Academic literature on the topic 'Subduction plate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Subduction plate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Subduction plate"

1

Marotta, A. M., F. Restelli, A. Bollino, A. Regorda, and R. Sabadini. "The static and time-dependent signature of ocean–continent and ocean–ocean subduction: the case studies of Sumatra and Mariana complexes." Geophysical Journal International 221, no. 2 (January 16, 2020): 788–825. http://dx.doi.org/10.1093/gji/ggaa029.

Full text
Abstract:
SUMMARY The anomalous density structure at subduction zones, both in the wedge and in the upper mantle, is analysed to shed light on the processes that are responsible for the characteristic gravity fingerprints of two types of subduction: ocean–continent and ocean–ocean. Our modelling is then performed within the frame of the EIGEN-6C4 gravitational disturbance pattern of two subductions representative of the above two types, the Sumatra and Mariana complexes, finally enabling the different characteristics of the two patterns to be observed and understood on a physical basis, including some small-scale details. A 2-D viscous modelling perpendicular to the trench accounts for the effects on the gravity pattern caused by a wide range of parameters in terms of convergence velocity, subduction dip angle and lateral variability of the crustal thickness of the overriding plate, as well as compositional differentiation, phase changes and hydration of the mantle. Plate coupling, modelled within a new scheme where the relative velocity at the plate contact results self-consistently from the thermomechanical evolution of the system, is shown to have an important impact on the gravity signature. Beyond the already understood general bipolar fingerprint of subduction, perpendicular to the trench, we obtain the density and gravity signatures of the processes occurring within the wedge and mantle that are responsible for the two different gravity patterns. To be compliant with the geodetic EIGEN-6C4 gravitational disturbance and to compare our predictions with the gravity at Sumatra and Mariana, we define a model normal Earth. Although the peak-to-peak gravitational disturbance is comparable for the two types of subductions, approximately 250 mGal, from both observations and modelling, encompassing the highest positive maximum on the overriding plates and the negative minimum on the trench, the trough is wider for the ocean–ocean subduction: approximately 300 km compared to approximately 180 km for the ocean–continent subduction. Furthermore, the gravitational disturbance pattern is more symmetric for the ocean–ocean subduction compared to the ocean–continent subduction in terms of the amplitudes of the two positive maxima over the overriding and subducting plates. Their difference is, for the ocean–ocean type, approximately one half of the ocean–continent one. These different characteristics of the two types of subductions are exploited herein in terms of the different crustal thicknesses of the overriding plate and of the different dynamics in the wedge and in the mantle for the two types of subduction, in close agreement with the gravity data.
APA, Harvard, Vancouver, ISO, and other styles
2

Lynner, Colton. "Anisotropy-revealed change in hydration along the Alaska subduction zone." Geology 49, no. 9 (June 3, 2021): 1122–25. http://dx.doi.org/10.1130/g48860.1.

Full text
Abstract:
Abstract Megathrust earthquake behavior in subduction zones is controlled by a variety of factors including the hydration state of the subducting slab. Increased hydration reduces the occur-rence of great, damaging earthquakes by diminishing the strength of the material along the interface between tectonic plates. Understanding variations in hydration in subductions zones is necessary for properly assessing the overall hazard posed by each region. Fortunately, seismic anisotropy is strongly dependent upon hydration of the subducting crust and litho-sphere. I present shear-wave splitting measurements that illuminate changes in anisotropy, and therefore hydration, of the subducting Pacific plate beneath the Alaska subduction zone (northern Pacific Ocean). Variations in shear-wave splitting directly correlate to changes in the behavior of great, megathrust earthquakes. My measurements show that the Shumagin seismic gap is characterized by a hydrated subducting slab, explaining the long-term lack of great earthquakes. Observations in the immediately adjacent Semidi segment, which experiences great events regularly, indicate a far less hydrated slab. These results are driven by the preferential alignment of paleo-spreading fabrics of the Pacific plate. Where fabrics are more closely aligned with the orientation of the trench, outer-rise faulting and plate hydration is enhanced. These results highlight the importance of changes in preexisting slab structures and subsequent hydration in the production of great, damaging earthquakes.
APA, Harvard, Vancouver, ISO, and other styles
3

Suchoy, Lior, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies. "Effects of basal drag on subduction dynamics from 2D numerical models." Solid Earth 12, no. 1 (January 20, 2021): 79–93. http://dx.doi.org/10.5194/se-12-79-2021.

Full text
Abstract:
Abstract. Subducting slabs are an important driver of plate motions, yet the relative importance of different forces in governing subduction motions and styles remains incompletely understood. Basal drag has been proposed to be a minor contributor to subduction forcing because of the lack of correlation between plate size and velocity in observed and reconstructed plate motions. Furthermore, in single subduction system models, low basal drag leads to subduction behaviour most consistent with the observation that trench migration velocities are generally low compared to convergence velocities. By contrast, analytical calculations and global mantle flow models indicate basal drag can be substantial. In this study, we revisit this problem by examining the drag at the base of the lithosphere, for a single subduction system, in 2D models with a free trench and composite non-linear rheology. We compare the behaviour of short and long plates for a range of asthenospheric and lithospheric rheologies. We reproduce results from previous modelling studies, including low ratios of trench over plate motions. However, we also find that any combination of asthenosphere and lithosphere viscosity that produces Earth-like subduction behaviour leads to a correlation of velocities with plate size, due to the role of basal drag. By examining Cenozoic plate motion reconstructions, we find that slab age and plate size are positively correlated: higher slab pull for older plates tends to be offset by higher basal drag below these larger plates. This, in part, explains the lack of plate velocity–size correlation in observations, despite the important role of basal drag in the subduction force balance.
APA, Harvard, Vancouver, ISO, and other styles
4

Schellart, W. P., and V. Strak. "Geodynamic models of short-lived, long-lived and periodic flat slab subduction." Geophysical Journal International 226, no. 3 (April 1, 2021): 1517–41. http://dx.doi.org/10.1093/gji/ggab126.

Full text
Abstract:
SUMMARY Flat slab subduction has been ascribed to a variety of causes, including subduction of buoyant ridges/plateaus and forced trench retreat. The former, however, has irregular spatial correlations with flat slabs, while the latter has required external forcing in geodynamic subduction models, which might be insufficient or absent in nature. In this paper, we present buoyancy-driven numerical geodynamic models and aim to investigate flat slab subduction in the absence of external forcing as well as test the influence of overriding plate strength, subducting plate thickness, inclusion/exclusion of an oceanic plateau and lower mantle viscosity on flat slab formation and its evolution. Flat slab subduction is reproduced during normal oceanic subduction in the absence of ridge/plateau subduction and without externally forced plate motion. Subduction of a plateau-like feature, in this buoyancy-driven setting, enhances slab steepening. In models that produce flat slab subduction, it only commences after a prolonged period of slab dip angle reduction during lower mantle slab penetration. The flat slab is supported by mantle wedge suction, vertical compressive stresses at the base of the slab and upper mantle slab buckling stresses. Our models demonstrate three modes of flat slab subduction, namely short-lived (transient) flat slab subduction, long-lived flat slab subduction and periodic flat slab subduction, which occur for different model parameter combinations. Most models demonstrate slab folding at the 660 km discontinuity, which produces periodic changes in the upper mantle slab dip angle. With relatively high overriding plate strength or large subducting plate thickness, such folding results in periodic changes in the dip angle of the flat slab segment, which can lead to periodic flat slab subduction, providing a potential explanation for periodic arc migration. Flat slab subduction ends due to the local overriding plate shortening and thickening it produces, which forces mantle wedge opening and a reduction in mantle wedge suction. As overriding plate strength controls the shortening rate, it has a strong control on the duration of flat slab subduction, which increases with increasing strength. For the weakest overriding plate, flat slab subduction is short-lived and lasts only 6 Myr, while for the strongest overriding plate flat slab subduction is long-lived and exceeds 75 Myr. Progressive overriding plate shortening during flat slab subduction might explain why flat slab subduction terminated in the Eocene in western North America and in the Jurassic in South China.
APA, Harvard, Vancouver, ISO, and other styles
5

Kirdyashkin, A. A., A. G. Kirdyashkin, V. E. Distanov, and I. N. Gladkov. "ON HEAT SOURCE IN SUBDUCTION ZONE." Geodynamics & Tectonophysics 12, no. 3 (September 17, 2021): 471–84. http://dx.doi.org/10.5800/gt-2021-12-3-0534.

Full text
Abstract:
The subduction of an oceanic plate is studied as the motion of a high-viscosity Newtonian fluid. The subducting plate spreads along the 670-km depth boundary under the influence of oppositely directed horizontal forces. These forces are due to oppositely directed horizontal temperature gradients. We consider the flow structure and heat transfer in the layer that includes both the oceanic lithosphere and the crust and moves underneath a continent. The heat flow is estimated at the contact between the subducting plate and the surrounding mantle in the continental limb of the subduction zone. Our study results show that the crustal layer of the subducting plate can melt and a thermochemical plume can form at the 670-km boundary. Our model of a thermochemical plume in the subduction zone shows the following: (1) formation of a plume conduit in the crustal layer of the subducting plate; (2) formation of a primary magmatic chamber in the area wherein the melting rate equals the rate of subduction; (3) origination of a vertical plume conduit from the primary chamber melting through the continent; (4) plume eruption through the crustal layer to the surface, i.e. formation of a volcano. Our experiments are aimed to model the plume conduit melting in an inclined flat layer above a local heat source. The melt flow structure in the plume conduit is described. Laboratory modeling have revealed that the mechanisms of melt eruption from the plume conduit differ depending on whether a gas cushion is present or absent at the plume roof.
APA, Harvard, Vancouver, ISO, and other styles
6

Boutelier, D., and O. Oncken. "3-D thermo-mechanical laboratory modelling of plate-tectonics." Solid Earth Discussions 3, no. 1 (February 18, 2011): 105–47. http://dx.doi.org/10.5194/sed-3-105-2011.

Full text
Abstract:
Abstract. We present an experimental apparatus for 3-D thermo-mechanical analogue modelling of plate-tectonics processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic with softening analogue materials, is submitted to a constant temperature gradient producing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry). Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and changed because of the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.
APA, Harvard, Vancouver, ISO, and other styles
7

Arcay, D. "Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age." Solid Earth 3, no. 2 (December 21, 2012): 467–88. http://dx.doi.org/10.5194/se-3-467-2012.

Full text
Abstract:
Abstract. The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT) depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume) if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1) significantly if mantle viscosity at asthenospheric wedge tip is low, (2) if the difference in mantle and interplate activation energy is weak, and (3) if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate, and eventually jams the subduction process during incipient subduction of a young (20-Myr-old) and soft lithosphere under a thick upper plate. Finally, both the BDT depth and the decoupling depth are a function of the subducting plate age, but are not influenced in the same fashion: cool and old subducting plates deepen the BDT but shallow the interplate decoupling depth. Even if BDT and kinematic decoupling are intrinsically related to different mechanisms of deformation, this work shows that they are able to interact closely. Comparison between modelling results and observations suggests a minimum friction coefficient of 0.045 for the interplate plane, even 0.069 in some cases, to model realistic BDT depths. The modelled zdec is a bit deeper than suggested by geophysical observations. Eventually, the better way to improve the adjustment to observations may rely on a moderate to strong asthenosphere viscosity reduction in the metasomatised mantle wedge.
APA, Harvard, Vancouver, ISO, and other styles
8

Guillaume, B., L. Husson, F. Funiciello, and C. Faccenna. "The dynamics of laterally variable subductions: laboratory models applied to the Hellenides." Solid Earth 4, no. 2 (July 10, 2013): 179–200. http://dx.doi.org/10.5194/se-4-179-2013.

Full text
Abstract:
Abstract. We designed three-dimensional dynamically self-consistent laboratory models of subduction to analyse the relationships between overriding plate deformation and subduction dynamics in the upper mantle. We investigated the effects of the subduction of a lithosphere of laterally variable buoyancy on the temporal evolution of trench kinematics and shape, horizontal flow at the top of the asthenosphere, dynamic topography and deformation of the overriding plate. Two subducting units, which correspond to a negatively buoyant oceanic plate and positively buoyant continental one, are juxtaposed via a trench-perpendicular interface (analogue to a tear fault) that is either fully-coupled or shear-stress free. Differential rates of trench retreat, in excess of 6 cm yr−1 between the two units, trigger a more vigorous mantle flow above the oceanic slab unit than above the continental slab unit. The resulting asymmetrical sublithospheric flow shears the overriding plate in front of the tear fault, and deformation gradually switches from extension to transtension through time. The consistency between our models results and geological observations suggests that the Late Cenozoic deformation of the Aegean domain, including the formation of the North Aegean Trough and Central Hellenic Shear zone, results from the spatial variations in the buoyancy of the subducting lithosphere. In particular, the lateral changes of the subduction regime caused by the Early Pliocene subduction of the old oceanic Ionian plate redesigned mantle flow and excited an increasingly vigorous dextral shear underneath the overriding plate. The models suggest that it is the inception of the Kefalonia Fault that caused the transition between an extension dominated tectonic regime to transtension, in the North Aegean, Mainland Greece and Peloponnese. The subduction of the tear fault may also have helped the propagation of the North Anatolian Fault into the Aegean domain.
APA, Harvard, Vancouver, ISO, and other styles
9

Boutelier, D., and O. Oncken. "3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments." Solid Earth 2, no. 1 (May 24, 2011): 35–51. http://dx.doi.org/10.5194/se-2-35-2011.

Full text
Abstract:
Abstract. We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry). Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.
APA, Harvard, Vancouver, ISO, and other styles
10

Arcay, D. "Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age." Solid Earth Discussions 4, no. 2 (July 20, 2012): 943–92. http://dx.doi.org/10.5194/sed-4-943-2012.

Full text
Abstract:
Abstract. The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the kinematic decoupling depth, zdec and, on the other hand, of the brittle-ductile transition (BDT) depth, zBDT, simulated along the subduction interplate. The results reveal that zBDT mainly depends on the friction coefficient characterising the interplate channel and on the viscosity at the lithosphere-asthenosphere boundary. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume) if the BDT occurs at the interplate deocupling depth. Regarding the interplate decoupling depth, it is basically a function of (1) mantle viscosity at asthenospheric wedge tip, (2) difference in mantle and interplate activation anergy, and (3) activation volume. Specific conditions yielding zBDT = zdec are discussed. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close impedes strain localization during incipient subduction of a young (20 Myr old) and soft lithosphere under a thick upper plate. Finally, both the BDT depth and the decoupling depth are a function of the subducting plate age, but are not influenced in the same fashion: cool and old subducting plates deepen the BDT but shallow the interplate decoupling depth. Even if BDT and kinematic decoupling are instrinsically related to different mechanisms of deformation, this work shows that they are able to interact closely.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Subduction plate"

1

Alsaif, Manar. "Upper plate deformation in retreating subduction zones." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG026.

Full text
Abstract:
La surface de la Terre est en permanence remodelée par les mouvements des plaques tectoniques, dont le moteur principal est la subduction, i.e. le plongement de plaques océaniques dans le manteau profond. Les fosses océaniques de subduction constituent également des limites de plaques mobiles, et les observations montrent que, sur des échelles de temps géologiques de plusieurs millions d’années, ces fosses reculent (vers la plaque plongeante) ou avancent (vers la plaque chevauchante/supérieure). Historiquement, le retrait de la fosse a été associé à une extension de la plaque supérieure au-dessus du panneau plongeant. Cependant, les zones de subduction sur Terre montrent plusieurs exemples de fosses en recul associées à des contraintes compressives. Cette thèse étudie la déformation (arrière-arc) de la plaque supérieure pour une subduction en retrait. Trois approches ont été utilisées : des modèles numériques explorant les processus physiques mis en jeu à grande échelle, des profils sismiques en mer Égée centrale permettant d’étudier la répartition des failles à l’échelle du bassin, et des observations de terrain pour caractériser l’évolution temporelle de la déformation de la plaque supérieure en mer Égée centrale. Les modèles thermo-mécaniques à grande échelle reproduisent une déformation visqueuse de la plaque supérieure, et permettent d’analyser les relations entre traction du slab, recul du slab, retrait de la fosse et déformation de la plaque supérieure, à des échelles allant de 100 à 1000 km. Ils montrent que des courants dans le manteau asthénosphérique sous les plaques (vers 100-200 km de profondeur) peuvent contrôler à la fois le mouvement relatif de la fosse et la déformation de la plaque supérieure. Cette dernière dépend également des conditions mécaniques aux limites: si la plaque est libre de bouger, sa déformation sera plutôt compressive ; mais une plaque fixe sera en extension. Ce dernier cas est comparable à la région de la mer Égée, une plaque supérieure montrant de l’extension et associée à une zone de subduction étroite en retrait. Les structures extensives associées ont été analysées grâce à l’observation sur le terrain et à l’étude de profils sismiques, révélant des failles normales, obliques et décrochantes synchrones. Cela est interprété comme résultant de la combinaison de contraintes extensives associées au recul de la fosse et de contraintes décrochantes associées à l’extrusion d’un bloc voisin. La rotation et le recul de la fosse réactivent d’anciennes failles normales dans un mode oblique-extensif, et engendrent des nouvelles failles purement normales. Les données suggèrent également un changement récent de l’état de contrainte mécanique dans la plaque, qui pourrait être dû à une déchirure du panneau plongeant côté Ouest. En sus, l’accélération du recul de la fosse et l’intensification de l’extension de la plaque supérieure expliquent probablement le flux de chaleur élevé en mer Égée, ce qui rend l’énergie géothermique potentiellement exploitable dans cette zone. Une évaluation de l’apport de la modélisation tectonique pour prédire le potentiel géothermique est finalement présentée comme perspective de l’application des recherches en géodynamique, s’appuyant sur l’exemple de la plaque supérieure égéenne amincie
The Earth’s surface is constantly reshaped by the tectonic plate motion, which is mainly driven by subduction of plates into the deeper mantle. Subduction trenches are also mobile plate boundaries, and are observed to retreat towards the subducting plate or advance towards the upper plate over geological time. Trench retreat has been historically thought to cause extension in the upper plate above the subducting slab. However, natural subduction systems show several examples of retreating trenches that are associated with upper-plate compression. This thesis explores upper plate (back-arc) deformation in retreating subduction systems. Three techniques are used: large-scale numerical models addressing physical processes; seismic profiles in the Central Aegean addressing basin-scale fault patterns; and field-scale observations clarifying fault kinematics in the Central Aegean. The large-scale thermo-mechanical models deal with viscous deformation of the upper plate, and investigate the relationship between slab pull, slab rollback, trench retreat and upper plate deformation at scales of 100 to 1000 km. They show that asthenosphere flows below the plates (100-200 km depth) can control both trench retreat and upper plate deformation. The type of deformation in the upper plate also depends on the plate’s far-field conditions: if the plate is free to move, deformation tends to be compressive, but a fixed upper plate shows extension. The latter is comparable to the Aegean region, an upper plate exhibiting extension above a narrow, retreating subduction zone. Related extensional structures in the central Aegean have been analysed from seismic and field data, revealing co-existing normal, oblique and strike slip faults. These features reflect a combination of rollback-related extension and extrusion-related strike slip activity. Resulting block rotation and trench retreat re-activate inherited normal faults in oblique-normal slip, while new pure-normal faults are created. We also infer a recent change in stress state possibly related to the slab tear on the western side of the Hellenic slab. Additionally, accelerated trench retreat and upper plate extension are the cause of the Aegean’s high surface heat flow, which makes it potentially suitable for geothermal energy production. As a final perspective on the application of geodynamic research, an assessment of the role of tectonic modelling in predicting geothermal energy potential is presented, using the stretched Aegean upper plate as an example
APA, Harvard, Vancouver, ISO, and other styles
2

Rowland, Andrea Jane. "Numerical modelling of subduction zone magmatism." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daniel, Andrew John. "The geodynamics of spreading centre subduction in southern Chile." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Biryol, Cemal Berk. "COMPLEX RUPTURE PROCESSES OF THE SOLOMON ISLANDS SUBDUCTION ZONE EARTHQUAKE AND SUBDUCTION CONTROLLED UPPER MANTLE STRUCTURE BENEATH ANATOLIA." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194681.

Full text
Abstract:
This dissertation explores subduction zone-related deformation both on short time scales in the form of subduction zone earthquakes and over larger time and geographical scales in the form of subduction rollback or detachment of the subducting lithosphere. The study presented here is composed of two parts. First, we analyzed the source-rupture processes of the April 1, 2007 Solomon Islands Earthquake (Mw=8.1) using a body-wave inversion technique. Our analysis indicated that the earthquake ruptured approximately 240 km of the southeast Pacific subduction zone in two sub-events.In the second part of this study, we used shear-wave splitting analysis to investigate the effects of the subducting African lithosphere on the upper-mantle flow field beneath the Anatolian Plate in the Eastern Mediterranean region. Our shear-wave splitting results are consistent with relatively uniform southwest-directed flow towards the actively southwestward-retreating Aegean slab. Based on spatial variations in observed delay times we identified varying flow speeds beneath Anatolia and we attribute this variation to the differential retreat rates of the Aegean and the Cyprean trenches.Finally, we used teleseismic P-wave travel-time tomography to image the geometry of the subducting African lithosphere beneath the Anatolia region. Our tomograms show that the subducting African lithosphere is partitioned into at least two segments along the Cyprean and the Aegean trenches. We observed a gap between the two segments through which hot asthenosphere ascends beneath the volcanic fields of western Anatolia. Our results show that the Cyprean slab is steeper than the Aegean slab. We inferred that this steep geometry, in part, controls the flow regime of asthenosphere beneath Anatolia causing variations in flow speeds inferred from shear-wave splitting analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Kanjorski, Nancy Marie. "Cocos plate structure along the Middle America subduction zone off Oaxaca and Guerrero, Mexico : influence of subducting plate morphology on tectonics and seismicity /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3076343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Audet, Pascal. "Seismic and mechanical attributes of lithospheric deformation and subduction in western Canada." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2435.

Full text
Abstract:
Convergent continental margins are regions of intense deformation caused by the interaction of oceanic plates with continents. The spatial extent of deformation is broadly commensurate with the specific time scale of the causative phenomenon. For example, subduction-related short-term deformation is limited to <200 km from the margin, whereas long-term plate convergence cause deformation over ∼1000 km landward. Deformation is thus manifested in multiple ways, with attributes depending on the scale of measurement. In this thesis we investigate the use of two geophysical approaches in the study of deformation: 1) The analysis of potential-field anomalies to derive estimates of the elastic thickness (Te) of the lithosphere, and 2) The structural study of past and present subduction systems using seismic observations and modelling. Both approaches involve the development of appropriate methodologies for data analysis and modelling, and their application to the western Canadian landmass. Our findings are summarized as follows: 1) We develop a wavelet-based technique to map variations in Te and its anisotropy; 2) We show how a step-wise transition in Te and its anisotropy from the Cordillera to the Craton is a major factor influencing lithospheric deformation; 3) We implement a waveform modelling tool that includes the effects of structural heterogeneity and anisotropy for teleseismic applications, and use it to model the signature of a fossil subduction zone in a Paleoproterozoic terrane; 4) We use teleseismic recordings to map slab edge morphology in northern Cascadia and show how slab window tectonism and slab stretching led to the creation of the oceanic Explorer plate; 5) We use seismic signals from the subducting oceanic crust to calculate elevated Poisson’s ratio and infer high pore-fluid pressures and a low-permeability plate boundary within the forearc region of northern Cascadia.
APA, Harvard, Vancouver, ISO, and other styles
7

Medema, Guy Frederick. "Juan de Fuca subducting plate geometry and intraslab seismicity /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/6828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seebeck, Hannu Christian. "Normal Faulting, Volcanism And Fluid Flow, Hikurangi Subduction Plate Boundary, New Zealand." Thesis, University of Canterbury. Geological Sciences, 2013. http://hdl.handle.net/10092/8884.

Full text
Abstract:
This thesis investigates normal faulting and its influence on fluid flow over a wide range of spatial and temporal scales using tunnel engineering geological logs, outcrop, surface fault traces, earthquakes, gravity, and volcanic ages. These data have been used to investigate the impact of faults on fluid flow (chapter 2), the geometry and kinematics of the Taupo Rift (chapter 3), the hydration and dehydration of the subducting Pacific plate and its influence on the Taupo Volcanic Zone (chapter 4), the migration of arc volcanism across the North Island over the 16 Myr and the associated changes in slab geometry (chapter 5) and the Pacific-Australia relative plate motion vectors since 38 Ma and their implications for arc volcanism and deformation along the Hikurangi margin (chapter 6). The results for each of these five chapters are presented in the five paragraphs below. Tunnels excavated along the margins of the southern Taupo Rift at depths < 500 m provide data on the spatial relationships between faulting and ground water flow. The geometry and hydraulic properties of fault-zones for Mesozoic basement and Miocene strata vary by several orders of magnitude approximating power-law distributions with the dimensions of these zones dependent on many factors including displacement, hostrock type and fault geometries. Despite fault-zones accounting for a small proportion of the total sample length (≤ 15%), localised flow of ground water into the tunnels occurs almost exclusively (≥ 91%) within, and immediately adjacent to, these zones. The spatial distribution and rate of flow from fault-zones are highly variable with typically ≤ 50% of fault-zones in any given orientation flowing. The entire basement dataset shows that 81% of the flow-rate occurs from fault-zones ≥ 10 m wide, with a third of the total flow-rate originating from a single fault-zone (i.e. the golden fracture). The higher flow rates for the largest faults are interpreted to arise because these structures are the most connected to other faults and to the ground surface. The structural geometry and kinematics of rifting is constrained by earthquake focal mechanisms and by geological slip and fault mapping. Comparison of present day geometry and kinematics of normal faulting in the Taupo Rift (α=76-84°) with intra-arc rifting in the Taranaki Basin and southern Havre Trough show, that for at least the last 4 Myr, the slab and the associated changes in its geometry have exerted a first-order control on the location, geometry, and extension direction of intra-arc rifting in the North Island. Second-order features of rifting in the central North Island include a clockwise ~20° northwards change in the strike of normal faults and trend of the extension direction. In the southern rift normal faults are parallel to, and potentially reactivate, Mesozoic basement fabric (e.g., faults and bedding). By contrast, in the northern rift faults diverge from basement fabric by up to 55° where focal mechanisms indicate that extension is achieved by oblique to right-lateral strike-slip along basement fabric and dip-slip on rift faults. Hydration and dehydration of the subducting Pacific plate is elucidated by earthquake densities and focal mechanisms within the slab. The hydration of the subducting plate varies spatially and is an important determinant for the location of arc volcanism in the overriding plate. The location and high volcanic productivity of the TVZ can be linked to the subduction water cycle, where hydration and subsequent dehydration of the subducting oceanic lithosphere is primarily accomplished by normal-faulting earthquakes. The anomalously high heat flow and volcanic productivity of the TVZ is spatially associated with high rates of seismicity in the underlying slab mantle at depths of 130-210 km which can be tracked back to high rates of deeply penetrating shallow intraplate seismicity at the trench in proximity to oceanic fluids. Dehydration of the slab mantle correlates with the location and productivity of active North Island volcanic centres, indicating this volcanism is controlled by fluids fluxing from the subducting plate. The ages and locations of arc volcanoes provide constraints on the migration of volcanism across the North Island over the last 20 Myr. Arc-front volcanoes have migrated southeast by 150 km in the last 8 Ma (185 km since 16 Ma) sub-parallel to the present active arc. Migration of the arc is interpreted to mainly reflect slab steepening and rollback. The strike of the Pacific plate beneath the North Island, imaged by Benioff zone seismicity (50-200 km) and positive mantle velocity anomalies (200-600 km) is parallel to the northeast trend of arc-front volcanism. Arc parallelism since 16 Ma is consistent with the view that the subducting plate beneath the North Island has not rotated clockwise about vertical axes which is in contrast to overriding plate vertical-axis rotations of ≥ 30º. Acceleration of arc-front migration rates (~4 mm/yr to ~18 mm/yr), eruption of high Mg# andesites, increasing eruption frequency and size, and uplift of the over-riding plate indicate an increase in the hydration, temperature, and size of the mantle wedge beneath the central North Island from ~7 Ma. Seafloor spreading data in conjunction with GPlates have been used to generate relative plate motion vectors across the Hikurangi margin since 38 Ma. Tracking the southern and down-dip limits of the seismically imaged Pacific slab beneath the New Zealand indicates arc volcanism in Northland from ~23 Ma and the Taranaki Basin between ~20 and 11 Ma requires Pacific plate subduction from at (or beyond) the northern North Island continental margin from at least 38 Ma to the present. Pacific plate motion in a west dipping subduction model shows a minimum horizontal transport distance of 285 km preceding the initiation of arc volcanism along the Northland-arc normal to the motion vector, a distance more than sufficient for self-sustaining subduction to occur. Arc-normal convergence rates along the Hikurangi margin doubled from 11 to 23 mm/yr between 20 and 16 Ma, increasing again by approximately a third between 8 and 6 Ma. This latest increase in arc-normal rates coincided with changes in relative plate motions along the entire SW Pacific plate boundary and steepening/rollback of the Pacific plate.
APA, Harvard, Vancouver, ISO, and other styles
9

Schellart, Wouter Pieter. "Subduction rollback, arc formation and back-arc extension." Monash University, School of Geosciences, 2003. http://arrow.monash.edu.au/hdl/1959.1/9485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dehler, Sonya Astrid. "Integrated geophysical modelling of the northern Cascadia subduction zone." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30798.

Full text
Abstract:
The northern Cascadia subduction zone involves convergence of the Explorer Plate and northern part of the Juan de Fuca Plate with the North American Plate along a margin lying west of Vancouver Island, Canada. A wide accretionary complex which underlies the continental slope and shelf has been formed. Two allochthonous terranes, the Crescent Terrane of Eocene oceanic crustal volcanics and the Pacific Rim Terrane of Mesozoic melange sedimentary rocks and volcanics, lie against the Wrangellia Terrane backstop beneath the west coast of Vancouver Island and outcrop on the southern tip of the island. The intrusive Coast Plutonic Complex underlies the westernmost part of the British Columbia mainland east of Vancouver Island and marks the location of the historic and modern volcanic arcs. An integrated interpretation of geophysical and geological data has been conducted for the northern Cascadia subduction zone. Regionally extensive gravity and magnetic anomaly data have formed the basis of the interpretation, while surface geology, physical properties, and seismic reflection, refraction, heat flow, borehole, magnetotelluric, and seismicity data have provided constraints on structure and composition. Horizontal gradient and vertical derivative maps of the potential field data were calculated to provide additional control on the locations of major faults and lithologic boundaries. Iterative forward modelling of the gravity and magnetic anomaly data was conducted along three offshore multichannel seismic reflection lines and their onshore extensions. The two-and-a-half-dimensional (2.5-D) models extended from the ocean basin across the accretionary complex and Vancouver Island to the mainland along lines perpendicular to the major structural trends of the margin and revealed lateral changes in the location of several structural components along the length of the margin. The interpretations were extended laterally by moving the original models to adjacent parallel positions and perturbing them to satisfy the new anomaly profile data and other constraints. The models thus formed were moved to the next position and the process repeated until a total of eleven models was developed across the margin. A twelfth line across a gravity anomaly high on southern Vancouver Island was independently modelled to examine the source of this feature. An average density model for the southern half of the convergent margin was constructed by averaging the models and profiles for seven lines at 10 km spacings. This process removed anomalies due to small source bodies and concentrated on the larger features. Finally, a regional density structural model was developed by linearly interpolating between all eleven cross-margin lines to construct a block model which could then be 'sliced' open to examine the internal structure of the margin at any location. The final models allow the Pacific Rim and Crescent Terrane positions to be extended along the offshore margin from their mapped locations. The Pacific Rim Terrane appears to be continuous and close to the coastline along the length of Vancouver Island, while the Crescent Terrane either terminates halfway along the margin or is buried at a depth great enough to suppress its magnetic signature. The location of the Westcoast Fault, separating the Pacific Rim and Wrangellia Terranes, has been interpreted to lie west of Barkley Sound at a position 15 km west of its previously interpreted position. Beneath southern Vancouver Island and Juan de Fuca Strait, the Crescent Terrane appears to have been uplifted into an anticlinal structure, bringing high density lower crustal or upper mantle material close to the surface and thereby causing the observed gravity anomaly high. The western part of the Coast Plutonic Complex has been interpreted as a thin lower density layer extending from its surface contact with Wrangellia to a position 20 to 30 km further east where the unit rapidly thickens and represents the main bulk of the batholith. The complexity of the thermal regime and its effects on density in this region allows for other interpretations. Finally, a comparison of the models along the length of the margin reveals that the crust of Vancouver Island appears to thin toward the north above the shallower Explorer Plate and the complex low - high density banding used in the southern Vancouver Island models is replaced with a single high density unit on the northernmost line.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Subduction plate"

1

Fukatai to kyodai jishin hasseitai: Nankai jishin no kaimei ni mukete. Tōkyō: Tōkyō Daigaku Shuppankai, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1945-, Taniguchi Hiromitsu, ed. Magmatic response to the late phanerozoic plate subduction beneath East Asia. Sendai-shi: Tōhoku Daigaku Tōhoku Ajia Kenkyū Sentā, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

L, Smellie J., ed. Volcanism associated with extension at comsuming plate margins. London, England]: The Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deformation and exhumation at convergent margins: The Franciscan subduction complex. Boulder, Colo: Geological Society of America, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

D, Ryan Paul, and SpringerLink (Online service), eds. Arc-Continent Collision. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tregoning, Paul. GPS measurements in the Australian and Indonesian regions, 1989-1993: Studies of the Java Trench subduction zone, the Sunda Strait and the Australian Plate. Sydney: School of Geomatic Engineering, University of New South Wales, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Active Tectonics Of The Hellenic Subduction Zone. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eichelberger, John, Evgenii Gordeev, Pavel Izbekov, Minoru Kasahara, and Jonathan Lees. Volcanism and Subduction: The Kamchatka Region. American Geophysical Union, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eichelberger, John, Evgenii Gordeev, Pavel Izbekov, Minoru Kasahara, and Jonathan Lees. Volcanism and Subduction: The Kamchatka Region. American Geophysical Union, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eichelberger, John, Evgenii Gordeev, Pavel Izbekov, Minoru Kasahara, and Jonathan Lees. Volcanism and Subduction: The Kamchatka Region. American Geophysical Union, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Subduction plate"

1

Gutscher, Marc-André. "Great Subduction Zone Earthquakes." In Plate Boundaries and Natural Hazards, 99–122. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119054146.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frisch, Wolfgang, Martin Meschede, and Ronald Blakey. "Subduction zones, island arcs and active continental margins." In Plate Tectonics, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-76504-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruff, Larry J., and Bart W. Tichelaar. "What Controls the Seismogenic Plate Interface in Subduction Zones?" In Subduction Top to Bottom, 105–11. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abers, Geoffrey A. "Plate Structure and the Origin of Double Seismic Zones." In Subduction Top to Bottom, 223–28. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Becker, Thorsten W., and Claudio Faccenna. "A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions." In Subduction Zone Geodynamics, 3–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87974-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wortel, Rinus, Rob Govers, and Wim Spakman. "Continental Collision and the STEP-wise Evolution of Convergent Plate Boundaries: From Structure to Dynamics." In Subduction Zone Geodynamics, 47–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87974-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Avé Lallemant, Hans G. "Displacement Partitioning and Arc-Parallel Extension: Example from the Southeastern Caribbean Plate Margin." In Subduction Top to Bottom, 113–18. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lees, Jonathan M., John VanDecar, Evgenii Gordeev, Alexei Ozerov, Mark Brandon, Jeff Park, and Vadim Levin. "Three dimensional images of the Kamchatka-Pacific Plate cusp." In Volcanism and Subduction: The Kamchatka Region, 65–75. Washington, D. C.: American Geophysical Union, 2007. http://dx.doi.org/10.1029/172gm06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saffer, Demian M. "The permeability of active subduction plate boundary faults." In Crustal Permeability, 207–27. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manea, V. C., and M. Manea. "Thermal models beneath Kamchatka and the Pacific Plate rejuvenation from a mantle plume impact." In Volcanism and Subduction: The Kamchatka Region, 77–89. Washington, D. C.: American Geophysical Union, 2007. http://dx.doi.org/10.1029/172gm07.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Subduction plate"

1

Behr, Whitney M., and Thorsten Becker. "DEEP SEDIMENT SUBDUCTION CONTROLS SUBDUCTION PLATE SPEEDS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haynie, K. L., and Margarete Jadamec. "THE EFFECTS OF PLATE COUPLING ON DYNAMIC TOPOGRAPHY AND SUBDUCTING PLATE VELOCITY: INSIGHTS INTO OCEANIC PLATEAU SUBDUCTION." In 50th Annual GSA South-Central Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016sc-274002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moerdyk, David. "DID SUBDUCTION PLATE TECTONICS START WITH A BANG?" In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-296292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stern, Robert J., Scott A. Whattam, Taras Gerya, and James Pindell. "TWO-STAGE SUBDUCTION INITIATION AROUND THE CARIBBEAN PLUMEHEAD PLATE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-279566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wells, Ray E., Richard J. Blakely, Aaron Wech, Patricia A. McCrory, and Andrew Michael. "CASCADIA SUBDUCTION TREMOR MODULATED BY UPPER PLATE STRUCTURE AND COMPOSITION." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-299789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Currie, Claire A., and Peter Copeland. "GEODYNAMIC MODELS OF FARALLON PLATE SUBDUCTION: CREATING AND REMOVING A FLAT SLAB." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-283647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shi*, Yanan, Dongping Wei, Zhonghai Li, and Mengxue Liu. "Numerical Modeling of Deformation Modes of Overriding Plate in Ocean-Continent Subduction." In International Geophysical Conference, Qingdao, China, 17-20 April 2017. Society of Exploration Geophysicists and Chinese Petroleum Society, 2017. http://dx.doi.org/10.1190/igc2017-339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

French, Melodie, and Cailey B. Condit. "DEFORMATION PARTITIONING ALONG AN IDEALIZED SUBDUCTION PLATE BOUNDARY AT DEEP SLOW SLIP CONDITIONS." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-340123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kuchay, Olga A. "The focal mechanisms of earthquakes in the bending region of the lithospheric plate depending on the characteristics of its sinking." In Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология. Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, 2020. http://dx.doi.org/10.18303/b978-5-4262-0102-6-2020-047.

Full text
Abstract:
In the subduction zone of the Aleutian arc, the angle of inclination of the sinking Pacific plate affects the focal mechanisms of earthquakes registered in the upper part (up to 35 km) of the oceanic plate at the point of its bend, before sinking into the deep–water trough. With a steep slope of the immersion Pacific plate, there are earthquakes with normal faults in the foci, with a gentle slope – a small number with thrust faults. In areas of flat plate displacement in the depth range of 36–70, earthquakes with with normal faults in the foci.
APA, Harvard, Vancouver, ISO, and other styles
10

McKenzie, Kirsty A., and Kevin P. Furlong. "LINKS BETWEEN SUBDUCTION MEGATHRUST EARTHQUAKES AND UPPER-PLATE BRITTLE DEFORMATION IN THE PACIFIC NORTHWEST." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-299976.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Subduction plate"

1

Rohr, K. M. M., H. King, M. Riedel, and U. Schmidt. From mid-plate to subduction zone: stratigraphy of the northeast Juan de Fuca Plate, offshore British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clowes, R. M. Crustal structure of the northern Juan de Fuca plate and Cascadia subduction zone - new results, old data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/222497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Waldron, D. A., R. M. Clowes, and D. J. White. Seismic structure of a subducting oceanic plate off western Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/129020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Creager, K. C., L A Preston, R. S. Crosson, T. Van Wagoner, and A. M. Tréhu. Three-dimensional reflection image of the subducting Juan de Fuca plate. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/222494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, S. K., V. Kostoglodov, and J. F. Pacheco. Intraslab earthquakes in the subducting oceanic plates below Mexico. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/222529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tréhu, A. M., T M Brocher, K. C. Creager, M A Fisher, L. A. Preston, and G. Spence. Geometry of the subducting Juan de Fuca plate: new constraints from SHIPS98. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/222491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography