Academic literature on the topic 'Structured Sparse Signal Estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structured Sparse Signal Estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structured Sparse Signal Estimation"
Castro, Rui M., and Ervin Tanczos. "Adaptive Sensing for Estimation of Structured Sparse Signals." IEEE Transactions on Information Theory 61, no. 4 (April 2015): 2060–80. http://dx.doi.org/10.1109/tit.2015.2396917.
Full textAhmed, Nisar. "Data-Free/Data-Sparse Softmax Parameter Estimation With Structured Class Geometries." IEEE Signal Processing Letters 25, no. 9 (September 2018): 1408–12. http://dx.doi.org/10.1109/lsp.2018.2860238.
Full textSun, Xiaoyong, Shaojing Su, Junyu Wei, Xiaojun Guo, and Xiaopeng Tan. "Monitoring of OSNR Using an Improved Binary Particle Swarm Optimization and Deep Neural Network in Coherent Optical Systems." Photonics 6, no. 4 (October 25, 2019): 111. http://dx.doi.org/10.3390/photonics6040111.
Full textChen, Tao, Jian Yang, Weitong Wang, and Muran Guo. "Generalized Sparse Polarization Array for DOA Estimation Using Compressive Measurements." Wireless Communications and Mobile Computing 2021 (March 30, 2021): 1–10. http://dx.doi.org/10.1155/2021/5539709.
Full textLi, Yun, Lingxia Liao, Shanlin Sun, Zhicheng Tan, and Xing Yao. "Pilot design for underwater MIMO cosparse channel estimation based on compressed sensing." International Journal of Distributed Sensor Networks 17, no. 6 (June 2021): 155014772110178. http://dx.doi.org/10.1177/15501477211017825.
Full textZuo, Luo, Jun Wang, Te Zhao, and Zuhan Cheng. "A Joint Low-Rank and Sparse Method for Reference Signal Purification in DTMB-Based Passive Bistatic Radar." Sensors 21, no. 11 (May 22, 2021): 3607. http://dx.doi.org/10.3390/s21113607.
Full textDe Canditiis, Daniela, and Italia De Feis. "Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames." Mathematics 9, no. 11 (June 3, 2021): 1288. http://dx.doi.org/10.3390/math9111288.
Full textLiu, Haoqiang, Hongbo Zhao, and Wenquan Feng. "Filtering-Based Regularized Sparsity Variable Step-Size Matching Pursuit and Its Applications in Vehicle Health Monitoring." Applied Sciences 11, no. 11 (May 24, 2021): 4816. http://dx.doi.org/10.3390/app11114816.
Full textZhang, Wenjie, Hui Li, Rong Jin, Shanlin Wei, Wei Cheng, Weisi Kong, and Penglu Liu. "Distributed Structured Compressive Sensing-Based Time-Frequency Joint Channel Estimation for Massive MIMO-OFDM Systems." Mobile Information Systems 2019 (May 2, 2019): 1–16. http://dx.doi.org/10.1155/2019/2634361.
Full textQin, Guodong, and Moeness G. Amin. "Structured sparse array design exploiting two uniform subarrays for DOA estimation on moving platform." Signal Processing 180 (March 2021): 107872. http://dx.doi.org/10.1016/j.sigpro.2020.107872.
Full textDissertations / Theses on the topic "Structured Sparse Signal Estimation"
Meriaux, Bruno. "Contributions aux traitements robustes pour les systèmes multi-capteurs." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG009.
Full textOne of the objectives of statistical signal processing is the extraction of useful information from a set of data and a statistical model. For example, most of the methods for detecting/localizing targets in radar generally require the estimation of the covariance matrix. With the emergence of high-resolution systems, the use of a Gaussian model is no longer suited and therefore leads to performance degradations. In addition, prior information can be obtained by a prior study of the system, such as the structure of the covariance matrix. Taking them into account then improves the performance of the processing methods. First, we introduce new robust structured estimators of the covariance matrix, based on the family of elliptical distributions and the class of M-estimators. We analyze the asymptotic performances of the latter and we conduct a sensitivity analysis by considering the possibility of mismatches on the statistical model.Secondly, we propose a reformulation of the target detection problem using sparse subspace clustering techniques. We then study some theoretical properties of the optimization problem and we apply this methodology in a scenario of target detection in presence of jammers
Zachariah, Dave. "Estimation for Sensor Fusion and Sparse Signal Processing." Doctoral thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121283.
Full textQC 20130426
Koep, Niklas [Verfasser], Rudolf [Akademischer Betreuer] Mathar, and Holger [Akademischer Betreuer] Rauhut. "Quantized compressive sampling for structured signal estimation / Niklas Koep ; Rudolf Mathar, Holger Rauhut." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1195446799/34.
Full textFarouj, Younes. "Structured anisotropic sparsity priors for non-parametric function estimation." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI123/document.
Full textThe problem of estimating a multivariate function from corrupted observations arises throughout many areas of engineering. For instance, in the particular field of medical signal and image processing, this task has attracted special attention and even triggered new concepts and notions that have found applications in many other fields. This interest is mainly due to the fact that the medical data analysis pipeline is often carried out in challenging conditions, since one has to deal with noise, low contrast and undesirable transformations operated by acquisition systems. On the other hand, the concept of sparsity had a tremendous impact on data reconstruction and restoration in the last two decades. Sparsity stipulates that some signals and images have representations involving only a few non-zero coefficients. The present PhD dissertation introduces new constructions of sparsity priors for wavelets and total variation. These construction harness notions of generalized anisotropy that enables grouping variables into sub-sets having similar behaviour; this behaviour can be related to the regularity of the unknown function, the physical meaning of the variables or the observation model. We use these constructions for non-parametric estimation of multivariate functions. In the case of wavelet thresholding, we show the optimality of the procedure over usual functional spaces before presenting some applications on denoising of image sequence, spectral and hyperspectral data, incompressible flows and ultrasound images. Afterwards, we study the problem of retrieving activity patterns from functional Magnetic Resonance Imaging data without incorporating priors on the timing, durations and atlas-based spatial structure of the activation. We model this challenge as a spatio-temporal deconvolution problem. We propose the corresponding variational formulation and we adapt the generalized forward-backward splitting algorithm to solve it
Barbier, Jean. "Statistical physics and approximate message-passing algorithms for sparse linear estimation problems in signal processing and coding theory." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC130.
Full textThis thesis is interested in the application of statistical physics methods and inference to signal processing and coding theory, more precisely, to sparse linear estimation problems. The main tools are essentially the graphical models and the approximate message-passing algorithm together with the cavity method (referred as the state evolution analysis in the signal processing context) for its theoretical analysis. We will also use the replica method of statistical physics of disordered systems which allows to associate to the studied problems a cost function referred as the potential of free entropy in physics. It allows to predict the different phases of typical complexity of the problem as a function of external parameters such as the noise level or the number of measurements one has about the signal: the inference can be typically easy, hard or impossible. We will see that the hard phase corresponds to a regime of coexistence of the actual solution together with another unwanted solution of the message passing equations. In this phase, it represents a metastable state which is not the true equilibrium solution. This phenomenon can be linked to supercooled water blocked in the liquid state below its freezing critical temperature. Thanks to this understanding of blocking phenomenon of the algorithm, we will use a method that allows to overcome the metastability mimicing the strategy adopted by nature itself for supercooled water: the nucleation and spatial coupling. In supercooled water, a weak localized perturbation is enough to create a crystal nucleus that will propagate in all the medium thanks to the physical couplings between closeby atoms. The same process will help the algorithm to find the signal, thanks to the introduction of a nucleus containing local information about the signal. It will then spread as a "reconstruction wave" similar to the crystal in the water. After an introduction to statistical inference and sparse linear estimation, we will introduce the necessary tools. Then we will move to applications of these notions. They will be divided into two parts. The signal processing part will focus essentially on the compressed sensing problem where we seek to infer a sparse signal from a small number of linear projections of it that can be noisy. We will study in details the influence of structured operators instead of purely random ones used originally in compressed sensing. These allow a substantial gain in computational complexity and necessary memory allocation, which are necessary conditions in order to work with very large signals. We will see that the combined use of such operators with spatial coupling allows the implementation of an highly optimized algorithm able to reach near to optimal performances. We will also study the algorithm behavior for reconstruction of approximately sparse signals, a fundamental question for the application of compressed sensing to real life problems. A direct application will be studied via the reconstruction of images measured by fluorescence microscopy. The reconstruction of "natural" images will be considered as well. In coding theory, we will look at the message-passing decoding performances for two distincts real noisy channel models. A first scheme where the signal to infer will be the noise itself will be presented. The second one, the sparse superposition codes for the additive white Gaussian noise channel is the first example of error correction scheme directly interpreted as a structured compressed sensing problem. Here we will apply all the tools developed in this thesis for finally obtaining a very promising decoder that allows to decode at very high transmission rates, very close of the fundamental channel limit
Cho, Myung. "Convex and non-convex optimizations for recovering structured data: algorithms and analysis." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5922.
Full textLasserre, Marie. "Estimation non-ambigüe de cibles grâce à une représentation parcimonieuse Bayésienne d'un signal radar large bande." Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0028/document.
Full textThe work conducted during this PhD falls within the general context of radar target detection using a non-conventional wideband waveform. More precisely, the use of a low-PRF wideband waveform has been proposed in the past as an alternative to the classical staggered-PRF processing used to mitigate velocity ambiguities that limits dwell time. Increasing the instantaneous bandwidth improves range resolution; fast moving targets are then likely to migrate during the coherent processing interval. This range-velocity coupling can then be used to mitigate velocity ambiguities. This PhD thesis aims at developing an algorithm able to provide unambiguous estimation of migrating targets using a low-PRF wideband waveform. It is based on a sparse representation algorithm able to unambiguously estimate migrating targets, within a Bayesian framework. However, this algorithm is developed under some hypothesis, and then requires robustification to be used on more realistic scenarii. First, the algorithm is robustified to the case of off-grid targets, and then upgraded to take into account a possible diffuse clutter component. On the other hand, the reference algorithm is modified to accurately estimate high dynamic range scenes where weak targets compete with strong targets. All the developed algorithms have been validated on synthetic and experimental data recorded by the PARSAX radar from the Technical University of Delft, The Netherlands
Wirfält, Petter. "Exploiting Prior Information in Parametric Estimation Problems for Multi-Channel Signal Processing Applications." Doctoral thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134034.
Full textDenna doktorsavhandling behandlar parameterestimeringsproblem inom flerkanals-signalbehandling. Den gemensamma förutsättningen för dessa problem är att det finns information om de sökta parametrarna redan innan data analyseras; tanken är att på ett så finurligt sätt som möjligt använda denna kunskap för att förbättra skattningarna av de okända parametrarna. I en uppsats studeras kovariansmatrisskattning när det är känt att den sanna kovariansmatrisen har Kronecker- och Toeplitz-struktur. Baserat på denna kunskap utvecklar vi en metod som säkerställer att även skattningarna har denna struktur, och vi kan visa att den föreslagna skattaren har bättre prestanda än existerande metoder. Vi kan också visa att skattarens varians når Cram\'er-Rao-gränsen (CRB). Vi studerar vidare olika sorters förhandskunskap i riktningsbestämningsscenariot: först i det fall då riktningarna till ett antal av sändarna är kända. Sedan undersöker vi fallet då vi även vet något om kovariansen mellan de mottagna signalerna, nämligen att vissa (eller alla) signaler är okorrelerade. Det visar sig att just kombinationen av förkunskap om både korrelation och riktning är speciellt betydelsefull, och genom att utnyttja denna kunskap på rätt sätt kan vi skapa skattare som är mycket noggrannare än tidigare möjligt. Vi härleder även CRB för fall med denna förhandskunskap, och vi kan visa att de föreslagna skattarna är effektiva. Slutligen behandlar vi även frekvensskattning. I detta problem är data en en-dimensionell temporal sekvens som vi modellerar som en spatiell fler-kanalssignal. Fördelen med denna modelleringsstrategi är att vi kan använda liknande metoder i estimatorerna som vid sensor-signalbehandlingsproblemen. Vi utnyttjar återigen förhandskunskap om källsignalerna: i ett av bidragen är antagandet att vissa frekvenser är kända, och vi modifierar en existerande metod för att ta hänsyn till denna kunskap. Genom att tillämpa den föreslagna metoden på experimentell data visar vi metodens användbarhet. Det andra bidraget inom detta område studerar data som erhålls från exempelvis experiment inom kärnmagnetisk resonans. Vi introducerar en ny modelleringsmetod för sådan data och utvecklar en algoritm för att skatta de önskade parametrarna i denna modell. Vår algoritm är betydligt snabbare än existerande metoder, och skattningarna är tillräckligt noggranna för typiska tillämpningar.
QC 20131115
Bousabaa, Sofiane. "Acoustic Green’s Function Estimation using Numerical Simulations and Application to Extern Aeroacoustic Beamforming." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS228.
Full textAcoustic imaging techniques aims at characterizing the different acoustic sources of noise on an aircraft using microphone array measurements. Those techniques require the knowledge of the acoustic Green’s function of the medium. Unfortunately, this function is known only for cases of relatively simple complexity and the use of approximate Green’s function can lead to errors in the identification of the sources. The main aim of this thesis is to set up a numerical method for the estimation of the Green’s function for aeroacoustic imaging applications. The method must have a minimal computational cost and provide a sufficiently accurate estimation to be used on realistic industrial configurations. The proposed methodology takes advantage of the sparsity of the Green’s functions in the time-domain. This results in a system identification problem and sparsity-based regression algorithms can be used to solve it. First, the method is validated on complex 3D numerical test cases typical of those encountered in the industry. For configurations involving a high number of focus points, the reverse-flow reciprocity simplifies significantly the Green’s function estimation problem. The methodology is finally applied on high lift 2D wing data placed in the ONERA CEPRA19 open section anechoic wind tunnel justifying the applicability of the method on realistic industrial configurations
Raguet, Hugo. "A Signal Processing Approach to Voltage-Sensitive Dye Optical Imaging." Thesis, Paris 9, 2014. http://www.theses.fr/2014PA090031/document.
Full textVoltage-sensitive dye optical imaging is a promising recording modality for the cortical activity, but its practical potential is limited by many artefacts and interferences in the acquisitions. Inspired by existing models in the literature, we propose a generative model of the signal, based on an additive mixtures of components, each one being constrained within an union of linear spaces, determined by its biophysical origin. Motivated by the resulting component separation problem, which is an underdetermined linear inverse problem, we develop: (1) convex, spatially structured regularizations, enforcing in particular sparsity on the solutions; (2) a new rst-order proximal algorithm for minimizing e›ciently the resulting functional; (3) statistical methods for automatic parameters selection, based on Stein’s unbiased risk estimate.We study thosemethods in a general framework, and discuss their potential applications in variouselds of applied mathematics, in particular for large scale inverse problems or regressions. We develop subsequently a soŸware for noisy component separation, in an integrated environment adapted to voltage-sensitive dye optical imaging. Finally, we evaluate this soŸware on dišerent data set, including synthetic and real data, showing encouraging perspectives for the observation of complex cortical dynamics
Book chapters on the topic "Structured Sparse Signal Estimation"
Daei, Sajad, Massoud Babaie-Zadeh, and Christian Jutten. "A MAP-Based Order Estimation Procedure for Sparse Channel Estimation." In Latent Variable Analysis and Signal Separation, 344–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22482-4_40.
Full textWang, Lu, Lifan Zhao, Guoan Bi, and Xin Liu. "Alternative Extended Block Sparse Bayesian Learning for Cluster Structured Sparse Signal Recovery." In Wireless and Satellite Systems, 3–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19153-5_1.
Full textNiazadeh, Rad, Massoud Babaie-Zadeh, and Christian Jutten. "An Alternating Minimization Method for Sparse Channel Estimation." In Latent Variable Analysis and Signal Separation, 319–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15995-4_40.
Full textMarkovsky, Ivan, and Pier Luigi Dragotti. "Using Hankel Structured Low-Rank Approximation for Sparse Signal Recovery." In Latent Variable Analysis and Signal Separation, 479–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93764-9_44.
Full textDyer, Eva L., Marco F. Duarte, Don H. Johnson, and Richard G. Baraniuk. "Recovering Spikes from Noisy Neuronal Calcium Signals via Structured Sparse Approximation." In Latent Variable Analysis and Signal Separation, 604–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15995-4_75.
Full textLiu, Xianghang, Xinhua Zhang, and Tibério Caetano. "Bayesian Models for Structured Sparse Estimation via Set Cover Prior." In Machine Learning and Knowledge Discovery in Databases, 273–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44851-9_18.
Full textTrigano, Tom, and Yann Sepulcre. "Regularized Sparse Representation for Spectrometric Pulse Separation and Counting Rate Estimation." In Latent Variable Analysis and Signal Separation, 188–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28551-6_24.
Full textBelitser, Eduard, Nurzhan Nurushev, and Paulo Serra. "Robust Estimation of Sparse Signal with Unknown Sparsity Cluster Value." In Springer Proceedings in Mathematics & Statistics, 77–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57306-5_8.
Full textZhou, Fei, and Jing Tan. "Sparse Channel Estimation Using Overcomplete Dictionaries in OFDM Systems." In The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems, 743–51. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00536-2_85.
Full textUwaechia, Anthony Ngozichukwuka, and Nor Muzlifah Mahyuddin. "Improved Time-Domain Threshold Determination for Sparse Channel Estimation in OFDM System." In 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, 175–83. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1721-6_19.
Full textConference papers on the topic "Structured Sparse Signal Estimation"
Giri, Ritwik, Bhaskar D. Rao, Fred Mustiere, and Tao Zhang. "Dynamic relative impulse response estimation using structured sparse Bayesian learning." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7471728.
Full textRichard, Nicholas, and Urbashi Mitra. "Sparse channel estimation for cooperative underwater communications: A structured multichannel approach." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4518856.
Full textFang, Xudong, and Wuyang Zhou. "User Grouping based Structured Joint Sparse Channel Estimation for 3D MIMO System." In 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2019. http://dx.doi.org/10.1109/wcsp.2019.8928090.
Full textTsiligkaridis, Theodoros, and Alfred O. Hero. "Sparse covariance estimation under Kronecker product structure." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288703.
Full textYagi, Naomi, Yoshitetsu Oshiro, Osamu Ishikawa, Yutaka Hata, and Nao Shibanuma. "Estimation system for total hip arthroplasty by acoustic signal." In 2011 IEEE Workshop On Robotic Intelligence In Informationally Structured Space - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/riiss.2011.5945782.
Full textNajjar, Leila. "Sparse Channels Structured Estimation in OFDM Systems." In 2011 IEEE Vehicular Technology Conference (VTC 2011-Spring). IEEE, 2011. http://dx.doi.org/10.1109/vetecs.2011.5956378.
Full textChiras, Neophytos, Ceri Evans, and David Rees. "Global Nonlinear Modelling of Gas Turbine Dynamics Using NARMAX Structures." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0019.
Full textLiu, Kai, Hui Feng, Tao Yang, and Bo Hu. "Structured Sparse Channel Estimation for 3D-MIMO Systems." In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE, 2016. http://dx.doi.org/10.1109/vtcspring.2016.7504492.
Full textSingh, Vimal, Dan Wang, Ahmed H. Tewfik, and Bradley J. Erickson. "Liver segmentation using structured sparse representations." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6287942.
Full textHuang, Jun-Jie, and Pier Luigi Dragotti. "Sparse signal recovery using structured total maximum likelihood." In 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024410.
Full text