Academic literature on the topic 'Submicrocrystalline'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Submicrocrystalline.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Submicrocrystalline"

1

Salishchev, Gennady A., Sergey V. Zherebtsov, Svetlana Malysheva, A. Smyslov, E. Saphin, and N. Izmaylova. "Mechanical Properties of Ti–6Al–4V Titanium Alloy with Submicrocrystalline Structure Produced by Multiaxial Forging." Materials Science Forum 584-586 (June 2008): 783–88. http://dx.doi.org/10.4028/www.scientific.net/msf.584-586.783.

Full text
Abstract:
A comparative investigation of mechanical properties of Ti–6Al–4V titanium alloy with coarse-grained (400 m), microcrystalline (10 µm) and submicrocrystalline (0.4 µm) structures in the temperature range 20–500°C has been carried out. The submicrocrystalline structure was obtained by multiaxial isothermal forging. The alloys with the coarse-grained and microcrystalline structures were used in a heat-strengthened condition. The microstructure refinement increases both the strength and fatigue limit of the alloy at room temperature by about 20%. The strength of the submicrocrystalline alloy is higher than that of the microcrystalline alloy in the range 20 - 400°C. Long-term strength of the submicrocrystalline specimens below 300°C is also considerably higher than that of the other conditions. However, the creep strength of the submicrocrystalline alloy is slightly lower than that of the heat-strengthened microcrystalline alloy already at 250°C. The impact toughness in submicrocrystalline state is lower especially in the samples with introduced cracks. Additional surface modification of submicrocrystalline alloy by ion implantation gives a considerable increase in the fatigue limit. Advantages of practical application of submicrocrystalline titanium alloys produced by multiaxial isothermal forging have been evaluated.
APA, Harvard, Vancouver, ISO, and other styles
2

Бетехтин, В. И., А. Г. Кадомцев, М. В. Нарыкова, О. В. Амосова, Ю. Р. Колобов, V. Sklenicka, and J. Dvorak. "Влияние структурного состояния и оксидного покрытия на механостабильность титана ВТ1-0 при его циклическом нагружении." Физика твердого тела 63, no. 11 (2021): 1901. http://dx.doi.org/10.21883/ftt.2021.11.51595.109.

Full text
Abstract:
It was found that the fatigue properties of submicrocrystalline titanium are significantly higher than those for its coarse-grained state. The application of the oxide coating leads to a slight increase in these properties for titanium with a submicrocrystalline and coarse-grained structure. Some features of fatigue fracture of submicrocrystalline and coarse-grained titanium are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
3

Aleshin, A. N., Alex M. Arsenkin, and Sergey V. Dobatkin. "Study of Grain Growth Kinetics in Submicrocrystalline Armco-Iron." Materials Science Forum 550 (July 2007): 465–70. http://dx.doi.org/10.4028/www.scientific.net/msf.550.465.

Full text
Abstract:
The paper is devoted to the problem of thermal stability of ultra-fine grained (submicrocrystalline) materials prepared by severe plastic deformation. A basis of the paper lies in a fact that there is practically no grain growth in submicrocrystalline materials when annealing temperature is less than 0.35Tm. Reasons of high thermal stability of submicrocrystalline materials at low temperatures are widely discussed in literature. One of them is the affect of triple junction drag on grain boundaries motion. During annealing at a low temperature triple junction drag controls microstructure evolution in submicrocrystalline materials, and this phenomenon can be used to improve their thermal stability at high temperatures. The aim of this paper is to investigate grain growth kinetics in a two-step regime, low temperature and high temperature annealing. The experiments on grain growth were performed in submicrocrystalline Armco-iron fabricated by high pressure torsion. It is established that long-time low temperature pre-annealing reduces the grain growth rate in following high temperature annealing by a factor greater than two.
APA, Harvard, Vancouver, ISO, and other styles
4

Grabovetskaya, Galina P., Ekaterina N. Stepanova, Ilya V. Ratochka, I. P. Mishin, and Olga V. Zabudchenko. "Effect of Hydrogen on the Development of Superplastic Deformation in the Submicrocrystalline Ti–6Al–4V Alloy." Materials Science Forum 838-839 (January 2016): 344–49. http://dx.doi.org/10.4028/www.scientific.net/msf.838-839.344.

Full text
Abstract:
Hydrogenation effect on the development of superplastic deformation in the submicrocrystalline Ti–6Al–4V alloy at temperatures (0.4–0.5)Тmelt is investigated. Hydrogenation of the submicrocrystalline Ti–6Al–4V alloy to 0.26 mass% during superplastic deformation is found to result in solid solution strengthening, plastic deformation localization, and as a consequence, decrease of the deformation to failure. Possible reasons for the decrease of the flow stress and increase of the deformation to failure in the submicrocrystalline Ti–6Al–4V–0.26H alloy during deformation under conditions of superplasticity and simultaneous hydrogen degassing from the alloy are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Popov, Vladimir V., Ruslan Valiev, E. N. Popova, A. V. Sergeev, A. V. Stolbovsky, and V. U. Kazihanov. "Structure and Properties of Grain Boundaries in Submicrocrystalline W Obtained by Severe Plastic Deformation." Defect and Diffusion Forum 283-286 (March 2009): 629–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.629.

Full text
Abstract:
Submicrocrystalline structure of W obtained by severe plastic deformation (SPD) by high pressure torsion (5 revolutions of anvils at 4000C) and its thermal stability have been examined by TEM. Grain boundaries of submicrocrystalline W have been studied by the method of the emission Mössbauer spectroscopy in the initial state and after annealing at 400-6000С.
APA, Harvard, Vancouver, ISO, and other styles
6

Dudarev, Evgenii, Galina Bakach, Aleksandr I. Potekaev, Yurii Kolobov, Oleg Kashin, and Mickle Zhorovkov. "Influence of Interstitial Impurities on Deformational Behavior and Fracture Mechanism of Submicrocrystalline Titanium at Room and Elevated Temperatures." Advanced Materials Research 1013 (October 2014): 138–45. http://dx.doi.org/10.4028/www.scientific.net/amr.1013.138.

Full text
Abstract:
General trends and other aspects of the deformational behavior, localization of plastic deformation on the macroscale level, and fracture of submicrocrystalline and coarse-grained titanium with different interstitial impurity levels are established. It is shown that for the submicrocrystalline structure as well as for the coarse-grained structure, strengthening by interstitial impurities decreases with increase of the deformation temperature. Experimental data are presented which indicate that in the development of grain-boundary sliding in submicrocrystalline titanium with simultaneous onset of recrystallization, a high degree of plastic deformation is reached before fracture occurs, where the deformational behavior and localization of plastic deformation on the macroscale level are analogous to the same processes under superplastic flow.
APA, Harvard, Vancouver, ISO, and other styles
7

Klimenov, Vasilii A., Anatolii A. Klopotov, Yu A. Abzaev, K. A. Kurgan, and Yu A. Vlasov. "Electron-Beam Welding - Structural-Phase State and Microhardnes in the Weld Zone in a Submicrocrystalline Titanium Alloy Grade2." Materials Science Forum 906 (September 2017): 32–37. http://dx.doi.org/10.4028/www.scientific.net/msf.906.32.

Full text
Abstract:
The paper presents the results of the X-ray diffraction analysis of structural-phase states in the weld zone of a titanium alloy Grade2 in micro-and submicrocrystalline states. It is established that the structural-phase state in the weld zone and in the heat-affected zone depends on the state of samples of the alloy Grade2 before welding. It is shown that formation process of metastable phases ω-Ti and α′′-Ti occurs in the submicrocrystalline state in the alloy Grade2 in the weld zone and in the heat-affected zone. Investigations of the features of the microhardness distribution in the weld zone in alloys Grade2 in micro-and submicrocrystalline states are carried out. Different character of microhardness distributions in the weld zone in the samples depending on the structural-phase state of welded plates made of alloy Grade2 is determined.
APA, Harvard, Vancouver, ISO, and other styles
8

Kolobov, Yu R., M. B. Ivanov, S. S. Manokhin, and E. Erubaev. "Recrystallization behavior of submicrocrystalline titanium." Inorganic Materials 52, no. 2 (February 2016): 128–33. http://dx.doi.org/10.1134/s0020168516020072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mulyukov, R. R. "Internal friction of submicrocrystalline metal." Metal Science and Heat Treatment 40, no. 8 (August 1998): 341–45. http://dx.doi.org/10.1007/bf02466223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kurgan, K. A., Vasily A. Klimenov, Anatolii A. Klopotov, Yurii A. Abzaev, Aleksandr I. Potekaev, Dmitry V. Lychagin, and M. R. Marzol. "Weakly Stable Structural-Phase States of a Submicrocrystalline Alloy Grade 2 in the Weld Zone Obtained Using Electron-Beam Welding." Journal of Metastable and Nanocrystalline Materials 30 (January 2018): 60–66. http://dx.doi.org/10.4028/www.scientific.net/jmnm.30.60.

Full text
Abstract:
The structural-phase state of weld joints of the samples of Grade 2 alloys with micro- and submicrocrystalline structure is studied using methods of X-ray diffraction analysis. The weld joint was obtained by joining plates with a thickness of 2 mm using the electron-beam welding method. It is established that the transfer of the titanium alloy Grade 2 from the microcrystalline state into the submicrocrystalline state during the process of gradual grinding of grains in the samples by the abc-pressing method at a parallel stepwise decrease of the temperature in the range of 750-500 °C leads to an intensive introduction of oxygen atoms into the crystalline lattice of the solid solution a-Ti. The presence of an increased content of oxygen atoms in the crystalline lattice of the solid solution a-Ti in the submicrocrystalline state in the Grade 2 alloy in the weld zone and in the heat-affected zone promotes the formation of metastable phases w-Ti and α''-Ti. The obtained results made it possible to assume that in the process of electron-beam welding in the Grade 2 alloy in the submicrocrystalline state, an increased concentration of interstitial oxygen atoms in the crystalline lattice of the solid solution based on a–Ti plays a significant role in the formation of a wide range of structural-phase states in the weld zone and in the heat-affected zone.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Submicrocrystalline"

1

Klemm, Robert. "Zyklische Plastizität von mikro- und submikrokristallinem Nickel." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1085403884093-17423.

Full text
Abstract:
Im Rahmen der vorliegenden Arbeit wurde der Einfluss der Korngröße und der Gefügestabilität auf die zyklische Plastizität von mikro- und submikrokristallinem Nickel, hergestellt durch ECAP und PED, untersucht. Zur Gefügecharakterisierung kamen verschiedene elektronenmikroskopische und röntgenographische Methoden zum Einsatz. Die Untersuchungen zur Gefügestabilität zeigten, dass (i) die Stabilität der Korn- und Substruktur bei der zyklischen Verformung empfindlich vom Gefüge im Ausgangszustand abhängt, (ii) generell die Tendenz zur Umwandlung der vorhandenen Substruktur in eine universelle ermüdungstypische Substruktur besteht, diese Transformation jedoch durch die lokale Gefügebeschaffenheit be- bzw. verhindert sein kann und (iii) zur Erklärung des Entfestigungsverhaltens der ECAP-Materialien sowohl die Transformation der Substruktur als auch die Vergröberung der Kornstruktur berücksichtigt werden müssen. Auf der Basis der Ergebnisse der vorliegenden Arbeit und unter Hinzunahme von Resultaten aus der Literatur lassen sich Schlussfolgerungen zum Einfluss der Korngröße auf die zyklische Plastizität in einem vier Größenordnungen umfassenden Korngrößenbereich ziehen. In grob- und feinkörnigem Nickel bilden sich bei der zyklischen Verformung ermüdungstypische Versetzungsstrukturen, deren Abmessungen kaum von der Korngröße abhängen. Der Versetzungslaufweg in diesen Materialien ist wesentlich kleiner als die Kornabmessungen. Dementsprechend besteht höchstens ein schwacher Einfluss der Korngröße auf das sich bei der Wechselverformung einstellende Spannungsniveau. Bei mikro- und submikrokristallinem Nickel, wo der Versetzungslaufweg in der Größenordung der Kornabmessungen liegt, wird ein deutlicher Umschlag bei der Versetzungsmusterbildung und dem zyklischen Verformungsverhalten beobachtet. In diesem Korngrößenbereich entstehen entweder qualitativ andere (D<DS1=5µm) oder keine Versetzungsstrukturen (D<DS2=1µm) und das Spannungsniveau steigt mit sinkender Korngröße entsprechend einer HALL-PETCH-Beziehung.
APA, Harvard, Vancouver, ISO, and other styles
2

Klemm, Robert. "Zyklische Plastizität von mikro- und submikrokristallinem Nickel." Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A23831.

Full text
Abstract:
Im Rahmen der vorliegenden Arbeit wurde der Einfluss der Korngröße und der Gefügestabilität auf die zyklische Plastizität von mikro- und submikrokristallinem Nickel, hergestellt durch ECAP und PED, untersucht. Zur Gefügecharakterisierung kamen verschiedene elektronenmikroskopische und röntgenographische Methoden zum Einsatz. Die Untersuchungen zur Gefügestabilität zeigten, dass (i) die Stabilität der Korn- und Substruktur bei der zyklischen Verformung empfindlich vom Gefüge im Ausgangszustand abhängt, (ii) generell die Tendenz zur Umwandlung der vorhandenen Substruktur in eine universelle ermüdungstypische Substruktur besteht, diese Transformation jedoch durch die lokale Gefügebeschaffenheit be- bzw. verhindert sein kann und (iii) zur Erklärung des Entfestigungsverhaltens der ECAP-Materialien sowohl die Transformation der Substruktur als auch die Vergröberung der Kornstruktur berücksichtigt werden müssen. Auf der Basis der Ergebnisse der vorliegenden Arbeit und unter Hinzunahme von Resultaten aus der Literatur lassen sich Schlussfolgerungen zum Einfluss der Korngröße auf die zyklische Plastizität in einem vier Größenordnungen umfassenden Korngrößenbereich ziehen. In grob- und feinkörnigem Nickel bilden sich bei der zyklischen Verformung ermüdungstypische Versetzungsstrukturen, deren Abmessungen kaum von der Korngröße abhängen. Der Versetzungslaufweg in diesen Materialien ist wesentlich kleiner als die Kornabmessungen. Dementsprechend besteht höchstens ein schwacher Einfluss der Korngröße auf das sich bei der Wechselverformung einstellende Spannungsniveau. Bei mikro- und submikrokristallinem Nickel, wo der Versetzungslaufweg in der Größenordung der Kornabmessungen liegt, wird ein deutlicher Umschlag bei der Versetzungsmusterbildung und dem zyklischen Verformungsverhalten beobachtet. In diesem Korngrößenbereich entstehen entweder qualitativ andere (D<DS1=5µm) oder keine Versetzungsstrukturen (D<DS2=1µm) und das Spannungsniveau steigt mit sinkender Korngröße entsprechend einer HALL-PETCH-Beziehung.
APA, Harvard, Vancouver, ISO, and other styles
3

Cherkaska, Viktoriya. "Microstructure of Submicrocrystalline Metals after Severe Plastic Deformation and Its Thermal Stability." Doctoral thesis, 2008. http://www.nusl.cz/ntk/nusl-354471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nokhrin, A. V., V. N. Chuvil’deev, V. I. Kopylov, M. Yu Gryaznov, O. Ed Pirozhnikova, A. V. Piskunov, and A. A. Bobrov. "Abnormal strengthening effect after annealing of ultrafine-grained metals produced by ECAP." 2017. https://ul.qucosa.de/id/qucosa%3A31679.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Submicrocrystalline"

1

Kolobov, Yu R., K. V. Ivanov, G. P. Grabovetskaya, and E. V. Naidenkin. "Diffusion-Controlled Processes and Plasticity of Submicrocrystalline Materials." In Nanomaterials by Severe Plastic Deformation, 722–27. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch13d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Markushev, M. V., and M. Yu Murashkin. "Strength of Submicrocrystalline Severely Deformed Commercial Aluminum Alloys." In Ultrafine Grained Materials II, 371–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118804537.ch43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aleshin, A. N., Alex M. Arsenkin, and Sergey Dobatkin. "Study of Grain Growth Kinetics in Submicrocrystalline Armco-Iron." In Materials Science Forum, 465–70. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-434-0.465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kužel, R., V. Holý, M. Čerňanský, J. Kubéna, D. Šimek, and J. Kub. "Study of Submicrocrystalline Materials by Diffuse Scattering in Transmitted Wave." In Diffraction Analysis of the Microstructure of Materials, 229–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06723-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Utyashev, F. Z., F. U. Enikeev, V. V. Latysh, E. N. Petrov, and V. A. Valitov. "Thermomechanical Conditions for Submicrocrystalline Structure Formation by Severe Plastic Deformation." In Investigations and Applications of Severe Plastic Deformation, 73–78. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4062-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Salishchev, Gennady, R. M. Imayev, V. M. Imayev, M. R. Shagiev, and F. H. Froes. "Formation of Submicrocrystalline Structure in Titanium Aluminides and their Mechanical Properties." In Solid State Phenomena, 29–38. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-22-1.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Salishchev, G., R. Imayev, V. Imayev, N. Gabdullin, M. Shagiev, A. Kuznetsov, O. N. Senkov, and F. H. Froes. "Formation of Submicrocrystalline Structure in TiAl and Ti3Al intermetallics via Hot Working." In Investigations and Applications of Severe Plastic Deformation, 49–55. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4062-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mironov, S. Yu, M. M. Myshlyaev, and G. A. Salishchev. "Features of Mechanical Behaviour and Structure Evolution of Submicrocrystalline Titanium under Cold Deformation." In Nanomaterials by Severe Plastic Deformation, 523–29. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch9g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zherebtsov, Sergey, S. Mironov, and Gennady Salishchev. "Submicrocrystalline Structure Formation in Ti and Ti-64 Alloy by Warm “abc” Deformation." In Superplasticity in Advanced Materials, 183–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-435-9.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vinogradov, Alexei, T. Suzuki, Satoshi Hashimoto, Kazuo Kitagawa, A. A. Kuznetsov, and Sergey Dobatkin. "Structure and Mechanical Properties of Submicrocrystalline Copper Produced by ECAP to Very High Strains." In Materials Science Forum, 971–76. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-985-7.971.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Submicrocrystalline"

1

Manokhin, S. S., and M. B. Ivanov. "Investigations of the thermal stability of the submicrocrystalline titanium." In 2015 International Conference on Structural, Mechanical and Material Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icsmme-15.2015.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valitov, V. A., O. A. Kaibyshev, Sh Kh Mukhtarov, B. P. Bewlay, and M. F. X. Gigliotti. "Processing and Properties of Microcrystalline, Submicrocrystalline, and Nanocrystalline Alloy 718." In Superalloys. TMS, 2001. http://dx.doi.org/10.7449/2001/superalloys_2001_313_321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Serebryany, V., M. Popov, A. Gordeev, L. Rokhlin, S. Dobatkin, and F. Wagner. "Texture of Submicrocrystalline Magnesium Alloy After Equal Channel Angular Pressing." In 3rd France-Russia Seminar. Les Ulis, France: EDP Sciences, 2007. http://dx.doi.org/10.1051/names2007011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kuznetsov, Pavel V., Andrey M. Lider, Yuriy S. Bordulev, Roman S. Laptev, Yuriy P. Mironov, Tanzilya V. Rakhmatulina, and Alexandr V. Korznikov. "Positron annihilation spectroscopy of vacancy type defects in submicrocrystalline copper under annealing." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuznetsov, Pavel V., Yuri P. Mironov, Aleksey I. Tolmachev, Tanzilya V. Rakhmatulina, Yuri S. Bordulev, Roman S. Laptev, Andrey M. Lider, Andrey A. Mikhailov, and Alexander V. Korznikov. "Positron annihilation spectroscopy of vacancy-type defects hierarchy in submicrocrystalline nickel during annealing." In INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS OF MULTILEVEL SYSTEMS 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4901488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Panin, V., P. Kuznetsov, Yu Pochivalov, I. Belyaeva, T. Rakhmatulina, and D. Shumakova. "The formation of gradient submicrocrystalline structure at nickel surface layers under ultrasonic impact treatment." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brailovskia, V., S. Prokoshkin, K. Inaekyan, and V. Demers. "Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti-Ni alloys processed by cold rolling and postdeformation annealing." In ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200901001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuznetsov, P., T. Rakhmatulina, A. Koznikov, and I. Belyaeva. "Distribution functions for internal interface energy as a characteristic of submicrocrystalline copper structure evolution under low-temperature annealing." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bakach, G. P., E. F. Dudarev, T. Yu Maletkina, and A. B. Skosyrskii. "Structural-scale levels of development of inelastic martensitic deformation during isothermal loading of submicrocrystalline titanium nickelide in premartensitic condition." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography