arrival (DOA) and polarization signal parameters jointly. Based on the proposed structure, we also propose an estimation algorithm using the compressed sensing (CS) method, where the DOAs are accurately estimated by the CS algorithm and the polarization parameters are obtained via the least-square method exploiting the previously estimated DOAs. Furthermore, the performance of the estimation of DOA and polarization parameters is explicitly discussed through the Cramér-Rao bound (CRB). The CRB expression for elevation angle and auxiliary polarization angle is derived to reveal the limit of estimation performance mathematically. The difference between the results given in this paper and the CRB results of other polarized reception structures is mainly due to the use of the compression matrix. Simulation results verify that, compared with the uncompressed structure, the proposed structure can achieve higher estimated performance with a given number of channels.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yun, Lingxia Liao, Shanlin Sun, Zhicheng Tan, and Xing Yao. "Pilot design for underwater MIMO cosparse channel estimation based on compressed sensing." International Journal of Distributed Sensor Networks 17, no. 6 (June 2021): 155014772110178. http://dx.doi.org/10.1177/15501477211017825.

Full text
Abstract:
In multiple-input multiple-output–orthogonal frequency-division multiplexing underwater acoustic communication systems, the correlation of the sampling matrix is the key of the channel estimation algorithm based on compressed sensing. To reduce the cross-correlation of the sampling matrix and improve the channel estimation performance, a pilot design algorithm for co-sparse channel estimation based on compressed sensing is proposed in this article. Based on the time-domain correlation of the channel, the channel estimation is modeled as a common sparse signal reconstruction problem. When replacing each pilot indices position, the algorithm selects multiple pilot indices with the least cross-correlation from the alternative positions to replace the current pilot indices position, and it uses the inner and outer two-layer loops to realize the bit-by-bit optimal replacement of the pilot. The simulation results show that the channel estimation mean squared error of pilot design algorithm for co-sparse channel estimation based on compressed sensing can be reduced by approximately 18 dB compared with the least square algorithm. Compared with the genetic algorithm and search space size methods, the structural sequence search proposed by pilot design algorithm for co-sparse channel estimation based on compressed sensing is used to design the pilot to complete the channel estimation. Thus, the mean squared error of the channel estimation can be reduced by 2 dB. At the same bit error rate of 0.03, the signal-to-noise ratio can be decreased by approximately 7 dB.
APA, Harvard, Vancouver, ISO, and other styles
6

Zuo, Luo, Jun Wang, Te Zhao, and Zuhan Cheng. "A Joint Low-Rank and Sparse Method for Reference Signal Purification in DTMB-Based Passive Bistatic Radar." Sensors 21, no. 11 (May 22, 2021): 3607. http://dx.doi.org/10.3390/s21113607.

Full text
Abstract:
In a digital terrestrial multimedia broadcasting (DTMB)-based passive bistatic radar (PBR) system, the received reference signal often suffers from serious multipath effect, which decreases the detection ability of low-observable targets in urban environments. In order to improve the target detection performance, a novel reference signal purification method based on the low-rank and sparse feature is proposed in this paper. Specifically, this method firstly performs synchronization operations to the received reference signal and thus obtains the corresponding pseudo-noise (PN) sequences. Then, by innovatively exploiting the inherent low-rank structure of DTMB signals, the noise component in PN sequences is reduced. After that, a temporal correlation (TC)-based adaptive orthogonal matching pursuit (OMP) method, i.e., TC-AOMP, is performed to acquire the reliable channel estimation, whereby the previous noise-reduced PN sequences and a new halting criterion are utilized to improve channel estimation accuracy. Finally, the purification reference signal is obtained via equalization operation. The advantage of the proposed method is that it can obtain superior channel estimation performance and is more efficient compared to existing methods. Numerical and experimental results collected from the DTMB-based PBR system are presented to demonstrate the effectiveness of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
7

De Canditiis, Daniela, and Italia De Feis. "Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames." Mathematics 9, no. 11 (June 3, 2021): 1288. http://dx.doi.org/10.3390/math9111288.

Full text
Abstract:
We introduce a new methodology for anomaly detection (AD) in multichannel fast oscillating signals based on nonparametric penalized regression. Assuming the signals share similar shapes and characteristics, the estimation procedures are based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. Under the standard hypothesis of Gaussian additive noise, we model the signals by the RADWT and the anomalies as additive in each signal. Then we perform AD imposing a double penalty on the multiple regression model we obtained, promoting group sparsity both on the regression coefficients and on the anomalies. The first constraint preserves a common structure on the underlying signal components; the second one aims to identify the presence/absence of anomalies. Numerical experiments show the performance of the proposed method in different synthetic scenarios as well as in a real case.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Haoqiang, Hongbo Zhao, and Wenquan Feng. "Filtering-Based Regularized Sparsity Variable Step-Size Matching Pursuit and Its Applications in Vehicle Health Monitoring." Applied Sciences 11, no. 11 (May 24, 2021): 4816. http://dx.doi.org/10.3390/app11114816.

Full text
Abstract:
Recent years have witnessed that real-time health monitoring for vehicles is gaining importance. Conventional monitoring scheme faces formidable challenges imposed by the massive signals generated with extremely heavy burden on storage and transmission. To address issues of signal sampling and transmission, compressed sensing (CS) has served as a promising solution in vehicle health monitoring, which performs signal sampling and compression simultaneously. Signal reconstruction is regarded as the most critical part of CS, while greedy reconstruction has been a research hotspot. However, the existing approaches either require prior knowledge of the sparse signal or perform with expensive computational complexity. To exploit the structure of the sparse signal, in this paper, we introduce an initial estimation approach for signal sparsity level firstly. Then, a novel greedy reconstruction algorithm that relies on no prior information of sparsity level while maintaining a good reconstruction performance is presented. The proposed algorithm integrates strategies of regularization and variable adaptive step size and further performs filtration. To verify the efficiency of the algorithm, typical voltage disturbance signals generated by the vehicle power system are taken as trial data. Preliminary simulation results demonstrate that the proposed algorithm achieves superior performance compared to the existing methods.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Wenjie, Hui Li, Rong Jin, Shanlin Wei, Wei Cheng, Weisi Kong, and Penglu Liu. "Distributed Structured Compressive Sensing-Based Time-Frequency Joint Channel Estimation for Massive MIMO-OFDM Systems." Mobile Information Systems 2019 (May 2, 2019): 1–16. http://dx.doi.org/10.1155/2019/2634361.

Full text
Abstract:
In massive multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, accurate channel state information (CSI) is essential to realize system performance gains such as high spectrum and energy efficiency. However, high-dimensional CSI acquisition requires prohibitively high pilot overhead, which leads to a significant reduction in spectrum efficiency and energy efficiency. In this paper, we propose a more efficient time-frequency joint channel estimation scheme for massive MIMO-OFDM systems to resolve those problems. First, partial channel common support (PCCS) is obtained by using time-domain training. Second, utilizing the spatiotemporal common sparse property of the MIMO channels and the obtained PCCS information, we propose the priori-information aided distributed structured sparsity adaptive matching pursuit (PA-DS-SAMP) algorithm to achieve accurate channel estimation in frequency domain. Third, through performance analysis of the proposed algorithm, two signal power reference thresholds are given, which can ensure that the signal can be recovered accurately under power-limited noise and accurately recovered according to probability under Gaussian noise. Finally, pilot design, computational complexity, spectrum efficiency, and energy efficiency are discussed as well. Simulation results show that the proposed method achieves higher channel estimation accuracy while requiring lower pilot sequence overhead compared with other methods.
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Guodong, and Moeness G. Amin. "Structured sparse array design exploiting two uniform subarrays for DOA estimation on moving platform." Signal Processing 180 (March 2021): 107872. http://dx.doi.org/10.1016/j.sigpro.2020.107872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Structured Sparse Signal Estimation"

1

Meriaux, Bruno. "Contributions aux traitements robustes pour les systèmes multi-capteurs." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG009.

Full text
Abstract:
L'un des objectifs du traitement statistique du signal est l'extraction d'informations utiles à partir d'un ensemble de données et d'un modèle statistique. Par exemple, les méthodes pour détecter/localiser des cibles en radar requièrent généralement l'estimation de la matrice de covariance des données. Avec l'apparition de systèmes haute-résolution, l'utilisation d'un modèle gaussien n'est plus adaptée et conduit alors à des dégradations de performance. Par ailleurs, certaines informations a priori peuvent être obtenues par une étude préalable du système comme par exemple la structure de la matrice de covariance. Leur prise en compte améliore alors les performances des méthodes de traitement.Dans un premier temps, nous introduisons de nouveaux estimateurs robustes structurés de la matrice de covariance, basés sur la famille des distributions elliptiques et la classe des M-estimateurs. Nous analysons les performances asymptotiques de ces derniers et conduisons une analyse de sensibilité en considérant la possibilité d'erreurs sur le modèle statistique. Dans un second temps, nous proposons une reformulation du problème de détection de cibles à l'aide des techniques de subspace clustering et de reconstruction parcimonieuse. Nous étudions alors certaines propriétés théoriques du problème d'optimisation puis nous appliquons cette méthodologie dans un scénario de détection de cibles en présence de brouilleurs
One of the objectives of statistical signal processing is the extraction of useful information from a set of data and a statistical model. For example, most of the methods for detecting/localizing targets in radar generally require the estimation of the covariance matrix. With the emergence of high-resolution systems, the use of a Gaussian model is no longer suited and therefore leads to performance degradations. In addition, prior information can be obtained by a prior study of the system, such as the structure of the covariance matrix. Taking them into account then improves the performance of the processing methods. First, we introduce new robust structured estimators of the covariance matrix, based on the family of elliptical distributions and the class of M-estimators. We analyze the asymptotic performances of the latter and we conduct a sensitivity analysis by considering the possibility of mismatches on the statistical model.Secondly, we propose a reformulation of the target detection problem using sparse subspace clustering techniques. We then study some theoretical properties of the optimization problem and we apply this methodology in a scenario of target detection in presence of jammers
APA, Harvard, Vancouver, ISO, and other styles
2

Zachariah, Dave. "Estimation for Sensor Fusion and Sparse Signal Processing." Doctoral thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121283.

Full text
Abstract:
Progressive developments in computing and sensor technologies during the past decades have enabled the formulation of increasingly advanced problems in statistical inference and signal processing. The thesis is concerned with statistical estimation methods, and is divided into three parts with focus on two different areas: sensor fusion and sparse signal processing. The first part introduces the well-established Bayesian, Fisherian and least-squares estimation frameworks, and derives new estimators. Specifically, the Bayesian framework is applied in two different classes of estimation problems: scenarios in which (i) the signal covariances themselves are subject to uncertainties, and (ii) distance bounds are used as side information. Applications include localization, tracking and channel estimation. The second part is concerned with the extraction of useful information from multiple sensors by exploiting their joint properties. Two sensor configurations are considered here: (i) a monocular camera and an inertial measurement unit, and (ii) an array of passive receivers. New estimators are developed with applications that include inertial navigation, source localization and multiple waveform estimation. The third part is concerned with signals that have sparse representations. Two problems are considered: (i) spectral estimation of signals with power concentrated to a small number of frequencies,and (ii) estimation of sparse signals that are observed by few samples, including scenarios in which they are linearly underdetermined. New estimators are developed with applications that include spectral analysis, magnetic resonance imaging and array processing.

QC 20130426

APA, Harvard, Vancouver, ISO, and other styles
3

Koep, Niklas [Verfasser], Rudolf [Akademischer Betreuer] Mathar, and Holger [Akademischer Betreuer] Rauhut. "Quantized compressive sampling for structured signal estimation / Niklas Koep ; Rudolf Mathar, Holger Rauhut." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1195446799/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Farouj, Younes. "Structured anisotropic sparsity priors for non-parametric function estimation." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI123/document.

Full text
Abstract:
Le problème d'estimer une fonction de plusieurs variables à partir d'une observation corrompue surgit dans de nombreux domaines d'ingénierie. Par exemple, en imagerie médicale cette tâche a attiré une attention particulière et a, même, motivé l'introduction de nouveaux concepts qui ont trouvé des applications dans de nombreux autres domaines. Cet intérêt est principalement du au fait que l'analyse des données médicales est souvent effectuée dans des conditions difficiles car on doit faire face au bruit, au faible contraste et aux transformations indésirables inhérents aux systèmes d'acquisition. D'autre part , le concept de parcimonie a eu un fort impact sur la reconstruction et la restauration d'images au cours des deux dernières décennies. La parcimonie stipule que certains signaux et images ont des représentations impliquant seulement quelques coefficients non nuls. Cela est avéré être vérifiable dans de nombreux problèmes pratiques. La thèse introduit de nouvelles constructions d'a priori de parcimonie dans le cas des ondelettes et de la variation totale. Ces constructions utilisent une notion d'anisotopie généralisée qui permet de regrouper des variables ayant des comportements similaires : ces comportement peuvent peut être liée à la régularité de la fonction, au sens physique des variables ou bien au modèle d'observation. Nous utilisons ces constructions pour l'estimation non-paramétriques de fonctions. Dans le cas des ondelettes, nous montrons l'optimalité de l'approche sur les espaces fonctionnelles habituels avant de présenter quelques exemples d’applications en débruitage de séquences d'images, de données spectrales et hyper-spectrales, écoulements incompressibles ou encore des images ultrasonores. En suite, nous modélisons un problème déconvolution de données d'imagerie par résonance magnétique fonctionnelle comme un problème de minimisation faisant apparaître un a priori de variation totale structuré en espace-temps. Nous adaptons une généralisation de l'éclatement explicite-implicite pour trouver une solution au problème de minimisation
The problem of estimating a multivariate function from corrupted observations arises throughout many areas of engineering. For instance, in the particular field of medical signal and image processing, this task has attracted special attention and even triggered new concepts and notions that have found applications in many other fields. This interest is mainly due to the fact that the medical data analysis pipeline is often carried out in challenging conditions, since one has to deal with noise, low contrast and undesirable transformations operated by acquisition systems. On the other hand, the concept of sparsity had a tremendous impact on data reconstruction and restoration in the last two decades. Sparsity stipulates that some signals and images have representations involving only a few non-zero coefficients. The present PhD dissertation introduces new constructions of sparsity priors for wavelets and total variation. These construction harness notions of generalized anisotropy that enables grouping variables into sub-sets having similar behaviour; this behaviour can be related to the regularity of the unknown function, the physical meaning of the variables or the observation model. We use these constructions for non-parametric estimation of multivariate functions. In the case of wavelet thresholding, we show the optimality of the procedure over usual functional spaces before presenting some applications on denoising of image sequence, spectral and hyperspectral data, incompressible flows and ultrasound images. Afterwards, we study the problem of retrieving activity patterns from functional Magnetic Resonance Imaging data without incorporating priors on the timing, durations and atlas-based spatial structure of the activation. We model this challenge as a spatio-temporal deconvolution problem. We propose the corresponding variational formulation and we adapt the generalized forward-backward splitting algorithm to solve it
APA, Harvard, Vancouver, ISO, and other styles
5

Barbier, Jean. "Statistical physics and approximate message-passing algorithms for sparse linear estimation problems in signal processing and coding theory." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC130.

Full text
Abstract:
Cette thèse s’intéresse à l’application de méthodes de physique statistique des systèmes désordonnés ainsi que de l’inférence à des problèmes issus du traitement du signal et de la théorie du codage, plus précisément, aux problèmes parcimonieux d’estimation linéaire. Les outils utilisés sont essentiellement les modèles graphiques et l’algorithme approximé de passage de messages ainsi que la méthode de la cavité (appelée analyse de l’évolution d’état dans le contexte du traitement de signal) pour son analyse théorique. Nous aurons également recours à la méthode des répliques de la physique des systèmes désordonnées qui permet d’associer aux problèmes rencontrés une fonction de coût appelé potentiel ou entropie libre en physique. Celle-ci permettra de prédire les différentes phases de complexité typique du problème, en fonction de paramètres externes tels que le niveau de bruit ou le nombre de mesures liées au signal auquel l’on a accès : l’inférence pourra être ainsi typiquement simple, possible mais difficile et enfin impossible. Nous verrons que la phase difficile correspond à un régime où coexistent la solution recherchée ainsi qu’une autre solution des équations de passage de messages. Dans cette phase, celle-ci est un état métastable et ne représente donc pas l’équilibre thermodynamique. Ce phénomène peut-être rapproché de la surfusion de l’eau, bloquée dans l’état liquide à une température où elle devrait être solide pour être à l’équilibre. Via cette compréhension du phénomène de blocage de l’algorithme, nous utiliserons une méthode permettant de franchir l’état métastable en imitant la stratégie adoptée par la nature pour la surfusion : la nucléation et le couplage spatial. Dans de l’eau en état métastable liquide, il suffit d’une légère perturbation localisée pour que se créer un noyau de cristal qui va rapidement se propager dans tout le système de proche en proche grâce aux couplages physiques entre atomes. Le même procédé sera utilisé pour aider l’algorithme à retrouver le signal, et ce grâce à l’introduction d’un noyau contenant de l’information locale sur le signal. Celui-ci se propagera ensuite via une "onde de reconstruction" similaire à la propagation de proche en proche du cristal dans l’eau. Après une introduction à l’inférence statistique et aux problèmes d’estimation linéaires, on introduira les outils nécessaires. Seront ensuite présentées des applications de ces notions. Celles-ci seront divisées en deux parties. La partie traitement du signal se concentre essentiellement sur le problème de l’acquisition comprimée où l’on cherche à inférer un signal parcimonieux dont on connaît un nombre restreint de projections linéaires qui peuvent être bruitées. Est étudiée en profondeur l’influence de l’utilisation d’opérateurs structurés à la place des matrices aléatoires utilisées originellement en acquisition comprimée. Ceux-ci permettent un gain substantiel en temps de traitement et en allocation de mémoire, conditions nécessaires pour le traitement algorithmique de très grands signaux. Nous verrons que l’utilisation combinée de tels opérateurs avec la méthode du couplage spatial permet d’obtenir un algorithme de reconstruction extrê- mement optimisé et s’approchant des performances optimales. Nous étudierons également le comportement de l’algorithme confronté à des signaux seulement approximativement parcimonieux, question fondamentale pour l’application concrète de l’acquisition comprimée sur des signaux physiques réels. Une application directe sera étudiée au travers de la reconstruction d’images mesurées par microscopie à fluorescence. La reconstruction d’images dites "naturelles" sera également étudiée. En théorie du codage, seront étudiées les performances du décodeur basé sur le passage de message pour deux modèles distincts de canaux continus. Nous étudierons un schéma où le signal inféré sera en fait le bruit que l’on pourra ainsi soustraire au signal reçu. Le second, les codes de superposition parcimonieuse pour le canal additif Gaussien est le premier exemple de schéma de codes correcteurs d’erreurs pouvant être directement interprété comme un problème d’acquisition comprimée structuré. Dans ce schéma, nous appliquerons une grande partie des techniques étudiée dans cette thèse pour finalement obtenir un décodeur ayant des résultats très prometteurs à des taux d’information transmise extrêmement proches de la limite théorique de transmission du canal
This thesis is interested in the application of statistical physics methods and inference to signal processing and coding theory, more precisely, to sparse linear estimation problems. The main tools are essentially the graphical models and the approximate message-passing algorithm together with the cavity method (referred as the state evolution analysis in the signal processing context) for its theoretical analysis. We will also use the replica method of statistical physics of disordered systems which allows to associate to the studied problems a cost function referred as the potential of free entropy in physics. It allows to predict the different phases of typical complexity of the problem as a function of external parameters such as the noise level or the number of measurements one has about the signal: the inference can be typically easy, hard or impossible. We will see that the hard phase corresponds to a regime of coexistence of the actual solution together with another unwanted solution of the message passing equations. In this phase, it represents a metastable state which is not the true equilibrium solution. This phenomenon can be linked to supercooled water blocked in the liquid state below its freezing critical temperature. Thanks to this understanding of blocking phenomenon of the algorithm, we will use a method that allows to overcome the metastability mimicing the strategy adopted by nature itself for supercooled water: the nucleation and spatial coupling. In supercooled water, a weak localized perturbation is enough to create a crystal nucleus that will propagate in all the medium thanks to the physical couplings between closeby atoms. The same process will help the algorithm to find the signal, thanks to the introduction of a nucleus containing local information about the signal. It will then spread as a "reconstruction wave" similar to the crystal in the water. After an introduction to statistical inference and sparse linear estimation, we will introduce the necessary tools. Then we will move to applications of these notions. They will be divided into two parts. The signal processing part will focus essentially on the compressed sensing problem where we seek to infer a sparse signal from a small number of linear projections of it that can be noisy. We will study in details the influence of structured operators instead of purely random ones used originally in compressed sensing. These allow a substantial gain in computational complexity and necessary memory allocation, which are necessary conditions in order to work with very large signals. We will see that the combined use of such operators with spatial coupling allows the implementation of an highly optimized algorithm able to reach near to optimal performances. We will also study the algorithm behavior for reconstruction of approximately sparse signals, a fundamental question for the application of compressed sensing to real life problems. A direct application will be studied via the reconstruction of images measured by fluorescence microscopy. The reconstruction of "natural" images will be considered as well. In coding theory, we will look at the message-passing decoding performances for two distincts real noisy channel models. A first scheme where the signal to infer will be the noise itself will be presented. The second one, the sparse superposition codes for the additive white Gaussian noise channel is the first example of error correction scheme directly interpreted as a structured compressed sensing problem. Here we will apply all the tools developed in this thesis for finally obtaining a very promising decoder that allows to decode at very high transmission rates, very close of the fundamental channel limit
APA, Harvard, Vancouver, ISO, and other styles
6

Cho, Myung. "Convex and non-convex optimizations for recovering structured data: algorithms and analysis." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5922.

Full text
Abstract:
Optimization theories and algorithms are used to efficiently find optimal solutions under constraints. In the era of “Big Data”, the amount of data is skyrocketing,and this overwhelms conventional techniques used to solve large scale and distributed optimization problems. By taking advantage of structural information in data representations, this thesis offers convex and non-convex optimization solutions to various large scale optimization problems such as super-resolution, sparse signal processing,hypothesis testing, machine learning, and treatment planning for brachytherapy. Super-resolution: Super-resolution aims to recover a signal expressed as a sum of a few Dirac delta functions in the time domain from measurements in the frequency domain. The challenge is that the possible locations of the delta functions are in the continuous domain [0,1). To enhance recovery performance, we considered deterministic and probabilistic prior information for the locations of the delta functions and provided novel semidefinite programming formulations under the information. We also proposed block iterative reweighted methods to improve recovery performance without prior information. We further considered phaseless measurements, motivated by applications in optic microscopy and x-ray crystallography. By using the lifting method and introducing the squared atomic norm minimization, we can achieve super-resolution using only low frequency magnitude information. Finally, we proposed non-convex algorithms using structured matrix completion. Sparse signal processing: L1 minimization is well known for promoting sparse structures in recovered signals. The Null Space Condition (NSC) for L1 minimization is a necessary and sufficient condition on sensing matrices such that a sparse signal can be uniquely recovered via L1 minimization. However, verifying NSC is a non-convex problem and known to be NP-hard. We proposed enumeration-based polynomial-time algorithms to provide performance bounds on NSC, and efficient algorithms to verify NSC precisely by using the branch and bound method. Hypothesis testing: Recovering statistical structures of random variables is important in some applications such as cognitive radio. Our goal is distinguishing two different types of random variables among n>>1 random variables. Distinguishing them via experiments for each random variable one by one takes lots of time and efforts. Hence, we proposed hypothesis testing using mixed measurements to reduce sample complexity. We also designed efficient algorithms to solve large scale problems. Machine learning: When feature data are stored in a tree structured network having time delay in communication, quickly finding an optimal solution to the regularized loss minimization is challenging. In this scenario, we studied a communication-efficient stochastic dual coordinate ascent and its convergence analysis. Treatment planning: In the Rotating-Shield Brachytherapy (RSBT) for cancer treatment, there is a compelling need to quickly obtain optimal treatment plans to enable clinical usage. However, due to the degree of freedom in RSBT, finding optimal treatment planning is difficult. For this, we designed a first order dose optimization method based on the alternating direction method of multipliers, and reduced the execution time around 18 times compared to the previous research.
APA, Harvard, Vancouver, ISO, and other styles
7

Lasserre, Marie. "Estimation non-ambigüe de cibles grâce à une représentation parcimonieuse Bayésienne d'un signal radar large bande." Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0028/document.

Full text
Abstract:
Les travaux menés lors de cette thèse s’inscrivent dans le cadre général de la détection de cibles en utilisant une forme d’onde non-conventionnelle large bande. L’utilisation d’une forme d’onde large bande à faible PRF a été proposée par le passé une alternative aux traitements multi-PRF qui limitent le temps d’illumination de la scène. En effet, l’augmentation de la bande instantanée permet d’obtenir une meilleure résolution distance ; les cibles rapides sont alors susceptibles de migrer lors du temps de traitement, mais ce phénomène de couplage distance-vitesse peut être mis à profit pour lever les ambiguïtés. L’objectif de la thèse est alors de développer, pour une forme d’onde large bande avec faible PRF, des traitements prenant en compte la migration des cibles et capables de lever les ambiguïtés vitesse dans des scénarios réalistes. Les travaux se basent sur un algorithme de représentation parcimonieuse non-ambigüe de cibles migrantes, dans un cadre algorithmique Bayésien. Cet algorithme est en revanche développé sous certaines hypothèses, et des travaux de robustification sont alors entrepris afin de l’utiliser sur des scénarios plus réalistes. Dans un premier temps, l’algorithme est robustifié au désalignement des cibles par rapport à la grille d’analyse, puis modifié pour prendre également en compte une possible composante diffuse de bruit. Il est également remanié pour estimer correctement une scène comportant une forte diversité de puissance, où des cibles fortes masquent potentiellement des cibles faibles. Les différents algorithmes sont validés à la fois sur des données synthétiques et expérimentales
The work conducted during this PhD falls within the general context of radar target detection using a non-conventional wideband waveform. More precisely, the use of a low-PRF wideband waveform has been proposed in the past as an alternative to the classical staggered-PRF processing used to mitigate velocity ambiguities that limits dwell time. Increasing the instantaneous bandwidth improves range resolution; fast moving targets are then likely to migrate during the coherent processing interval. This range-velocity coupling can then be used to mitigate velocity ambiguities. This PhD thesis aims at developing an algorithm able to provide unambiguous estimation of migrating targets using a low-PRF wideband waveform. It is based on a sparse representation algorithm able to unambiguously estimate migrating targets, within a Bayesian framework. However, this algorithm is developed under some hypothesis, and then requires robustification to be used on more realistic scenarii. First, the algorithm is robustified to the case of off-grid targets, and then upgraded to take into account a possible diffuse clutter component. On the other hand, the reference algorithm is modified to accurately estimate high dynamic range scenes where weak targets compete with strong targets. All the developed algorithms have been validated on synthetic and experimental data recorded by the PARSAX radar from the Technical University of Delft, The Netherlands
APA, Harvard, Vancouver, ISO, and other styles
8

Wirfält, Petter. "Exploiting Prior Information in Parametric Estimation Problems for Multi-Channel Signal Processing Applications." Doctoral thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134034.

Full text
Abstract:
This thesis addresses a number of problems all related to parameter estimation in sensor array processing. The unifying theme is that some of these parameters are known before the measurements are acquired. We thus study how to improve the estimation of the unknown parameters by incorporating the knowledge of the known parameters; exploiting this knowledge successfully has the potential to dramatically improve the accuracy of the estimates. For covariance matrix estimation, we exploit that the true covariance matrix is Kronecker and Toeplitz structured. We then devise a method to ascertain that the estimates possess this structure. Additionally, we can show that our proposed estimator has better performance than the state-of-art when the number of samples is low, and that it is also efficient in the sense that the estimates have Cram\'er-Rao lower Bound (CRB) equivalent variance. In the direction of arrival (DOA) scenario, there are different types of prior information; first, we study the case when the location of some of the emitters in the scene is known. We then turn to cases with additional prior information, i.e.~when it is known that some (or all) of the source signals are uncorrelated. As it turns out, knowledge of some DOA combined with this latter form of prior knowledge is especially beneficial, giving estimators that are dramatically more accurate than the state-of-art. We also derive the corresponding CRBs, and show that under quite mild assumptions, the estimators are efficient. Finally, we also investigate the frequency estimation scenario, where the data is a one-dimensional temporal sequence which we model as a spatial multi-sensor response. The line-frequency estimation problem is studied when some of the frequencies are known; through experimental data we show that our approach can be beneficial. The second frequency estimation paper explores the analysis of pulse spin-locking data sequences, which are encountered in nuclear resonance experiments. By introducing a novel modeling technique for such data, we develop a method for estimating the interesting parameters of the model. The technique is significantly faster than previously available methods, and provides accurate estimation results.
Denna doktorsavhandling behandlar parameterestimeringsproblem inom flerkanals-signalbehandling. Den gemensamma förutsättningen för dessa problem är att det finns information om de sökta parametrarna redan innan data analyseras; tanken är att på ett så finurligt sätt som möjligt använda denna kunskap för att förbättra skattningarna av de okända parametrarna. I en uppsats studeras kovariansmatrisskattning när det är känt att den sanna kovariansmatrisen har Kronecker- och Toeplitz-struktur. Baserat på denna kunskap utvecklar vi en metod som säkerställer att även skattningarna har denna struktur, och vi kan visa att den föreslagna skattaren har bättre prestanda än existerande metoder. Vi kan också visa att skattarens varians når Cram\'er-Rao-gränsen (CRB). Vi studerar vidare olika sorters förhandskunskap i riktningsbestämningsscenariot: först i det fall då riktningarna till ett antal av sändarna är kända. Sedan undersöker vi fallet då vi även vet något om kovariansen mellan de mottagna signalerna, nämligen att vissa (eller alla) signaler är okorrelerade. Det visar sig att just kombinationen av förkunskap om både korrelation och riktning är speciellt betydelsefull, och genom att utnyttja denna kunskap på rätt sätt kan vi skapa skattare som är mycket noggrannare än tidigare möjligt. Vi härleder även CRB för fall med denna förhandskunskap, och vi kan visa att de föreslagna skattarna är effektiva. Slutligen behandlar vi även frekvensskattning. I detta problem är data en en-dimensionell temporal sekvens som vi modellerar som en spatiell fler-kanalssignal. Fördelen med denna modelleringsstrategi är att vi kan använda liknande metoder i estimatorerna som vid sensor-signalbehandlingsproblemen. Vi utnyttjar återigen förhandskunskap om källsignalerna: i ett av bidragen är antagandet att vissa frekvenser är kända, och vi modifierar en existerande metod för att ta hänsyn till denna kunskap. Genom att tillämpa den föreslagna metoden på experimentell data visar vi metodens användbarhet. Det andra bidraget inom detta område studerar data som erhålls från exempelvis experiment inom kärnmagnetisk resonans. Vi introducerar en ny modelleringsmetod för sådan data och utvecklar en algoritm för att skatta de önskade parametrarna i denna modell. Vår algoritm är betydligt snabbare än existerande metoder, och skattningarna är tillräckligt noggranna för typiska tillämpningar.

QC 20131115

APA, Harvard, Vancouver, ISO, and other styles
9

Bousabaa, Sofiane. "Acoustic Green’s Function Estimation using Numerical Simulations and Application to Extern Aeroacoustic Beamforming." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS228.

Full text
Abstract:
Les techniques d’identification acoustique visent à caractériser les différentes sources de bruit sur un avion à partir de données microphoniques. Ces techniques nécessitent la connaissance de la fonction de Green acoustique du milieu. Or celle-ci n’est connue analytiquement que pour des configurations simples et l’utilisation de fonctions de Green imparfaites conduit à une erreur sur l’identification des sources. L’objectif de cette thèse est de mettre au point une méthode numérique d’estimation des fonctions de Green pour l’imagerie aéroacoustique. La méthode doit avoir un coût de calcul minimal et fournir une estimation suffisamment précises pour être utilisée dans des configurations réalistes. Pour cela, la parcimonie de la fonction de Green dans le domaine temporel est prise en compte. Il en découle un problème d’identification de système nécessitant l’utilisation d’algorithmes de régression linéaire. La méthode est d’abord validée sur des cas numériques 3D représentatifs de ceux rencontrés dans l’industrie. Lorsque le nombre de points de focalisation est élevé, la réciprocité en écoulement retourné simplifie considérablement le problème. La méthode est ensuite appliquée sur des données d’essais réalisés sur une aile à haute portance passée en soufflerie anéchoïque à veine ouverte justifiant de l’applicabilité de la méthode sur des configurations industrielles réalistes
Acoustic imaging techniques aims at characterizing the different acoustic sources of noise on an aircraft using microphone array measurements. Those techniques require the knowledge of the acoustic Green’s function of the medium. Unfortunately, this function is known only for cases of relatively simple complexity and the use of approximate Green’s function can lead to errors in the identification of the sources. The main aim of this thesis is to set up a numerical method for the estimation of the Green’s function for aeroacoustic imaging applications. The method must have a minimal computational cost and provide a sufficiently accurate estimation to be used on realistic industrial configurations. The proposed methodology takes advantage of the sparsity of the Green’s functions in the time-domain. This results in a system identification problem and sparsity-based regression algorithms can be used to solve it. First, the method is validated on complex 3D numerical test cases typical of those encountered in the industry. For configurations involving a high number of focus points, the reverse-flow reciprocity simplifies significantly the Green’s function estimation problem. The methodology is finally applied on high lift 2D wing data placed in the ONERA CEPRA19 open section anechoic wind tunnel justifying the applicability of the method on realistic industrial configurations
APA, Harvard, Vancouver, ISO, and other styles
10

Raguet, Hugo. "A Signal Processing Approach to Voltage-Sensitive Dye Optical Imaging." Thesis, Paris 9, 2014. http://www.theses.fr/2014PA090031/document.

Full text
Abstract:
L’imagerie optique par colorant potentiométrique est une méthode d’enregistrement de l’activité corticale prometteuse, mais dont le potentiel réel est limité par la présence d’artefacts et d’interférences dans les acquisitions. À partir de modèles existant dans la littérature, nous proposons un modèle génératif du signal basé sur un mélange additif de composantes, chacune contrainte dans une union d’espaces linéaires déterminés par son origine biophysique. Motivés par le problème de séparation de composantes qui en découle, qui est un problème inverse linéaire sous-déterminé, nous développons : (1) des régularisations convexes structurées spatialement, favorisant en particulier des solutions parcimonieuses ; (2) un nouvel algorithme proximal de premier ordre pour minimiser efficacement la fonctionnelle qui en résulte ; (3) des méthodes statistiques de sélection de paramètre basées sur l’estimateur non biaisé du risque de Stein. Nous étudions ces outils dans un cadre général, et discutons leur utilité pour de nombreux domaines des mathématiques appliqués, en particulier pour les problèmes inverses ou de régression en grande dimension. Nous développons par la suite un logiciel de séparation de composantes en présence de bruit, dans un environnement intégré adapté à l’imagerie optique par colorant potentiométrique. Finalement, nous évaluons ce logiciel sur différentes données, synthétiques et réelles, montrant des résultats encourageants quant à la possibilité d’observer des dynamiques corticales complexes
Voltage-sensitive dye optical imaging is a promising recording modality for the cortical activity, but its practical potential is limited by many artefacts and interferences in the acquisitions. Inspired by existing models in the literature, we propose a generative model of the signal, based on an additive mixtures of components, each one being constrained within an union of linear spaces, determined by its biophysical origin. Motivated by the resulting component separation problem, which is an underdetermined linear inverse problem, we develop: (1) convex, spatially structured regularizations, enforcing in particular sparsity on the solutions; (2) a new rst-order proximal algorithm for minimizing e›ciently the resulting functional; (3) statistical methods for automatic parameters selection, based on Stein’s unbiased risk estimate.We study thosemethods in a general framework, and discuss their potential applications in variouselds of applied mathematics, in particular for large scale inverse problems or regressions. We develop subsequently a soŸware for noisy component separation, in an integrated environment adapted to voltage-sensitive dye optical imaging. Finally, we evaluate this soŸware on dišerent data set, including synthetic and real data, showing encouraging perspectives for the observation of complex cortical dynamics
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Structured Sparse Signal Estimation"

1

Daei, Sajad, Massoud Babaie-Zadeh, and Christian Jutten. "A MAP-Based Order Estimation Procedure for Sparse Channel Estimation." In Latent Variable Analysis and Signal Separation, 344–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22482-4_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Lu, Lifan Zhao, Guoan Bi, and Xin Liu. "Alternative Extended Block Sparse Bayesian Learning for Cluster Structured Sparse Signal Recovery." In Wireless and Satellite Systems, 3–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19153-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Niazadeh, Rad, Massoud Babaie-Zadeh, and Christian Jutten. "An Alternating Minimization Method for Sparse Channel Estimation." In Latent Variable Analysis and Signal Separation, 319–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15995-4_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Markovsky, Ivan, and Pier Luigi Dragotti. "Using Hankel Structured Low-Rank Approximation for Sparse Signal Recovery." In Latent Variable Analysis and Signal Separation, 479–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93764-9_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dyer, Eva L., Marco F. Duarte, Don H. Johnson, and Richard G. Baraniuk. "Recovering Spikes from Noisy Neuronal Calcium Signals via Structured Sparse Approximation." In Latent Variable Analysis and Signal Separation, 604–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15995-4_75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xianghang, Xinhua Zhang, and Tibério Caetano. "Bayesian Models for Structured Sparse Estimation via Set Cover Prior." In Machine Learning and Knowledge Discovery in Databases, 273–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44851-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trigano, Tom, and Yann Sepulcre. "Regularized Sparse Representation for Spectrometric Pulse Separation and Counting Rate Estimation." In Latent Variable Analysis and Signal Separation, 188–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28551-6_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Belitser, Eduard, Nurzhan Nurushev, and Paulo Serra. "Robust Estimation of Sparse Signal with Unknown Sparsity Cluster Value." In Springer Proceedings in Mathematics & Statistics, 77–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57306-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Fei, and Jing Tan. "Sparse Channel Estimation Using Overcomplete Dictionaries in OFDM Systems." In The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems, 743–51. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00536-2_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Uwaechia, Anthony Ngozichukwuka, and Nor Muzlifah Mahyuddin. "Improved Time-Domain Threshold Determination for Sparse Channel Estimation in OFDM System." In 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, 175–83. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1721-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structured Sparse Signal Estimation"

1

Giri, Ritwik, Bhaskar D. Rao, Fred Mustiere, and Tao Zhang. "Dynamic relative impulse response estimation using structured sparse Bayesian learning." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7471728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richard, Nicholas, and Urbashi Mitra. "Sparse channel estimation for cooperative underwater communications: A structured multichannel approach." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4518856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fang, Xudong, and Wuyang Zhou. "User Grouping based Structured Joint Sparse Channel Estimation for 3D MIMO System." In 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2019. http://dx.doi.org/10.1109/wcsp.2019.8928090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsiligkaridis, Theodoros, and Alfred O. Hero. "Sparse covariance estimation under Kronecker product structure." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yagi, Naomi, Yoshitetsu Oshiro, Osamu Ishikawa, Yutaka Hata, and Nao Shibanuma. "Estimation system for total hip arthroplasty by acoustic signal." In 2011 IEEE Workshop On Robotic Intelligence In Informationally Structured Space - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/riiss.2011.5945782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Najjar, Leila. "Sparse Channels Structured Estimation in OFDM Systems." In 2011 IEEE Vehicular Technology Conference (VTC 2011-Spring). IEEE, 2011. http://dx.doi.org/10.1109/vetecs.2011.5956378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chiras, Neophytos, Ceri Evans, and David Rees. "Global Nonlinear Modelling of Gas Turbine Dynamics Using NARMAX Structures." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0019.

Full text
Abstract:
This paper examines the estimation of a global nonlinear gas turbine model using NARMAX techniques. Linear models estimated on small-signal data are first examined and the need for a global nonlinear model is established. A nonparametric analysis of the engine nonlinearity is then performed in the time and frequency domains. The information obtained from the linear modelling and nonlinear analysis is used to restrict the search space for nonlinear modelling. The nonlinear model is then validated using large-signal data and its superior performance illustrated by comparison with a linear model. This paper illustrates how periodic test signals, frequency domain analysis and identification techniques, and time-domain NARMAX modelling can be effectively combined to enhance the modelling of an aircraft gas turbine.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Kai, Hui Feng, Tao Yang, and Bo Hu. "Structured Sparse Channel Estimation for 3D-MIMO Systems." In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE, 2016. http://dx.doi.org/10.1109/vtcspring.2016.7504492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, Vimal, Dan Wang, Ahmed H. Tewfik, and Bradley J. Erickson. "Liver segmentation using structured sparse representations." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6287942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Jun-Jie, and Pier Luigi Dragotti. "Sparse signal recovery using structured total maximum likelihood." In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography