Academic literature on the topic 'Subgraph matching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Subgraph matching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Subgraph matching"
Qiao, Miao, Hao Zhang, and Hong Cheng. "Subgraph matching." Proceedings of the VLDB Endowment 11, no. 2 (October 2017): 176–88. http://dx.doi.org/10.14778/3149193.3149198.
Full textSun, Yunhao, Guanyu Li, Mengmeng Guan, and Bo Ning. "Subgraph-Indexed Sequential Subdivision for Continuous Subgraph Matching on Dynamic Knowledge Graph." Complexity 2020 (December 22, 2020): 1–18. http://dx.doi.org/10.1155/2020/8871756.
Full textDošlić, Tomislav. "All Pairs of Pentagons in Leapfrog Fullerenes Are Nice." Mathematics 8, no. 12 (December 1, 2020): 2135. http://dx.doi.org/10.3390/math8122135.
Full textSchellewald, C., and C. Schnörr. "Subgraph Matching with Semidefinite Programming." Electronic Notes in Discrete Mathematics 12 (March 2003): 279–89. http://dx.doi.org/10.1016/s1571-0653(04)00493-7.
Full textYuan, Ye, Guoren Wang, Jeffery Yu Xu, and Lei Chen. "Efficient distributed subgraph similarity matching." VLDB Journal 24, no. 3 (March 7, 2015): 369–94. http://dx.doi.org/10.1007/s00778-015-0381-6.
Full textNie, Weizhi, Hai Ding, Anan Liu, Zonghui Deng, and Yuting Su. "Subgraph learning for graph matching." Pattern Recognition Letters 130 (February 2020): 362–69. http://dx.doi.org/10.1016/j.patrec.2018.07.005.
Full textLi, Faming, and Zhaonian Zou. "Subgraph matching on temporal graphs." Information Sciences 578 (November 2021): 539–58. http://dx.doi.org/10.1016/j.ins.2021.07.071.
Full textMoorman, Jacob D., Thomas K. Tu, Qinyi Chen, Xie He, and Andrea L. Bertozzi. "Subgraph Matching on Multiplex Networks." IEEE Transactions on Network Science and Engineering 8, no. 2 (April 1, 2021): 1367–84. http://dx.doi.org/10.1109/tnse.2021.3056329.
Full textXu, Zifeng, Fucai Zhou, Yuxi Li, Jian Xu, and Qiang Wang. "Privacy-Preserving Subgraph Matching Protocol for Two Parties." International Journal of Foundations of Computer Science 30, no. 04 (June 2019): 571–88. http://dx.doi.org/10.1142/s0129054119400136.
Full textShan, Xiaohuan, Haihai Li, Chunjie Jia, Dong Li, and Baoyan Song. "Supergraph Topology Feature Index for Personalized Interesting Subgraph Query in Large Labeled Graphs." Complexity 2021 (June 29, 2021): 1–18. http://dx.doi.org/10.1155/2021/9274429.
Full textDissertations / Theses on the topic "Subgraph matching"
Provost, Marc 1981. "Himesis : a hierarchical subgraph matching kernel for model driven development." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98772.
Full textHimesis implements HVF, a new matching algorithm based on the VF2 approach. HVF extends VF2 with hierarchy and with several optimization strategies. It was designed to support advanced features that are required for graph rewriting, such as matching from a context as well as negative application conditions. We show that HVF is a faster algorithm than VF2 for matching of flat graphs. HVF is particularly efficient when matching irregular graphs.
Dutta, Anjan. "Inexact Subgraph Matching Applied to Symbol Spotting in Graphical Documents." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/283518.
Full textExiste un resurgimiento en el uso de métodos estructurales para el problema de reconocimiento y recuperación por contenido de objetos en imágenes. La teoría de grafos, en particular la puesta en correspondencia de grafos (graph matching) juega un papel relevante en ello. Así, la detección de un objeto (o una parte) en una imagen se puede formular como un emparejamiento de subgrafos en términos de características estructurals. El matching de subgrafos es una tarea difícil. Especialmente debido a la presencia de valores atípicos, muchos de los algoritmos existentes para el matching de grafos tienen dificultades en el escenario de matching de subgrafos. Además, el apareamiento de subgrafos de manera exacta ha demostrado ser una problema NP-completo . Así que hay una actividad intensa en la comunidad científica para proporcionar algoritmos eficaces para abordar el problema de manera suboptimal. La mayoría de ellos trabajan con algoritmos aproximados que tratan de obtener una solución inexacta en forma aproximada. Además, el reconocimiento habitualmente debe hacer frente a la distorsión. El emparejamiento de subgrafos de manera inexacta consiste en encontrar el mejor isomorfismo bajo una medida de similitud. Desde el punto de vista teórico, esta tesis propone algoritmos para la solución al problema del emparejamiento de subgrafos de manera aproximada e inexacta. Desde un punto de vista aplicado, esta tesis trata el problema de la detección de símbolos en imágenes de documentos gráficos o dibujos lineales (symbol spotting). Este es un problema conocido en la comunidad de reconocimiento de gráficos. Se puede aplicar para la indexación y clasificación de documentos sobre la base de sus contenidos. El carácter estructural de este tipo de documentos motiva de forma natural la utilización de una representación de grafos. Así el problema de detectar símbolos en documentos gráficos puede ser considerado como un problema de apareamiento de subgrafos. Los principales desafiós en este dominio de aplicación son el ruido y las distorsiones que provienen del uso, la digitalización y la conversión de raster a vectores de estos documentos. Aparte de que la visión por computador en la actualidad no limita las aplicaciones a un número limitado de imágenes. Así que el paso a la escala y tratar un gran número de imágenes en el reconocimiento de documentos gráficos es otro desafió. En esta tesis, por una parte, hemos trabajado en representaciones de grafos efi- cientes y robustas para solucionar el ruido y las distorsiones de los documentos. Por otra parte, hemos trabajado en diferentes métodos de matching de grafos para resolver el problema del emparejamiento inexacto de subgrafos, que también sea escalable ante un considerable número de imágenes. En primer lugar, se propone un método para de tectar símbolos mediante funciones de hash de subgrafos serializados. La organización del grafo una vez factorizado en subestructuras comunes, que se pueden organizar en tablas hash en función de las similitudes estructurales, y la serialización de las mismas en estructuras unidimensionales como caminos, son dos aportaciones de esta parte de la tesis. El uso de las técnicas de hashing ayuda a reducir sustancialmente el espacio de búsqueda y acelera el procedimiento de la detección. En segundo lugar, presentamos mecanismos de similitud contextual basadas en la propagación basada en caminos (walks) sobre el grafo producto (tensor product graph). Estas similitudes contextuales implican más información de orden superior y más áble que las similitudes locales. Utilizamos estas similitudes de orden superior para formular el apareamiento de subgrafos como una problema de selección de nodos y aristas al grafo producto. En tercer lugar, proponemos agrupamiento perceptual basado en convexidades para formar regiones casi convexas que elimina las limitaciones de la representación tradicional de los grafos de regiones para el reconocimiento gráfico. En cuarto lugar, se propone una representación de grafo jerárquico mediante la simplificación/corrección de los errores estructurales para crear un grafo jerárquico del grafo de base. Estos estructuras de grafos jerárquicos integran en métodos de emparejamiento de grafos. Aparte de esto, en esta tesis hemos proporcionado una comparación experimental general de todos los métodos y algunos de los métodos del estado del arte. Además, también se han proporcionado bases de datos de experimentación.
There is a resurgence in the use of structural approaches in the usual object recognition and retrieval problem. Graph theory, in particular, graph matching plays a relevant role in that. Specifically, the detection of an object (or a part of that) in an image in terms of structural features can be formulated as a subgraph matching. Subgraph matching is a challenging task. Specially due to the presence of outliers most of the graph matching algorithms do not perform well in subgraph matching scenario. Also exact subgraph isomorphism has proven to be an NP-complete problem. So naturally, in graph matching community, there are lot of efiorts addressing the problem of subgraph matching within suboptimal bound. Most of them work with approximate algorithms that try to get an inexact solution in approximate way. In addition, usual recognition must cope with distortion. Inexact graph matching consists in finding the best isomorphism under a similarity measure. Theoretically this thesis proposes algorithms for solving subgraph matching in an approximate and inexact way. We consider the symbol spotting problem on graphical documents or line drawings from application point of view. This is a well known problem in the graphics recognition community. It can be further applied for indexing and classification of documents based on their contents. The structural nature of this kind of documents easily motivates one for giving a graph based representation. So the symbol spotting problem on graphical documents can be considered as a subgraph matching problem. The main challenges in this application domain is the noise and distortions that might come during the usage, digitalization and raster to vector conversion of those documents. Apart from that computer vision nowadays is not any more confined within a limited number of images. So dealing a huge number of images with graph based method is a further challenge. In this thesis, on one hand, we have worked on eficient and robust graph representation to cope with the noise and distortions coming from documents. On the other hand, we have worked on difierent graph based methods and framework to solve the subgraph matching problem in a better approximated way, which can also deal with considerable number of images. Firstly, we propose a symbol spotting method by hashing serialized subgraphs. Graph serialization allows to create factorized substructures such as graph paths, which can be organized in hash tables depending on the structural similarities of the serialized subgraphs. The involvement of hashing techniques helps to reduce the search space substantially and speeds up the spotting procedure. Secondly, we introduce contextual similarities based on the walk based propagation on tensor product graph. These contextual similarities involve higher order information and more reliable than pairwise similarities. We use these higher order similarities to formulate subgraph matching as a node and edge selection problem in the tensor product graph. Thirdly, we propose near convex grouping to form near convex region adjacency graph which eliminates the limitations of traditional region adjacency graph representation for graphic recognition. Fourthly, we propose a hierarchical graph representation by simplifying/correcting the structural errors to create a hierarchical graph of the base graph. Later these hierarchical graph structures are matched with some graph matching methods. Apart from that, in this thesis we have provided an overall experimental comparison of all the methods and some of the state-of-the-art methods. Furthermore, some dataset models have also been proposed.
Zhang, Shijie. "Index-based Graph Querying and Matching in Large Graphs." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1263256028.
Full textTitle from PDF (viewed on 2010-04-12) Department of Electrical Engineering and Computer Science (EECS) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Li, Shirong. "A FRAMEWORK FOR SAMPLING PATTERN OCCURRENCES IN A HUGE GRAPH." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1269979693.
Full textDepartment of EECS - Computer and Information Sciences Title from PDF (viewed on 2010-05-25) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Kolli, Lakshmi Priya. "Mining for Frequent Community Structures using Approximate Graph Matching." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623166375110273.
Full textGhazar, Tay. "Efficient Virtual Network Embedding onto A Hierarchical-Based Substrate Network Framework." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23932.
Full textZhang, Jia-Xin, and 張家欣. "A Study of the Subgraph Matching Problem." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/60894264059781677706.
Full text"Diversied Subgraph Matching in a Large Graph." 2016. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292277.
Full text論文著重研究了如何選取k 個最具多樣性的子圖查詢,即給定一個查詢圖,在大數據圖中返回k 個匹配子圖,使得它們所覆蓋的頂店數目最多。論文提出了一個基於重疊層數的新穎算法,該算法具有提前終止條件,並有近似比的下界保證。文章選取了常用的真實數據集對算法進行了實驗驗證,能夠一台普通的機器上以毫秒級的速度返回近似最優解。
Subgraph querying in a large data graph is interesting for different applications. A recent study shows that top-k diversified results are useful since the number of matching subgraphs can be very large.
In this work, we study the problem of top-k diversified subgraph querying that asks for a set of up to k subgraphs isomorphic to a given query graph, and that covers the largest number of vertices. We propose a novel levelbased algorithm for this problem which supports early termination and has a theoretical approximation guarantee. From experiments, most of our results on real datasets used in previous works are near optimal with a query time within 10ms on a commodity machine.
Yang, Zhengwei.
Thesis M.Phil. Chinese University of Hong Kong 2016.
Includes bibliographical references (leaves ).
Abstracts also in Chinese.
Title from PDF title page (viewed on …).
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Castañón, Gregory David. "Exploratory search through large video corpora." Thesis, 2016. https://hdl.handle.net/2144/17091.
Full textNam, Yunsun. "Matching theory: subgraphs with degree constraints and other properties." Thesis, 1994. http://hdl.handle.net/2429/6938.
Full textBook chapters on the topic "Subgraph matching"
Xu, Zifeng, Fucai Zhou, Yuxi Li, Jian Xu, and Qiang Wang. "Private Subgraph Matching Protocol." In Provable Security, 455–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68637-0_27.
Full textGlimm, Birte, and Markus Krötzsch. "SPARQL beyond Subgraph Matching." In Lecture Notes in Computer Science, 241–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17746-0_16.
Full textZampelli, Stéphane, Yves Deville, and Pierre Dupont. "Approximate Constrained Subgraph Matching." In Principles and Practice of Constraint Programming - CP 2005, 832–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11564751_74.
Full textLin, Xiaojie, Rui Zhang, Zeyi Wen, Hongzhi Wang, and Jianzhong Qi. "Efficient Subgraph Matching Using GPUs." In Lecture Notes in Computer Science, 74–85. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08608-8_7.
Full textZhu, Gaoping, Ke Zhu, Wenjie Zhang, Xuemin Lin, and Chuan Xiao. "Efficient Subgraph Similarity All-Matching." In Database Systems for Advanced Applications, 455–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29038-1_33.
Full textChen, Jing, Yu Gu, Qiange Wang, Chuanwen Li, and Ge Yu. "Partition-Oriented Subgraph Matching on GPU." In Web and Big Data, 53–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60259-8_5.
Full textSeba, Hamida, Sofiane Lagraa, and Hamamache Kheddouci. "Web Service Matchmaking by Subgraph Matching." In Lecture Notes in Business Information Processing, 43–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28082-5_4.
Full textBrücheler, Matthias, Andrea Pugliese, and V. S. Subrahmanian. "Scaling Subgraph Matching Queries in Huge Networks." In Encyclopedia of Social Network Analysis and Mining, 1626–43. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6170-8_374.
Full textShen, Yishu, and Zhaonian Zou. "Efficient Subgraph Matching on Non-volatile Memory." In Lecture Notes in Computer Science, 457–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68783-4_31.
Full textBrücheler, Matthias, Andrea Pugliese, and V. S. Subrahmanian. "Scaling Subgraph Matching Queries in Huge Networks." In Encyclopedia of Social Network Analysis and Mining, 2309–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7131-2_374.
Full textConference papers on the topic "Subgraph matching"
Han, Myoungji, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han. "Efficient Subgraph Matching." In SIGMOD/PODS '19: International Conference on Management of Data. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3299869.3319880.
Full textTu, Thomas K., Jacob D. Moorman, Dominic Yang, Qinyi Chen, and Andrea L. Bertozzi. "Inexact Attributed Subgraph Matching." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9377872.
Full textMasquio, Bruno, Paulo Pinto, and Jayme Szwarcfiter. "Algoritmos eficientes para emparelhamentos desconexos em grafos cordais e grafos bloco." In IV Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/etc.2019.6390.
Full textSun, Shixuan, and Qiong Luo. "Scaling Up Subgraph Query Processing with Efficient Subgraph Matching." In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019. http://dx.doi.org/10.1109/icde.2019.00028.
Full textGoodman, Eric L., and Dirk Grunwald. "Streaming Temporal Graphs: Subgraph Matching." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006429.
Full textKim, Hyunjoon, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and Wook-Shin Han. "Versatile Equivalences: Speeding up Subgraph Query Processing and Subgraph Matching." In SIGMOD/PODS '21: International Conference on Management of Data. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448016.3457265.
Full textSuo, Bo, Zhanhuai Li, and Wei Pan. "Parallel subgraph matching on massive graphs." In 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2016. http://dx.doi.org/10.1109/cisp-bmei.2016.7853034.
Full textLiu, Lihui, Boxin Du, Jiejun xu, and Hanghang Tong. "G-Finder: Approximate Attributed Subgraph Matching." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006525.
Full textZong, Bo, Ramya Raghavendra, Mudhakar Srivatsa, Xifeng Yan, Ambuj K. Singh, and Kang-Won Lee. "Cloud service placement via subgraph matching." In 2014 IEEE 30th International Conference on Data Engineering (ICDE). IEEE, 2014. http://dx.doi.org/10.1109/icde.2014.6816704.
Full textMoayed, Hojjat, and Eghbal G. Mansoori. "Reducing Search Space in Subgraph Matching Problem." In 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, 2020. http://dx.doi.org/10.1109/iccke50421.2020.9303627.
Full text