Academic literature on the topic 'Subirrigation seedling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Subirrigation seedling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Subirrigation seedling"

1

Bumgarner, Mindy L., K. Francis Salifu, and Douglass F. Jacobs. "Subirrigation of Quercus rubra Seedlings: Nursery Stock Quality, Media Chemistry, and Early Field Performance." HortScience 43, no. 7 (2008): 2179–85. http://dx.doi.org/10.21273/hortsci.43.7.2179.

Full text
Abstract:
Container seedling production systems for forest tree nurseries are challenged by the need for judicious water consumption. Subirrigation systems may provide an alternative to overhead systems by mitigating water use, yet remain relatively untested for propagation of forest tree seedlings. We evaluated effects of overhead versus subirrigation under varying media (40:60, 60:40, and 80:20 peat:perlite) and fertilization (0 or 1.2 g nitrogen/plant) regimes on nursery development and first-year field performance of northern red oak (Quercus rubra L.) seedlings. Fertilization increased aboveground biomass production and nutrient content, but decreased root dry weight. Relative to overhead-irrigated seedlings, subirrigation increased red oak seedling aboveground biomass production as well as above- and belowground nitrogen content under fertilized conditions. Media had no effect on plant response. Subirrigation increased electrical conductivity (5 dS·m−1 greater) and decreased pH in the upper media zone (0 to 5 cm from top), whereas the opposite effect was found in the lower zone. Nursery fertilization was associated with reduced field survival and growth, which may have been the result of transplant stress resulting from higher shoot:root. Subirrigated seedlings had greater field diameter growth. Our results suggest that subirrigation could serve as a viable alternative to overhead systems in container propagation of hardwood seedlings.
APA, Harvard, Vancouver, ISO, and other styles
2

Davis, Anthony S., Matthew M. Aghai, Jeremiah R. Pinto, and Kent G. Apostol. "Growth, Gas Exchange, Foliar Nitrogen Content, and Water Use of Subirrigated and Overhead-irrigated Populus tremuloides Michx. Seedlings." HortScience 46, no. 9 (2011): 1249–53. http://dx.doi.org/10.21273/hortsci.46.9.1249.

Full text
Abstract:
Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were compared between overhead irrigation and subirrigation systems used to produce trembling aspen (Populus tremuloides Michx.) seedlings. After 3 months of nursery culture, subirrigation resulted in a 45% reduction in water use compared with overhead irrigation. At the end of the growing season, subirrigated seedlings had lower net photosynthetic assimilation, stomatal conductance (gS), and leaf area, indicating earlier leaf senescence. However, no significant differences were detected for biomass, leaf N content, height, root-collar diameter, or root volume. Thus, we suggest that subirrigation systems offer promising potential for aspen seedling production when compared with overhead irrigation given the added benefits of water conservation and reduced nutrient runoff. Continuing emphasis on refinement such as determining the plant water requirements based on growth and development as well as container configuration is needed so that the intended benefits of using subirrigation can be realized.
APA, Harvard, Vancouver, ISO, and other styles
3

Dunlap, Layla J., Jeremiah R. Pinto, and Anthony S. Davis. "Effects of Fertilizer on Media Chemistry and Red-flowering Currant Seedling Growth Using a Subirrigation System." HortScience 53, no. 12 (2018): 1862–71. http://dx.doi.org/10.21273/hortsci13444-18.

Full text
Abstract:
Water conservation in nursery systems is an ever-increasing focus, yet there is relatively little guidance for growers producing seedlings intended for restoration regarding how practices such as subirrigation influence plant growth in the nursery and after outplanting. Our study investigated red-flowering currant (Ribes sanguineum Pursh) seedling development and early field performance using different fertilizer treatments under a subirrigation regime. Plants were fertilized with 1) incorporated organic fertilizer, 2) incorporated controlled-release fertilizer, 3) top-dressed controlled-release fertilizer, or 4) water-soluble fertilizer. We found that seedlings grown with organic fertilizer used significantly less water than all other treatments. Media electrical conductivity (EC) levels were significantly greater in the organic fertilizer treatment, and EC values in the top portion of the media were significantly greater than the middle or bottom portions for all fertilizer treatments. The remaining subirrigation water at the end of 22 weeks held 17% of applied nitrogen (N) from the water-soluble fertilizer treatment and less than 1% of applied N from the other fertilizer treatments. We observed no differences in plant morphology among fertilizer treatments. Seedlings were subsequently out-planted into low- and high-competition treatments, where myriad factors indicated reduced growth among high-competition compared with low-competition plots, highlighting that competition for soil water limited seedling performance. These results indicate that a variety of fertilizers can be used to grow red-flowering currant under subirrigation and that postplanting growth is enhanced with control of competing vegetation.
APA, Harvard, Vancouver, ISO, and other styles
4

Pinto, Jeremy R., Rhiannon A. Chandler, and R. Kasten Dumroese. "Growth, Nitrogen Use Efficiency, and Leachate Comparison of Subirrigated and Overhead Irrigated Pale Purple Coneflower Seedlings." HortScience 43, no. 3 (2008): 897–901. http://dx.doi.org/10.21273/hortsci.43.3.897.

Full text
Abstract:
Pale purple coneflower [Echinacea pallida (Nutt.) Nutt.] was grown within three container volumes (90, 105, and 340 cm3) under subirrigation and overhead irrigation treatments. Subirrigated coneflowers showed increased seedling quality with more biomass (14%), better nitrogen use efficiency (13%), greater nitrogen content (N; 11%), more height (15%), and lower mortality compared with overhead-irrigated seedlings. Plants also showed increasing height, biomass, and N content with increasing container volume. Overhead irrigated coneflowers had more leachate compared with subirrigated seedlings, which produced none. Leachate electrical conductivity and N were monitored throughout the growing season and decreased at similar rates, whereas subirrigation effluent levels remained constant. Subirrigation offers a viable alternative to traditional overhead irrigation systems by producing this native plant with equal or better quality without discharging potentially harmful leachate into the environment.
APA, Harvard, Vancouver, ISO, and other styles
5

Ribeiro, Maycon Diego, Rhuanito Soranz Ferrarezi, and Roberto Testezlaf. "Assessment of Subirrigation Performance in Eucalyptus Seedling Production." HortTechnology 24, no. 2 (2014): 231–37. http://dx.doi.org/10.21273/horttech.24.2.231.

Full text
Abstract:
We evaluated the performance and determined the efficiency parameters of an automated subirrigation system in a commercial greenhouse facility for clonal eucalyptus (Eucalyptus sp.) seedling production to improve subirrigation management practices. A methodology based on the mass balance of the irrigation system was established to determine the volumes of nutrient solution (NS) applied, drained, stored, evapotranspirated, and leaked in each subirrigation bench. The application, drainage, and NS dwell time in the 55-cm3 conic containers (0.125 m height × 0.03 m diameter) and the depth of NS reached inside the bench were also assessed. The values of application efficiency, irrigation efficiency and system transport (supply and drainage), and disposal losses of NS were estimated for each bench and inferred for the entire subirrigation system. The benches had average application and irrigation efficiency values of 0.84% and 98.38%, respectively. The system showed irrigation efficiency values of 27.59% and the sum lost by transport, leakings, and disposal in the water treatment plant of 72.41%. The continuous return of NS because of the high irrigation frequency contributed to this loss, resulting in 10,070 L of NS consumed by the plants and 26,430 L lost after 15 days of cultivation. Our results demonstrated that the system presented an adequate irrigation efficiency, but a low application efficiency caused by the constant return of NS because of the high irrigation frequency and the excess of losses from leaking and disposal of NS after 15 days of cultivation. Nevertheless, the system operated like a hydroponic system, which kept the containers partially immersed in the NS and did not use the full substrate container capacity to provide adequate moisture. This reduced the overall system irrigation and the substrate storage efficiencies, which needs to be improved by proper equipment design, operation, water and nutrients use efficiency, and management to achieve all the benefits that subirrigation possess.
APA, Harvard, Vancouver, ISO, and other styles
6

Bumgarner, Mindy L., K. Francis Salifu, Michael V. Mickelbart, and Douglass F. Jacobs. "Effects of Fertilization on Media Chemistry and Quercus rubra Seedling Development under Subirrigation." HortScience 50, no. 3 (2015): 454–60. http://dx.doi.org/10.21273/hortsci.50.3.454.

Full text
Abstract:
Excessive fertilization may induce physiological drought and/or ion toxicity, which can reduce growth or cause mortality in cultured plants. Although nursery subirrigation produces stock of forest trees of equal or better quality to conventional overhead irrigation, detailed analyses of fertilization responses specific to these systems are lacking. We evaluated the effects of fertility applied as a 15N–9P–12K controlled-release fertilizer at rates equivalent to 0, 1.2, 1.8, 2.4, 3.0, or 3.6 g nitrogen (N) per plant on media properties and northern red oak (Quercus rubra L.) seedling development grown with subirrigation. Aboveground plant growth and nutrient content of seedlings increased up to 1.8 g N/plant but declined at higher rates and total mortality occurred for treatments of 2.4 to 3.6 g N/plant by the end of cultivation. Root biomass generally declined with increasing fertilization. Media electrical conductivity (EC) increased with increasing fertility, particularly in the upper media layers, where values exceeded 3.0 dS·m−1 at the highest rates. Fertilization had little effect on media pH. Predawn leaf water potential and osmotic potential (ψS) were reduced at high nutrient applications. Thus, increasing fertility beyond ≈1.8 g N/plant in this subirrigation system apparently resulted in accumulation of excessive fertilizer salts in media and/or ion toxicity, which caused plant mortality. Because subirrigation systems are prone to persistence of residual fertilizer salts in the medium and holding tanks, fertilization prescriptions must be carefully tailored to species and cultural systems to prevent potential for plant damage associated with overfertilization.
APA, Harvard, Vancouver, ISO, and other styles
7

Wan, Fangfang, Amy L. Ross-Davis, Wenhui Shi, et al. "Subirrigation Effects on Larch Seedling Growth, Root Morphology, and Media Chemistry." Forests 10, no. 1 (2019): 38. http://dx.doi.org/10.3390/f10010038.

Full text
Abstract:
Subirrigation (SI), where water is provided to container seedlings from below and rises through the growing media via capillary action, is regarded as an environmentally-responsible method of delivering water and fertilizer to nursery-grown plants, resulting in more uniform crops and improved production efficiency. While a concern around adopting this method is that a potential higher salt concentration in the upper layers of growing media under SI may inhibit root growth and result in decreased plant quality, few studies have focused on how root morphology is altered by SI. Therefore, a balanced two-factor factorial design with three rates of fertilization (50, 100, and 150 mg N seedling−1) and two irrigation methods (SI or overhead irrigation (OI)) was used to examine the growth response of Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr) seedlings for one nursery season. Associated changes between rhizosphere electrical conductivity (EC) and root morphology of different root size classes were analyzed. Results show that (1) height, root-collar diameter, and root volume were similar between seedlings grown under SI and OI. However, (2) compared to seedlings receiving OI, SI-seedlings had less root mass, length, and surface area but greater average root diameter (ARD). (3) Morphological differences were evident primarily in root diameter size classes I–III (D ≤ 1.0 mm). (4) Fertilizer rate influenced root length and surface area up to 130 days after sowing but affected ARD throughout the growing season such that seedlings treated with 50 mg N had smaller ARD than seedlings treated with 100 mg N. (5) As the growing season progressed, SI-media had significantly higher EC compared to OI-media and EC increased with increasing fertilizer rate under SI but not under OI. These results indicate that SI can produce larch seedlings of similar height and root collar diameter (RCD) compared to OI, but root systems are smaller overall with fewer small-diameter roots, which may be related to high EC levels in SI-media, which is exacerbated by the use of high rates of fertilizer. Therefore, the EC in the media should be monitored and adjusted by reducing fertilizer rates under SI.
APA, Harvard, Vancouver, ISO, and other styles
8

Geneve, Robert L., Jack W. Buxton, and Myra Stafford. "Copper Hydroxide is an Effective Control of Root Outgrowth in Plug-grown Seedlings Subirrigated by Capillary Mats." HortScience 30, no. 4 (1995): 868A—868. http://dx.doi.org/10.21273/hortsci.30.4.868a.

Full text
Abstract:
Capillary mat subirrigation provides uniform water in the growing medium to optimize seedling growth in plugs. It also offers a closed system that allows the grower to regulate the amount of water available to seedlings and to reduce water runoff. However, root outgrowth into the capillary mat can be a significant problem. Copper hydroxide (Spin Out) was painted on the bottom, outside surface of the plug container to control root outgrowth into the capillary mat. Three square and two octagonal plug sizes were treated with copper. Regardless of the plug size or shape, copper treatment was an effective treatment to control root outgrowth in marigold seedlings. Copper treatment reduced overall root outgrowth by 80% to 92%. Marigold and geranium seedlings in copper-treated square plug containers showed some reduced shoot and root development during plug production, but there were no differences in copper-treated plants compared to nontreated plants following transplanting to cell packs.
APA, Harvard, Vancouver, ISO, and other styles
9

Macan, Natalia P. F., Rhuanito S. Ferrarezi, Edson E. Matsura, Aline H. N. Maia, Mauro A. Xavier, and Thomaz Penteado Cyrino Teixeira da Silva. "Fertilizer Recommendations for Sugarcane Pre-sprouted Seedling Production in Ebb-and-Flow Subirrigation Benches." Sugar Tech 22, no. 6 (2020): 978–86. http://dx.doi.org/10.1007/s12355-020-00847-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Million, Jeff B., James E. Barrett, Terril A. Nell, and David G. Clark. "Paclobutrazol Distribution following Application to Two Media as Determined by Bioassay." HortScience 34, no. 6 (1999): 1099–102. http://dx.doi.org/10.21273/hortsci.34.6.1099.

Full text
Abstract:
A broccoli (Brassica oleracea var. botrytis L.) seedling bioassay was used to measure paclobutrazol activity and distribution in two growing media following drench or subirrigation applications. The bioassay exhibited a saturation-type response curve for paclobutrazol concentrations up to 1000 μg·L-1 in solution and 100 μg·L-1 in the media. The concentration of paclobutrazol required to achieve one-half of the maximum observed bioassay activity was 3-fold as high in bark-based commercial potting medium as in a peat-based medium. Less than 2% of applied paclobutrazol leached out during the drench application despite the collection of up to 50 mL of leachate per 120 mL of the solution (1000 μg·L-1) that was applied per 15-cm pot. Immediately following drench application, paclobutrazol concentrations in both media were highest in the uppermost 2.5 cm and decreased downward. By 3 weeks after treatment, drench-applied paclobutrazol had moved into lower depths. Distribution of paclobutrazol was limited to the bottom 2.5 cm of media when applied as a subirrigation soak. Chemical name used: (±)-(R*,R*)-β-[(4-chlorophenyl)methyl]-α-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Subirrigation seedling"

1

Júnior, Cícero Renê Almeida Barboza. "Desenvolvimento de mudas de pinhão manso (Jatropha curcas L.) em tubetes e submetidas a diferentes níveis de déficit hídrico." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/11/11143/tde-23032012-102119/.

Full text
Abstract:
Com a crescente procura por alternativas para suprir energeticamente o mundo, cada vez mais, fontes mais limpas e renováveis estão sendo utilizadas. No Brasil, a produção de óleos vegetais visando a geração de energia (biodiesel) ainda é incipiente. Dentre as diferentes espécies de oleaginosas, o pinhão manso (Jatropha curcas L.) vem se destacando como uma ótima alternativa no fornecimento de matéria prima para a produção de biodiesel. Informações sobre essa cultura ainda são escassas, principalmente no Brasil, onde há pouco tempo foram iniciadas as pesquisas. A necessidade de informações locais também ressalta a importância da pesquisa com o Pinhão Manso. Com base nessas necessidades, o objetivo desse experimento foi analisar a viabilidade técnica da produção de mudas irrigadas de pinhão manso por sistema de subirrigação e desenvolver um sistema automatizado de manejo. O controle da irrigação foi realizado a partir da variação de peso dos tubetes com as mudas, devido a perda de água por evapotranspiração. No processo de controle dos pesos foram utilizadas células de carga, que monitoraram a variação de peso de um conjunto de tubetes denominado conjunto controle. O delineamento experimental foi em delineamento inteiramente aleatorizado, com quatro repetições. Os tratamentos avaliados foram quatro níveis de depleção da máxima capacidade de retenção de água (MCRA) apresentada pelo substrato (T1=20%, T2=40%, T3=60% e T4=80% da MCRA). Para se quantificar os efeitos dos tratamentos foram avaliadas semanalmente as seguintes características das mudas: altura e diâmetro do caule, número de folhas e área foliar, bem como a produção de matéria fresca e seca da parte aérea e do sistema radicular. Os resultados mostram que o tratamento 2 foi o que se destacou dentre os demais, produzindo mudas de melhor qualidade, com maior acúmulo de matéria seca e maior consumo hídrico.<br>With the growing demand for alternative energy to meet the world, increasingly more clean and renewable sources are being used. In Brazil, the production of vegetable oils aimed at producing energy (biodiesel) is still incipient. Among the different species of oleaginous plants, jatropha (Jatropha curcas L.) has emerged as a great alternative in providing raw material for biodiesel production. Information on this crop are still scarce, especially in Brazil where they recently started research. The need for local information also emphasizes the importance of research with Jatropha. Based on these needs, the aim of this experiment was to analyze the technical viability production of jatropha seedlings irrigated by subirrigation system and develop an automated system management. The irrigation control was carried out from the weight variation of the vials with the seedlings because of water loss through evapotranspiration. In the process of weight control were used load cells, which monitored the weight variation of a set of vials called the control group. The experimental design was the completely randomized with four replications. The treatments were four levels of depletion of the maximum water holding capacity (MCRA) presented by the substrate (T1=20%, T2=40%, T3=60% e T4=80% da MCRA). To quantify the effects of the treatments were evaluated weekly the following characteristics of seedlings: height and diameter of the stem, leaf number and leaf area, and the production of fresh and dry shoot and root. The results show that treatment 2 was what stood out among the others, producing higher quality seedlings with greater dry matter accumulation and increased water consumption.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Subirrigation seedling"

1

HENRIQUE LOPES RODRIGUES, FERNANDO, and EDSON EIJI MATSURA. "Management of subirrigation benches in the production of sugarcane seedlings." In XXIV Congresso de Iniciação Científica da UNICAMP - 2016. Galoa, 2016. http://dx.doi.org/10.19146/pibic-2016-51853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography