To see the other types of publications on this topic, follow the link: Substitutional solid solutions.

Journal articles on the topic 'Substitutional solid solutions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Substitutional solid solutions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Masharov, S. I. "The solubility of substitutional atoms in ordered substitutional-intrestitial solid solutions." Russian Physics Journal 53, no. 7 (2010): 714–21. http://dx.doi.org/10.1007/s11182-010-9477-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Masharov, S. I. "Evaporation of uniformly strained substitutional-interstitial solid solutions." Russian Physics Journal 54, no. 6 (2011): 697–703. http://dx.doi.org/10.1007/s11182-011-9672-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Xun-Hui, Ying Zeng, Shao-Bin Tang, et al. "Solid solutions of flexible host–guest supramolecules for tuning molecular motion and phase transitions." Chemical Communications 57, no. 59 (2021): 7292–95. http://dx.doi.org/10.1039/d1cc02061g.

Full text
Abstract:
By utilizing supramolecular complex as a deformable/elastic substitutional component, we put forward a unique strategy for the formation of molecular solid solutions, which can modulate the molecular motion and phase transition in molecular solids.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Q., and N. H. de Leeuw. "A computer-modelling study of CdCO3-CaCO3 solid solutions." Mineralogical Magazine 72, no. 1 (2008): 525–29. http://dx.doi.org/10.1180/minmag.2008.072.1.525.

Full text
Abstract:
AbstractWe have applied atomistic simulation techniques to model the continuous CdCO3-CaCO3 solid solution and to investigate the thermodynamic properties. All inequivalent substitutional configurations were considered for the single unit cell and the (2x1x1) supercell for the full range of Cd concentrations, as well as doping between 0and 16.7 mol.% Cd for the (2x2x1) supercell. Our calculations show that segregation of Cd2+ and Ca2+ is energetically favourable when compared with any other cation distribution. No cation ordering is expected at high temperature and the system behaves as an ide
APA, Harvard, Vancouver, ISO, and other styles
5

Kashuba, A. I., and S. V. Apunevych. "Phonon Spectrum of Crystals InxTl1 – xI Substitutional Solid Solutions." Journal of Nano- and Electronic Physics 8, no. 1 (2016): 01010–1. http://dx.doi.org/10.21272/jnep.8(1).01010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masharov, G. S. "Complexes of Impurity Atoms in Diluted Substitutional Solid Solutions." Physics of the Solid State 47, no. 6 (2005): 1088. http://dx.doi.org/10.1134/1.1946861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McLellan, Rex B. "The thermodynamics of hybrid binary interstitial-substitutional solid solutions." Journal of Physics and Chemistry of Solids 50, no. 1 (1989): 49–54. http://dx.doi.org/10.1016/0022-3697(89)90472-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Newsome, Wesley J., Suliman Ayad, Jesus Cordova, et al. "Solid State Multicolor Emission in Substitutional Solid Solutions of Metal–Organic Frameworks." Journal of the American Chemical Society 141, no. 28 (2019): 11298–303. http://dx.doi.org/10.1021/jacs.9b05191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aleksandrov, V. D., O. V. Aleksandrova, and N. V. Shchebetovskaya. "Nucleation of substitutional solid solutions during the solidification of binary liquid solutions." Russian Metallurgy (Metally) 2013, no. 3 (2013): 192–97. http://dx.doi.org/10.1134/s0036029513030026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maroevic, Petar, and Rex B. McLellan. "The cell model for interstitials in binary substitutional solid solutions." Journal of Physics and Chemistry of Solids 58, no. 3 (1997): 403–12. http://dx.doi.org/10.1016/s0022-3697(96)00158-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

LAUREIRO, Y., M. L. VEIGA, C. ARRIBAS, A. JEREZ, and C. PICO. "ChemInform Abstract: Solid Substitutional Solutions ZnxMg1-xB4O7 (0 ≤ x ≤ 1)." ChemInform 22, no. 36 (2010): no. http://dx.doi.org/10.1002/chin.199136032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zarbaliev, M. M. "ChemInform Abstract: Substitutional Solid Solutions in the TlInTe2-TlYbTe2 System." ChemInform 30, no. 47 (2010): no. http://dx.doi.org/10.1002/chin.199947030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Titov, A. N., A. I. Merentsov, and V. N. Neverov. "Structure and properties of Ti1 − x CrxSe2 substitutional solid solutions." Physics of the Solid State 48, no. 8 (2006): 1472–76. http://dx.doi.org/10.1134/s1063783406080087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Joubert, Jean-Marc, and Jean-Claude Crivello. "Description of terminal substitutional solid solutions using the sublattice model." Calphad 67 (December 2019): 101685. http://dx.doi.org/10.1016/j.calphad.2019.101685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bamberger, C. E., H. W. Dunn, G. M. Begun, and S. A. Landry. "Substitutional solid solutions of bismuth-containing lanthanide dititanates, Ln2−xBixTi2O7." Journal of Solid State Chemistry 58, no. 1 (1985): 114–18. http://dx.doi.org/10.1016/0022-4596(85)90274-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bamberger, C. E., H. W. Dunn, G. M. Begun, and S. A. Landry. "Substitutional solid solutions from heterotypic lanthanide dititanates Ln2-xLn′xTi2O7." Journal of the Less Common Metals 109, no. 2 (1985): 209–17. http://dx.doi.org/10.1016/0022-5088(85)90052-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shen, Jiawen, Xinyue Zhang, Siqi Lin, et al. "Vacancy scattering for enhancing the thermoelectric performance of CuGaTe2 solid solutions." Journal of Materials Chemistry A 4, no. 40 (2016): 15464–70. http://dx.doi.org/10.1039/c6ta06033a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Geiger, Charles A., Michael Grodzicki, and Edgar Dachs. "An analysis of the magnetic behavior of olivine and garnet substitutional solid solutions." American Mineralogist 104, no. 9 (2019): 1246–55. http://dx.doi.org/10.2138/am-2019-6839ccbyncnd.

Full text
Abstract:
Abstract The low-temperature magnetic properties and Néel temperature, TN, behavior of four silicate substitutional solid solutions containing paramagnetic ions are analyzed. The four systems are: fayaliteforsterite olivine [Fe22+SiO4-Mg2SiO4], and the garnet series, grossular-andradite [Ca3(Alx,Fe1−x3+)2Si3O12], grossular-spessartine [(Cax,Mn1−x2+)3Al2Si3O12], and almandine-spessartine [(Fex2+,Mn1−x2+)3Al2Si3O12]. Local magnetic behavior of the transition-metal-bearing end-members is taken from published neutron diffraction results and computational studies. TN values are from calorimetric he
APA, Harvard, Vancouver, ISO, and other styles
19

Newsome, Wesley J., Suliman Ayad, Jesus Cordova, et al. "Correction to “Solid State Multicolor Emission in Substitutional Solid Solutions of Metal–Organic Frameworks”." Journal of the American Chemical Society 141, no. 39 (2019): 15718. http://dx.doi.org/10.1021/jacs.9b09861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vasil’eva, I. G., and V. V. Kriventsov. "Structural study of CuCr1 − x V x S2 substitutional solid solutions." Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 4, no. 4 (2010): 640–44. http://dx.doi.org/10.1134/s1027451010040178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sluchanko, N. E., V. V. Glushkov, S. V. Demishev, et al. "Galvanomagnetic properties of the Al1−x Six nonequilibrium substitutional solid solutions." Physics of the Solid State 41, no. 1 (1999): 1–7. http://dx.doi.org/10.1134/1.1130716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Okane, T., I. Kawasaki, A. Yasui, et al. "Resonant Angle-Resolved Photoelectron Spectroscopy of Substitutional Solid Solutions of CeRu2Si2." Journal of the Physical Society of Japan 80, Suppl.A (2011): SA060. http://dx.doi.org/10.1143/jpsjs.80sa.sa060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tyagi, A. K. "Substitutional solid solutions in the La1-x Gd x Ba2F7 system." Journal of Materials Science Letters 13, no. 10 (1994): 752–53. http://dx.doi.org/10.1007/bf00461393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Blanter, M. S., and Leszek B. Magalas. "Hydrogen Interaction with Dissolved Atoms and Relaxation Properties of Metal Solid Solutions." Solid State Phenomena 115 (August 2006): 41–50. http://dx.doi.org/10.4028/www.scientific.net/ssp.115.41.

Full text
Abstract:
The H(D) atom’s interaction with one another, ‘heavy’ interstitial atoms (O, N, C), and substitutional atoms is analyzed on the basis of strain-induced (elastic) interaction. The interaction energies are calculated for bcc, fcc, and hcp metal solid solutions with regard to the discrete atomic structure of the host lattice. The elastic constants, Born-von Karman constants of the host lattice, and concentration expansion coefficients of the solid solution lattice due to solute atoms, are used as the parameters for numerical input. It is shown that the interaction is long-range, oscillating, and
APA, Harvard, Vancouver, ISO, and other styles
25

Барабанова, Екатерина Владимировна, Никита Михайлович Оспельников, and Александра Ивановна Иванова. "ELECTROPHYSICAL PROPERTIES OF SOLID SOLUTIONS NANBFEO-(x = 0;0,1;0,2)." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 12() (December 15, 2020): 16–24. http://dx.doi.org/10.26456/pcascnn/2020.12.016.

Full text
Abstract:
Введение легирующих примесей является классическим способом модификации свойств сложных оксидов семейства перовскита с общей формулой ABO. В качестве основы для создания твердых растворов широко используется ниобат натрия NaNbO. Введение замещающих катионов проводится как по позиции A, так и по позиции B. При этом особый интерес представляет случай, когда валентность легирующей примеси больше или меньше валентности исходного катиона в узле. В этом случае образуется дефектная структура, которая может обладать уникальными свойствами. Данная работа посвящена исследованию электрофизических свойств
APA, Harvard, Vancouver, ISO, and other styles
26

Grandini, Carlos Roberto, Luciano Monteiro da Silva, Luciano Henrique de Almeida, Odila Florêncio, and Hugo Ricardo Zschommler Sandim. "Nitrogen Diffusion in the Nb-2.0wt%Ti Measured by Mechanical Spectroscopy." Defect and Diffusion Forum 273-276 (February 2008): 256–60. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.256.

Full text
Abstract:
Metals that present bcc crystalline structure, when receiving addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, undergo significant changes in their physical properties, being able to dissolve great amounts of those interstitial elements, thus forming solid solutions. Niobium and most of its alloys possess bcc crystalline structure and, as Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this paper, mechanical spectroscopy (internal friction) measurem
APA, Harvard, Vancouver, ISO, and other styles
27

Grandini, Carlos Roberto, Luciano Henrique de Almeida, and Durval Rodrigues Júnior. "Oxygen Diffusion in an Nb-Ta Alloy Measured by Mechanical Spectroscopy." Defect and Diffusion Forum 312-315 (April 2011): 1228–32. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.1228.

Full text
Abstract:
When metals that present bcc crystalline structure receive the addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, they undergo significant changes in their physical properties because they are able to dissolve great amounts of those interstitial elements, and thus form solid solutions. Niobium and most of its alloys possess a bcc crystalline structure and, because Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this study, mechanical spectroscopy (int
APA, Harvard, Vancouver, ISO, and other styles
28

Newsome, Wesley, Amab Chakraborty, Amanda Morris, and Fernando Uribe-Romo. "Excimer emission in organic-based substitutional solid solutions of metal–organic frameworks." Acta Crystallographica Section A Foundations and Advances 75, a1 (2019): a11. http://dx.doi.org/10.1107/s0108767319099884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kirovskaya, I. A., and E. V. Mironova. "Preparation and identification of substitutional solid solutions of the InSb-CdTe system." Russian Journal of Inorganic Chemistry 51, no. 4 (2006): 645–48. http://dx.doi.org/10.1134/s0036023606040243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bagkar, N., A. Widmann, H. Kahlert, et al. "Magnetic properties of substitutional solid solutions of nickel and iron hexacyanoferrate–hexacyanochromate." Philosophical Magazine 85, no. 31 (2005): 3659–72. http://dx.doi.org/10.1080/14786430500256433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tyagi, U. P., and G. C. Trigunayat. "Study of substitutional solid solutions in melt-grown crystals of cadmium iodide." Acta Crystallographica Section A Foundations of Crystallography 43, a1 (1987): C309. http://dx.doi.org/10.1107/s0108767387077134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Svoboda, J., D. Holec, M. Popov, G. A. Zickler, and F. D. Fischer. "Modelling of short-range ordering kinetics in dilute multicomponent substitutional solid solutions." Philosophical Magazine 100, no. 15 (2020): 1942–61. http://dx.doi.org/10.1080/14786435.2020.1750097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bamberger, C. E., G. M. Begun, and H. W. Dunn. "Synthesis and characterization of substitutional solid solutions aLn2O3 · (1 − a)Bi2O3 · 4TiO2." Journal of Solid State Chemistry 61, no. 2 (1986): 245–51. http://dx.doi.org/10.1016/0022-4596(86)90028-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schwudke, D., R. Stößer, and F. Scholz. "Solid-state electrochemical, X-ray and spectroscopic characterization of substitutional solid solutions of iron–copper hexacyanoferrates." Electrochemistry Communications 2, no. 5 (2000): 301–6. http://dx.doi.org/10.1016/s1388-2481(00)00028-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maskaeva, L. N., I. V. Vaganova, V. F. Markov, et al. "A nonlinear evolution of the structure, morphology, and optical properties of PbS–CdS films with cadmium nitrate in the reaction mixture." Physical Chemistry Chemical Physics 23, no. 17 (2021): 10600–10614. http://dx.doi.org/10.1039/d1cp00775k.

Full text
Abstract:
Nonlinear change in composition, structure, and optical properties is shown for the films of supersaturated substitutional solid solutions Cd<sub>x</sub>Pb<sub>1−x</sub>S (x ≤ 0.094) during chemical bath deposition with adding cadmium nitrate.
APA, Harvard, Vancouver, ISO, and other styles
36

Uribe-Romo, Fernando. "High-symmetry metal–organic frameworks as matrices for organic-based substitutional solid solutions." Acta Crystallographica Section A Foundations and Advances 75, a1 (2019): a353. http://dx.doi.org/10.1107/s0108767319096569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Zhi'an, and Zhirui Wang. "A dislocation model for strain burst in cyclic creep of substitutional solid solutions." Philosophical Magazine A 70, no. 3 (1994): 409–22. http://dx.doi.org/10.1080/01418619408242548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Markov, V. F., N. A. Tretyakova, L. N. Maskaeva, V. M. Bakanov, and H. N. Mukhamedzyanov. "Hydrochemical synthesis, structure, semiconductor properties of films of substitutional Pb1−xSnxSe solid solutions." Thin Solid Films 520, no. 16 (2012): 5227–31. http://dx.doi.org/10.1016/j.tsf.2012.03.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Denisov, G. V. "Thermodynamic stability of calcium vanadium garnet ferrites upon formation of substitutional solid solutions." Russian Journal of Inorganic Chemistry 58, no. 2 (2013): 134–37. http://dx.doi.org/10.1134/s0036023613020034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lim, S. H., G. E. Murch, and W. A. Oates. "Direct evaluation of chemical potentials in substitutional solid solutions from Monte Carlo simulations." Philosophical Magazine B 62, no. 2 (1990): 159–72. http://dx.doi.org/10.1080/13642819008226984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Deibuk, V. G., and Yu G. Korolyuk. "Molecular-dynamics simulation of structural properties of Ge1−x Snx substitutional solid solutions." Semiconductors 35, no. 3 (2001): 283–86. http://dx.doi.org/10.1134/1.1356147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Barrat, J. L., M. Baus, and J. P. Hansen. "Density-Functional Theory of Freezing of Hard-Sphere Mixtures into Substitutional Solid Solutions." Physical Review Letters 56, no. 10 (1986): 1063–65. http://dx.doi.org/10.1103/physrevlett.56.1063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Faraoun, H. I., F. Z. Abderrahim, and C. Esling. "First principle calculations of MAX ceramics Cr2GeC, V2GeC and their substitutional solid solutions." Computational Materials Science 74 (June 2013): 40–49. http://dx.doi.org/10.1016/j.commatsci.2013.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bruk-Levinson, �. T., and L. P. Orlov. "Statistical calculation of the self-diffusion coefficients of disordered substitutional binary solid solutions." Journal of Engineering Physics 55, no. 3 (1988): 985–90. http://dx.doi.org/10.1007/bf00870480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Mingxu, Hong Zhu, Gongji Yang, Jinfu Li, and Lingti Kong. "A generally reliable model for composition-dependent lattice constants of substitutional solid solutions." Acta Materialia 211 (June 2021): 116865. http://dx.doi.org/10.1016/j.actamat.2021.116865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Сардарлы, Р. М., А. П. Абдуллаев, Н. А. Алиева, Ф. Т. Салманов, М. Ю. Юсифов та А. А. Оруджева. "Суперионная проводимость твердых растворов (TlGaSe-=SUB=-2-=/SUB=-)-=SUB=-1-x-=/SUB=-(TlInS-=SUB=-2-=/SUB=-)-=SUB=-x-=/SUB=-". Физика и техника полупроводников 52, № 10 (2018): 1111. http://dx.doi.org/10.21883/ftp.2018.10.46448.8749.

Full text
Abstract:
AbstractSamples of (TlGaSe_2)_1 – _ x (TlInS_2)_ x solid solutions are synthesized. The frequency dependences (2 × 10^1–10^6 Hz) of components of the total complex impedance are studied by the impedance spectroscopy technique and relaxation processes are investigated depending on the composition of the (TlGaSe_2)_1 – _ x (TlInS_2)_ x solid solution in the solubility region ( x = 0–0.4). Corresponding diagrams on the ( Z ''– Z ') complex plane are analyzed using the equivalent substitutional circuit method. An anomaly in the temperature dependence of the electrical conductivity, which manifests
APA, Harvard, Vancouver, ISO, and other styles
47

Shabashov, V. A., K. A. Kozlov, K. A. Lyashkov, A. V. Litvinov, G. A. Dorofeev, and S. G. Titova. "Solid-Phase Mechanical Alloying of BCC Iron Alloys by Nitrogen in Ball Mills." Defect and Diffusion Forum 330 (September 2012): 25–37. http://dx.doi.org/10.4028/www.scientific.net/ddf.330.25.

Full text
Abstract:
The methods of Mössbauer spectroscopy and X-ray diffraction analysis have been used to study the processes of a solid-phase alloying of the iron alloys with a bcc lattice by nitrogen that occur upon ball-mill mechanical activation in the presence of chromium nitrides. It is shown that a deformation-induced dissolution of chromium nitrides in the matrix of pure iron and in that of the alloys Fe–3Al and Fe–6V results in the formation of the substitutional chromium and interstitial nitrogen bcc solid solutions. An additional alloying of iron with aluminum or vanadium under the deformation dissolu
APA, Harvard, Vancouver, ISO, and other styles
48

Abdellah, Z. Nait, Redoune Chegroune, Mourad Keddam, B. Bouarour, L. Haddour, and A. Elias. "The Phase Stability in the Fe-B Binary System: Comparison between the Interstitial and Substitutional Models." Defect and Diffusion Forum 322 (March 2012): 1–9. http://dx.doi.org/10.4028/www.scientific.net/ddf.322.1.

Full text
Abstract:
In the present work, a thermodynamic study was carried out in order to analyze the thermodynamic stability of the and phases in equilibrium with the phase using the calculation of phase diagrams (Calphad) formalism. The two phases and are modelled as substitutional and interstitial solid solutions of boron. The expressions of the chemical potentials ofBandFeare derived in both phases to perform the thermodynamic calculations. A comparison is made between the results provided by the substitutional and interstitial models and good agreement is observed between these two models.
APA, Harvard, Vancouver, ISO, and other styles
49

Franiv, A. V., A. I. Kashuba, O. V. Bovgyra, and O. V. Futey. "Elastic Properties of Substitutional Solid Solutions InxTl1-xI and Sound Wave Velocities in Them." Ukrainian Journal of Physics 62, no. 8 (2017): 679–84. http://dx.doi.org/10.15407/ujpe62.08.0679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Xiaoge, Hongsong Zhang, Longfei Zhou, Bo Ren, An Tang, and Xudan Dang. "Influence of Ti addition on thermophyscial properties of Sm2Ce2O7 oxides." Processing and Application of Ceramics 12, no. 1 (2018): 21–26. http://dx.doi.org/10.2298/pac1801021c.

Full text
Abstract:
Sm2(Ce1-xTix)2O7 (where x = 0, 0.1,0.3, 0.5) solid solutions were synthesized by conventional solid state reaction method using Sm2O3, CeO2 and TiO2 as raw reactants. The synthesized powders were pressed into pellets by cold isostatic pressing and pressure-less sintered at 1600 ?C for ten hours. Their phase-structure and thermophysical properties were studied. The synthesized samples exhibit single defect fluorite-type structure. Due to the phonon scattering by substitutional atoms, the thermal conductivities of the Sm2(Ce1-xTix)2O7 solid solutions decrease with the increasing Ti4+ content ove
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!