Academic literature on the topic 'Structures de Van der Waals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structures de Van der Waals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structures de Van der Waals"

1

Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu, and Lin He. "Twistronics in graphene-based van der Waals structures." Chinese Physics B 29, no. 11 (2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fife, Paul C., and Xiao-Ping Wang. "Periodic structures in a van der Waals fluid." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, no. 2 (1998): 235–50. http://dx.doi.org/10.1017/s0308210500012762.

Full text
Abstract:
A system of partial differential equations modelling a van der Waals fluid or an elastic medium with nonmonotone pressure-density relation is studied. As the system changes type, regularisations are considered. The existence of one-dimensional periodic travelling waves, with prescribed average density in a certain range, average velocity and wavelength, is proved. They exhibit layer structure when the regularisation parameter is small. Similarities with the Cahn–Hilliard equation are explored.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yanli, and Yi Ding. "The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study." Physical Chemistry Chemical Physics 17, no. 41 (2015): 27769–76. http://dx.doi.org/10.1039/c5cp04815j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang, and Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes." Materials 15, no. 22 (2022): 8220. http://dx.doi.org/10.3390/ma15228220.

Full text
Abstract:
Twisted van der Waals heterostructures were recently found to possess unique physical properties, such as superconductivity in magic angle bilayer graphene. Owing to the nonhomogeneous stacking, the energy of twisted van der Waals heterostructures are often higher than their AA or AB stacking counterpart, therefore, fabricating such structures remains a great challenge in experiments. On the other hand, one dimensional (1D) coaxial van der Waals structures has less freedom to undergo phase transition, thus offer opportunity for fabricating the 1D cousin of twisted bilayer graphene. In this wor
APA, Harvard, Vancouver, ISO, and other styles
5

FINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO, and NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS." Journal of Bioinformatics and Computational Biology 06, no. 04 (2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.

Full text
Abstract:
Strict physical theory and numerical calculations show that a specific coupling of many-atom van der Waals interactions with covalent bonding can significantly (half as much) increase the strength of attractive dispersion interactions when the direction of interaction coincides with the direction of the covalent bond, and decrease this strength when the direction of interaction is perpendicular to the direction of the covalent bond. The energy effect is comparable to that caused by the replacement of atoms (e.g. N by C or O ) in conventional pairwise van der Waals interactions. Analysis of pro
APA, Harvard, Vancouver, ISO, and other styles
6

Annamalai, Meenakshi, Kalon Gopinadhan, Sang A. Han, et al. "Surface energy and wettability of van der Waals structures." Nanoscale 8, no. 10 (2016): 5764–70. http://dx.doi.org/10.1039/c5nr06705g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Forest, Susan E., and Robert L. Kuczkowski. "The Structures of Cyclopropane−Amine van der Waals Complexes." Journal of the American Chemical Society 118, no. 1 (1996): 217–24. http://dx.doi.org/10.1021/ja952849z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deilmann, Thorsten, Michael Rohlfing, and Ursula Wurstbauer. "Light–matter interaction in van der Waals hetero-structures." Journal of Physics: Condensed Matter 32, no. 33 (2020): 333002. http://dx.doi.org/10.1088/1361-648x/ab8661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quan, Silong, Linghui He, and Yong Ni. "Tunable mosaic structures in van der Waals layered materials." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25428–36. http://dx.doi.org/10.1039/c8cp04360d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

King, Benjamin T., Bruce C. Noll та Josef Michl. "Cation-π Interactions in the Solid State: Crystal Structures of M+(benzene)2CB11Me12- (M = Tl, Cs, Rb, K, Na) and Li+(toluene)CB11Me12-". Collection of Czechoslovak Chemical Communications 64, № 6 (1999): 1001–12. http://dx.doi.org/10.1135/cccc19991001.

Full text
Abstract:
In these crystal structures, the relatively weak electrostatic interactions between the bulky CB11Me12- anion and the title cations permit cation-π interactions in the solid state. In all cases, single-crystal X-ray diffraction analysis reveals η6-arene-cation interactions within 10% of the expected van der Waals distance. The Tl+, Cs+, Rb+, and K+ structures are isomorphous, with the benzene molecules sandwiching the cation and four anions equatorially disposed in a nearly square arrangement. Both the cation and the near-square of closest anions are positioned to interact favorably with the l
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Structures de Van der Waals"

1

Andrinopoulos, Lampros. "Including van der Waals interactions in first-principles electronic structure calculations." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/22152.

Full text
Abstract:
Dispersion (van der Waals or vdW) interactions are long-range, non-local in nature, and can be important for understanding and predicting structure and energetics in many systems. Examples of such systems include weakly bound dimers, molecules on surfaces and molecular crystals. Because of the inherent non-locality of these interactions, they are not accounted for by traditional local and semi-local exchange and correlation functionals in density functional theory (DFT). In this thesis, two different approaches to including dispersion interactions in DFT were investigated and implemented. The
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Hee-Seung. "The structure, spectroscopy and dynamics of Small Van Der Waals Complexes /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486572165276376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SCHMIDT, PER MARTIN. "Structure et dynamique des complexes de van der waals benzene-argon." Paris 11, 1992. http://www.theses.fr/1992PA112315.

Full text
Abstract:
La presente these a pour objet une etude systematique de l'effet de la solvatation progressive du benzene (bz) par un nombre croissant d'atomes d'argon (ar) (n9). Dans ce but les agregats heterogenes bz-ar#n, formes dans un jet supersonique, sont etudies separement par la technique d'ionisation biphotonique resonnante a deux couleurs associee a la spectrometrie de masse a temps de vol. Cette etude a permis, d'autre part, de caracteriser les changements de la structure electronique du benzene induits par les complexations successives et, d'autre part, d'identifier deux types d'isomeres, les uns
APA, Harvard, Vancouver, ISO, and other styles
4

Watkins, Jason Derrick. "X-ray structures of P22 c2 repressor-DNA complexes the mechansism of direct and indirect readout /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26709.

Full text
Abstract:
Thesis (Ph.D)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009.<br>Committee Chair: Loren D. Williams; Committee Member: Donald Doyle; Committee Member: Nicholas V. Hud; Committee Member: Roger Wartell; Committee Member: Stephen Harvey. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
5

Economides, George. "Investigations of open-shell open-shell Van der Waals complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.

Full text
Abstract:
The question posed in this work is how one would model and predict the rotational spectrum of open-shell open-shell van der Waals complexes. There are two secondary questions that arise: the nature of radical-radical interactions in such systems and the modelling of the large amplitude motion of the constituent molecules. Four different systems were studied in this work, each providing part of the answer to the main question. Starting with the large amplitude motion, there are two theoretical approaches that may be adopted: to either model the whole complex as a semi-rigid molecule, or to perf
APA, Harvard, Vancouver, ISO, and other styles
6

Constantinescu, Gabriel Cristian. "Large-scale density functional theory study of van-der-Waals heterostructures." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274876.

Full text
Abstract:
Research on two-dimensional (2D) materials currently occupies a sizeable fraction of the materials science community, which has led to the development of a comprehensive body of knowledge on such layered structures. However, the goal of this thesis is to deepen the understanding of the comparatively unknown heterostructures composed of different stacked layers. First, we utilise linear-scaling density functional theory (LS-DFT) to simulate intricate interfaces between the most promising layered materials, such as transition metal dichalcogenides (TMDC) or black phosphorus (BP) and hexagonal bo
APA, Harvard, Vancouver, ISO, and other styles
7

Walters, Alan. "Spectroscopy and structure of jet cooled aromatics and van der Waals complexes." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skouteris, Dimitris. "Structure and dynamics of weakly bound complexes." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duval-Été, Marie-Christine. "Structure électronique et mouvements moléculaires dans les complexes de Van der Waals du mercure." Paris 11, 1988. http://www.theses.fr/1988PA112191.

Full text
Abstract:
The work reported here concerns the vibrational and electronic structures of mercury van der Waals complexes in their excited states. The deactivation paths are shown to depend on the electronic and vibrational states optically excited. The spectroscopic study of several systems, mercury-atom: Hg-Ar and mercury-molecule: N₂ , Hg-CH₄ , Hg-NH₃ and Hg-H₂ 0 leads to the determination of their van der Waals potentials. In the case of the mercury-argon complex a model is proposed which accounts for the structures of the first electronic excited states correlated with the 6³p levels of mercury. The b
APA, Harvard, Vancouver, ISO, and other styles
10

Hay, Henri. "Étude de la structure et des propriétés des polymorphes de SiO2 et B2O3 par méthodes ab initio." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066318.

Full text
Abstract:
Au cours de cette thèse nous avons utilisé la théorie de la fonctionnelle de la densité et les calculs Monte Carlo quantiques pour analyser l'impact des effets de van der Waals sur la structure, l'énergie, et les propriétés des polymorphes de SiO2 et B2O3. Nous avons mis en évidence un phénomène de compensation d'erreur, lié à l'utilisation de fonctionnelle d'échange et corrélation incluant les effets de van der Waals, dans les polymorphes basse densité de SiO2 entre une sur-évaluation des longueurs Si-O et une sous-estimation des angles Si-O-Si. Nous avons effectué des calculs Monte-Carlo qua
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Structures de Van der Waals"

1

Yeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [publisher not identified], 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Serrée, Raoul. Amsterdam ommuurd: Het raadsel van de middeleeuwse stadsmuur (1481-1601). Uniepers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parsegian, V. Adrian. Van der Waals forces. Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. Biophysical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Clarendon Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Clarendon Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Halberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Springer US, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Structures de Van der Waals"

1

Horing, Norman J. Morgenstern, Vassilios Fessatidis, and Jay D. Mancini. "Atom/Molecule van der Waals Interaction with Graphene." In Low Dimensional Semiconductor Structures. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28424-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sernelius, Bo E. "Van der Waals Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sernelius, Bo E. "Van der Waals Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sernelius, Bo E. "Van der Waals Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sernelius, Bo E. "Dispersion Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sernelius, Bo E. "Dispersion Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sernelius, Bo E. "Dispersion Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Howard, Brian J. "The Structure and Dynamics of Van Der Waals Molecules." In Structures and Conformations of Non-Rigid Molecules. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2074-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Erratum to: Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structures de Van der Waals"

1

Li, Jie, Yirong Guo, and Pengying Chang. "Copper Ion Migration in van der Waals CuInP2S6 Devices with Vertical and Lateral Structures." In 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT). IEEE, 2024. https://doi.org/10.1109/icsict62049.2024.10831410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Norden, Tenzin, Luis M. Martinez, Nehan Tarefder, et al. "Two-dimensional nonlinear optics with a twist." In CLEO: Fundamental Science. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth5b.8.

Full text
Abstract:
We demonstrate multi-beam structured nonlinear optics in a monolayer van der Waals crystal, realizing the independent manipulation of the wavelength and topological charge of a vortex beam through second- and third-order nonlinearities. Our results pave the way for a new route to realize nanoscale tunable sources of vortex light.
APA, Harvard, Vancouver, ISO, and other styles
3

Zong, Zhen, Ryosuke Morisaki, Kanami Sugiyama, Masahiro Higashi, Takayuki Umakoshi, and Prabhat Verma. "Probing Forbidden Low-Frequency Raman Modes in MoS2 via Plasmonic Nanoparticle." In JSAP-Optica Joint Symposia. Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_9.

Full text
Abstract:
Interlayer interaction through the van der Waals forces in two-dimensional (2D) materials like molybdenum disulfide (MoS2) determine most of the layer properties, which shows up as low-frequency modes (less than 50cm-1) in Raman scattering. But the weak low-frequency signals are often obscured by background noise, requiring enhancement techniques [1]. Furthermore, detecting forbidden low-frequency Raman modes poses additional challenges. These modes, suppressed by symmetry selection rules, provide important information into molecular structures and electronic properties but are not observed in
APA, Harvard, Vancouver, ISO, and other styles
4

Roy, Ajit K., Jonghoon Lee, Dhriti Nepal, and John Ferguson. "Electronic Conduction Mechanism in Van Der Waals Flake Thin Film." In ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ssdm2023-108595.

Full text
Abstract:
Abstract Despite the wide sample by sample variation, the electrical conduction mechanism of van der Waals flake thin film is characterized by the variable range hopping over wide range of temperature and subsequent transition into an Arrhenius type conduction at higher temperature. Using the reduced activation energy analysis and a multi-channel conduction model, we discuss how to characterize the nature of the Arrhenius type conduction at high temperature between the nearest neighbor hopping and the band conduction. Also, we examine how those conduction mechanisms are related to the microsco
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Kaichen, Xianhu Liang, Bin Yuan, et al. "Tristate Resistive Switching in Heterogenous Van Der Waals Dielectric Structures." In 2019 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2019. http://dx.doi.org/10.1109/irps.2019.8720485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caliskan, U. "New approach for modeling randomly distributed CNT reinforced polymer nanocomposite with van der Waals interactions." In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-7.

Full text
Abstract:
Abstract. In this paper, using molecular and micromechanics methods, a new approach for the prediction of the stiffness of randomly distributed CNT/polymer nanocomposites with the van der walls interactions is presented. A multi-scale modeling technique was designed for CNT nanoparticles randomly embedded in the polymer using AMBER force field. This multi-scale model constitutes a representative volume element. The representative volume element consists of polymer, CNT nanoparticle, CNT-polymer interfacial region and van der waals bonds. A programming code was developed that randomly distribut
APA, Harvard, Vancouver, ISO, and other styles
7

Loreau, J. "Structure and dynamics of small van der Waals complexes." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cho, Hyunhee, Dong-Jin Shin, Junghyun Sung, Young-Ho Ko, and Su-Hyun Gong. "Ultra-thin Photonic Structures for Integration of Quantum Emitters in van der Waals Materials." In Frontiers in Optics. Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jw4a.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bunte, S. W., J. B. Miller, Z. S. Huang, J. E. Verdasco, C. Wittig, and R. A. Beaudet. "Structure determination of the CO−CI2 van der Waals complex." In OSA Annual Meeting. Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tul3.

Full text
Abstract:
High resolution rovibrational spectra of the weakly bonded CO−C12 complex have been recorded in the 2143 cm-1 region by exciting the CO chromophore with a tunable diode laser. The spectra indicate that CO−C12 is linear and semi-rigid. By fitting the data to a linear molecule Hamiltonian, the following constants (in cm-1) were obtained: νO= 2149.5424(4), B″= 0.0315823(39), B′ = 0.0314867(52), D J ″ = 4.37(25) × 10−8, and D J ′ = 4.58(35) × 10−8. The distance between the CO and Cl2 centers of mass is approximately 4.78 Å. The orientation of CO is not determined experimentally. However, Cl2 appea
APA, Harvard, Vancouver, ISO, and other styles
10

Rosser, David. "High-precision local transfer of van der Waals materials on nanophotonic structures (Conference Presentation)." In 2D Photonic Materials and Devices III, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2543902.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Structures de Van der Waals"

1

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6608231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1782672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada616377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6382645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5610422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1562380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10132910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2350595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/7188608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1431216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!