To see the other types of publications on this topic, follow the link: Submillimeter-wave.

Journal articles on the topic 'Submillimeter-wave'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Submillimeter-wave.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jin, Hai Wei, Lan Zhang, Jie Liu, and Xu Qian. "The Progress of Millimeter / Submillimeter Wave TWT Research." Applied Mechanics and Materials 705 (December 2014): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.705.219.

Full text
Abstract:
Millimeter / Submillimeter wave traveling wave tubes have the merits of high output power, frequency bandwidth, compact, light weight, etc. Millimeter / Submillimeter wave traveling wave tube is an ideal millimeter / submillimeter radiation source, can be used in fields of radar, electronic warfare, communication, etc. The paper introduced and summarized the research status of foreign Millimeter / submillimeter TWT wave tube, analyzed and discussed its trend.
APA, Harvard, Vancouver, ISO, and other styles
2

Tarasov, M., A. Shul’man, O. Polyanskii, et al. "Submillimeter-wave Josephson spectroscopy." Journal of Experimental and Theoretical Physics Letters 70, no. 5 (1999): 340–45. http://dx.doi.org/10.1134/1.568177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dayton, J. A., V. O. Heinen, N. Stankiewicz, and T. M. Wallett. "Submillimeter backward wave oscillators." International Journal of Infrared and Millimeter Waves 8, no. 10 (1987): 1257–68. http://dx.doi.org/10.1007/bf01011077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guenther, Bob D., and Paul W. Kruse. "Submillimeter wave detector workshop." International Journal of Infrared and Millimeter Waves 7, no. 8 (1986): 1091–109. http://dx.doi.org/10.1007/bf01011096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsunaga, Mayumi, Yutaro Sekimoto, Toshiaki Matsunaga, and Takeshi Sakai. "An Experimental Study of Submillimeter-Wave Horn Antennae for a Submillimeter-Wave Array." Publications of the Astronomical Society of Japan 55, no. 5 (2003): 1051–57. http://dx.doi.org/10.1093/pasj/55.5.1051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goswami, Madhuprana, and Hyuck M. Kwon. "Submillimeter wave communication versus millimeter wave communication." Digital Communications and Networks 6, no. 1 (2020): 64–74. http://dx.doi.org/10.1016/j.dcan.2019.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mittler, P., G. Winnewisser, and K. M. T. Yamada. "Submillimeter Wave Spectrum of HS34SH." Zeitschrift für Naturforschung A 44, no. 8 (1989): 718–22. http://dx.doi.org/10.1515/zna-1989-0806.

Full text
Abstract:
Abstract The rotational spectrum of 34S-substituted disulfane, HS34SH, has been measured between 60 and 420 GHz, yielding for the first time the rotational constants A = 146694.949 MHz, B = 6779.018 MHz and C = 6776.339 MHz, together with a complete set of J4 and J6 distortion constants.
APA, Harvard, Vancouver, ISO, and other styles
8

Ikeuchi, Y., H. Ohta, S. Okubo, M. Motokawa, and N. Kitamura. "Submillimeter wave ESR of Yb2Cu2O5." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 765–66. http://dx.doi.org/10.1016/s0304-8853(97)00393-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohta, Hitoshi, Masato Sumikawa, Mitsuhiro Motokawa, Sumiko Noro, and Tokio Yamadaya. "Submillimeter Wave AFMR of Ba2Cu3O4Cl2." Journal of the Physical Society of Japan 64, no. 5 (1995): 1759–65. http://dx.doi.org/10.1143/jpsj.64.1759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melnick, G. J. "The Submillimeter Wave Astronomy Satellite." International Astronomical Union Colloquium 123 (1990): 251. http://dx.doi.org/10.1017/s0252921100077083.

Full text
Abstract:
AbstractThe Submillimeter Wave Astronomy Satellite (SWAS) is a NASA Small-Explorer Class experiment whose objective is to study both the chemical composition and the thermal balance in dense (NH2 > 103 cm−3) molecular clouds and, by observing many clouds throughout our galaxy, relate these conditions to the processes of star formation. To conduct this study SWAS will be capable of carrying out both pointed and scanning observations simultaneously in the lines of four important species: (1) the H2O (110–101) 556.963 GHz ground-state ortho transition, (2) the O2 (3,3–1,2) 487.249 GHz transition, (3) the CI (3P1 – 3P0) 492.162 GHz ground-state fine structure transition, and (4) the 13CO (J = 5–4) 550.926 GHz rotational transition. These atoms and molecules are predicted to be among the most abundant within molecular clouds and, because they possess low-lying transitions with energy differences (ΔE/k) between 15 and 30K (temperatures typical of many molecular clouds), these species are believed to be dominant coolants of the gas as it collapses to form stars and planets. A large-scale survey in these lines is virtually impossible from any platform within the atmosphere due to telluric absorption.
APA, Harvard, Vancouver, ISO, and other styles
11

Eisele, H., and R. Kamoua. "Submillimeter-Wave InP Gunn Devices." IEEE Transactions on Microwave Theory and Techniques 52, no. 10 (2004): 2371–78. http://dx.doi.org/10.1109/tmtt.2004.835974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bratman, V. L., Yu K. Kalynov, V. N. Manuilov, and S. V. Samsonov. "Submillimeter-wave large-orbit gyrotron." Radiophysics and Quantum Electronics 48, no. 10-11 (2005): 731–36. http://dx.doi.org/10.1007/s11141-006-0001-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tyagi, Rakesh K. "Optical nonlinear submillimeter-wave generation." Optical Engineering 33, no. 6 (1994): 1937. http://dx.doi.org/10.1117/12.170738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Spira-Hakkarainen, S., K. E. Kreischer, and R. J. Temkin. "Submillimeter-wave harmonic gyrotron experiment." IEEE Transactions on Plasma Science 18, no. 3 (1990): 334–42. http://dx.doi.org/10.1109/27.55903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Koshelets, V. P., S. V. Shitov, L. V. Filippenko, et al. "Integrated Superconducting Submillimeter-Wave Receivers." Radiophysics and Quantum Electronics 46, no. 8/9 (2003): 618–30. http://dx.doi.org/10.1023/b:raqe.0000024992.02488.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Amano, T. "Submillimeter-wave spectrum of CH2D+." Astronomy and Astrophysics 516 (June 2010): L4. http://dx.doi.org/10.1051/0004-6361/201014946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cazzoli, G., and C. Degli Esposti. "Submillimeter wave spectrum of 17O2." Chemical Physics Letters 113, no. 5 (1985): 501–2. http://dx.doi.org/10.1016/0009-2614(85)80089-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matsuo, H., S. Ariyoshi, H. Akahori, M. Takeda, and T. Noguchi. "Development of submillimeter-wave camera for Atacama Submillimeter Telescope Experiment." IEEE Transactions on Appiled Superconductivity 11, no. 1 (2001): 688–91. http://dx.doi.org/10.1109/77.919438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ilyushin, Vadim V., Christian P. Endres, Frank Lewen, Stephan Schlemmer, and Brian J. Drouin. "Submillimeter wave spectrum of acetic acid." Journal of Molecular Spectroscopy 290 (August 2013): 31–41. http://dx.doi.org/10.1016/j.jms.2013.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sekimoto, Yutaro, Satoshi Yamamoto, Tomoharu Oka, et al. "The Mt. Fuji submillimeter-wave telescope." Review of Scientific Instruments 71, no. 7 (2000): 2895–907. http://dx.doi.org/10.1063/1.1150709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mitsudo, S., K. Hirano, H. Nojiri, et al. "Submillimeter wave ESR measurement of LaMnO3." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 877–78. http://dx.doi.org/10.1016/s0304-8853(97)00525-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ozeki, Hiroyuki, and Shuji Saito. "Submillimeter-wave spectra of hypoiodous acid." Journal of Chemical Physics 120, no. 11 (2004): 5110–16. http://dx.doi.org/10.1063/1.1647053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kolberg, E. L., T. J. Tolmunen, M. A. Frerking, and J. R. East. "Current saturation in submillimeter-wave varactors." IEEE Transactions on Microwave Theory and Techniques 40, no. 5 (1992): 831–38. http://dx.doi.org/10.1109/22.137387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ohta, Hitoshi, Nobuyasu Yamauchi, Mitsuhiro Motokawa, Masaki Azuma, and Mikio Takano. "Submillimeter Wave ESR of SrCuO2and Sr2CuO3." Journal of the Physical Society of Japan 61, no. 9 (1992): 3370–76. http://dx.doi.org/10.1143/jpsj.61.3370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kimura, Shojiro, Hitoshi Ohta, Mitsuhiro Motokawa, Takashi Kambe, Kazukiyo Nagata, and Hidekazu Tanaka. "Submillimeter Wave ESR Measurements of CsMnBr3." Journal of the Physical Society of Japan 66, no. 12 (1997): 4017–26. http://dx.doi.org/10.1143/jpsj.66.4017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zinchenko, I. I. "Contemporary Millimeter- and Submillimeter-Wave Astronomy." Radiophysics and Quantum Electronics 46, no. 8/9 (2003): 577–93. http://dx.doi.org/10.1023/b:raqe.0000024989.12653.a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Motiyenko, R. A., L. Margulès, and J. C. Guillemin. "The submillimeter-wave spectrum of diisocyanomethane." Astronomy & Astrophysics 544 (August 2012): A82. http://dx.doi.org/10.1051/0004-6361/201219594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lau, K. M., and W. Xu. "Optically pumped submillimeter wave semiconductor lasers." IEEE Journal of Quantum Electronics 28, no. 8 (1992): 1773–77. http://dx.doi.org/10.1109/3.142574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rebeiz, Gabriel M., Wade G. Regehr, David B. Rutledge, Richard L. Savage, and Neville C. Luhmann. "Submillimeter-wave antennas on thin membranes." International Journal of Infrared and Millimeter Waves 8, no. 10 (1987): 1249–55. http://dx.doi.org/10.1007/bf01011076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Melnick, Gary J. "Submillimeter wave astronomy satellite science highlights." Advances in Space Research 34, no. 3 (2004): 511–18. http://dx.doi.org/10.1016/j.asr.2003.04.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sokoloski, Martin M., and James Cutts. "Technology for submillimeter wave remote sensing." Acta Astronautica 17, no. 8 (1988): 779–85. http://dx.doi.org/10.1016/0094-5765(88)90161-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brown, F. X., J. Cosleou, D. Dangoisse, J. Demaison, and G. Wlodarczak. "The submillimeter-wave spectrum of CD3CN." Journal of Molecular Spectroscopy 134, no. 1 (1989): 234–36. http://dx.doi.org/10.1016/0022-2852(89)90146-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gadhi, J., G. Wlodarczak, D. Boucher, and J. Demaison. "The submillimeter-wave spectrum of trioxane." Journal of Molecular Spectroscopy 133, no. 2 (1989): 406–12. http://dx.doi.org/10.1016/0022-2852(89)90200-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Brown, F. X., D. Dangoisse, J. Gadhi, G. Wlodarczak, and J. Demaison. "Millimeter-wave and submillimeter-wave spectroscopy of methyl fluoride." Journal of Molecular Structure 190 (November 1988): 401–7. http://dx.doi.org/10.1016/0022-2860(88)80299-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Buehler, S. A., E. Defer, F. Evans, et al. "Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8." Atmospheric Measurement Techniques 5, no. 7 (2012): 1529–49. http://dx.doi.org/10.5194/amt-5-1529-2012.

Full text
Abstract:
Abstract. Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP) and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8), which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms) and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.
APA, Harvard, Vancouver, ISO, and other styles
36

Buehler, S. A., E. Defer, F. Evans, et al. "Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8." Atmospheric Measurement Techniques Discussions 5, no. 1 (2012): 1101–51. http://dx.doi.org/10.5194/amtd-5-1101-2012.

Full text
Abstract:
Abstract. Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP) and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8), which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms) and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.
APA, Harvard, Vancouver, ISO, and other styles
37

McGrath, W. R., C. Walker, M. Yap, and Y. C. Tai. "Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies." IEEE Microwave and Guided Wave Letters 3, no. 3 (1993): 61–63. http://dx.doi.org/10.1109/75.205665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Appleby, Roger, and Rupert N. Anderton. "Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance." Proceedings of the IEEE 95, no. 8 (2007): 1683–90. http://dx.doi.org/10.1109/jproc.2007.898832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pearson, J. C., K. V. L. N. Sastry, E. Herbst, and F. C. Delucia. "The Millimeter-Wave and Submillimeter-Wave Spectrum of Propylene (CH3CHCH2)." Journal of Molecular Spectroscopy 166, no. 1 (1994): 120–29. http://dx.doi.org/10.1006/jmsp.1994.1177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nojiri, H., M. Motokawa, S. Takeyama, and T. Sato. "Submillimeter wave ESR study of Cd1−xMnxTe." Journal of Crystal Growth 214-215 (June 2000): 424–27. http://dx.doi.org/10.1016/s0022-0248(00)00122-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Amano, T., K. Hashimoto, and T. Hirao. "Submillimeter-wave spectroscopy of HCNH+ and CH3CNH+." Journal of Molecular Structure 795, no. 1-3 (2006): 190–93. http://dx.doi.org/10.1016/j.molstruc.2006.02.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Habara, H., A. Maeda, and T. Amano. "Submillimeter-wave spectrum of the FCO radical." Journal of Molecular Spectroscopy 221, no. 1 (2003): 31–37. http://dx.doi.org/10.1016/s0022-2852(03)00204-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cohen, Edward A., and Brian J. Drouin. "Submillimeter wave spectrum of sulfuric acid, H2SO4." Journal of Molecular Spectroscopy 288 (June 2013): 67–69. http://dx.doi.org/10.1016/j.jms.2013.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zingsheim, Oliver, Holger S. P. Müller, Frank Lewen, Jes K. Jørgensen, and Stephan Schlemmer. "Millimeter and submillimeter wave spectroscopy of propanal." Journal of Molecular Spectroscopy 342 (December 2017): 125–31. http://dx.doi.org/10.1016/j.jms.2017.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Koshelets, Valery P., Sergey V. Shitov, Alexey V. Shchukin, Lyudmila V. Filippenko, and Jesper Mygind. "Linewidth of submillimeter wave flux‐flow oscillators." Applied Physics Letters 69, no. 5 (1996): 699–701. http://dx.doi.org/10.1063/1.117811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wan, K. L., A. K. Jain, and J. E. Lukens. "Submillimeter wave generation using Josephson junction arrays." IEEE Transactions on Magnetics 25, no. 2 (1989): 1076–79. http://dx.doi.org/10.1109/20.92475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Moriarty‐Schieven, Gerald H., and Harold M. Butner. "A Submillimeter‐Wave “Flare” from GG Tauri?" Astrophysical Journal 474, no. 2 (1997): 768–73. http://dx.doi.org/10.1086/303474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Takeya, Jun‐ichi, Etsuo Kawate, Chan Hoon Park, and Toshinari Goto. "Submillimeter wave response of a highTcsuperconducting microbridge." Applied Physics Letters 61, no. 21 (1992): 2601–3. http://dx.doi.org/10.1063/1.108140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zamora, Alexis, Gerry Mei, Kevin M. K. H. Leong, et al. "A Submillimeter Wave InP HEMT Multiplier Chain." IEEE Microwave and Wireless Components Letters 25, no. 9 (2015): 591–93. http://dx.doi.org/10.1109/lmwc.2015.2451364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Müller, Holger S. P., Sven Thorwirth, Luca Bizzocchi, and Gisbert Winnewisser. "The Submillimeter-wave Spectrum of Propyne, CH3CCH." Zeitschrift für Naturforschung A 55, no. 5 (2000): 491–94. http://dx.doi.org/10.1515/zna-2000-0503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography