Academic literature on the topic 'Subviral Particles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Subviral Particles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Subviral Particles"
Kaak, Michelle, Andreas Rausch, Dennis Müller, and Thomas Schanze. "Visualization and Parametrization of the Motion Behaviour of Subviral Particles." Current Directions in Biomedical Engineering 4, no. 1 (September 1, 2018): 359–62. http://dx.doi.org/10.1515/cdbme-2018-0086.
Full textBruns, Michael, Stefan Miska, Sylvie Chassot, and Hans Will. "Enhancement of Hepatitis B Virus Infection by Noninfectious Subviral Particles." Journal of Virology 72, no. 2 (February 1, 1998): 1462–68. http://dx.doi.org/10.1128/jvi.72.2.1462-1468.1998.
Full textRausch, Andreas, and Thomas Schanze. "Fractal Dimensions of Subviral Particle Movement." Current Directions in Biomedical Engineering 4, no. 1 (September 1, 2018): 79–82. http://dx.doi.org/10.1515/cdbme-2018-0020.
Full textGarcia, Tamako, Jisu Li, Camille Sureau, Kiyoaki Ito, Yanli Qin, Jack Wands, and Shuping Tong. "Drastic Reduction in the Production of Subviral Particles Does Not Impair Hepatitis B Virus Virion Secretion." Journal of Virology 83, no. 21 (August 12, 2009): 11152–65. http://dx.doi.org/10.1128/jvi.00905-09.
Full textBamford, Jaana K. H., and Dennis H. Bamford. "Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles and its subviral particles." Virology 181, no. 1 (March 1991): 348–52. http://dx.doi.org/10.1016/0042-6822(91)90501-2.
Full textChai, Ning, Ho Eun Chang, Emmanuelle Nicolas, Ziying Han, Michal Jarnik, and John Taylor. "Properties of Subviral Particles of Hepatitis B Virus." Journal of Virology 82, no. 16 (June 4, 2008): 7812–17. http://dx.doi.org/10.1128/jvi.00561-08.
Full textPatient, Romuald, Christophe Hourioux, Pierre-Yves Sizaret, Sylvie Trassard, Camille Sureau, and Philippe Roingeard. "Hepatitis B Virus Subviral Envelope Particle Morphogenesis and Intracellular Trafficking." Journal of Virology 81, no. 8 (January 31, 2007): 3842–51. http://dx.doi.org/10.1128/jvi.02741-06.
Full textNugent, C. I., and K. Kirkegaard. "RNA binding properties of poliovirus subviral particles." Journal of virology 69, no. 1 (1995): 13–22. http://dx.doi.org/10.1128/jvi.69.1.13-22.1995.
Full textChiang, Ying-Wei, Jaw-Chin Wu, Kuei-Chun Wang, Szu-Ting Chou, and Yu-Chen Hu. "Varied Properties of Hepatitis-Delta Virus-like Particles Produced by Baculovirus-Transduced Mammalian Cells." Open Biotechnology Journal 1, no. 1 (August 28, 2007): 34–40. http://dx.doi.org/10.2174/1874070700701010034.
Full textOp De Beeck, Anne, Richard Molenkamp, Mélanie Caron, Amena Ben Younes, Peter Bredenbeek, and Jean Dubuisson. "Role of the Transmembrane Domains of prM and E Proteins in the Formation of Yellow Fever Virus Envelope." Journal of Virology 77, no. 2 (January 15, 2003): 813–20. http://dx.doi.org/10.1128/jvi.77.2.813-820.2003.
Full textDissertations / Theses on the topic "Subviral Particles"
Stange, Annett. "Determinanten und Mechanismen der foamyviralen Partikelfreisetzung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1210174421492-57147.
Full textDavid, Guillaume. "Towards structural studies of Hepadnavirus subviral particles using wheat germ cell-free expression and solid-state NMR." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1336.
Full textStructural studies of eukaryotic membrane proteins are of prime importance but notoriously difficult as they not only necessitate an efficient and practical overexpression system that allows for membrane protein expression in a biologically relevant folding, but also a structural technique that you can easily combine with the chosen protein production system. In vitro cell-free systems, due to their modulable nature, are particularly suited for membrane protein expression. Furthermore, they now established themselves as a viable alternative to conventional cell-based expression, notably because of considerable advances in robustness and efficiency. Amongst them, the wheat germ cell-free production system (WG-CFPS) proved to be the most efficient for production of eukaryotic membrane proteins, and allows for efficient and specific isotope labeling. This makes it particularly convenient for Nuclear Magnetic Resonance (NMR), and more specifically solid-state NMR which is particularly appropriate for membrane protein studies and macromolecular assemblies. Thanks to very recent advances that lead to a drastic reduction of the quantity of protein needed, solid-state NMR is now compatible with WG-CFPS, creating a powerful tool for structural studies of macromolecular assemblies and membrane proteins. In this work, these two techniques are combined for the production and study of the envelope proteins from the duck Hepatitis B Virus (DHBV), that belongs to the Hepadnaviridae family. These viruses are able to secrete active virions, but also particles composed only of envelope proteins, which are called subviral particles (SVPs). In the first part, we show here that the DHBV small envelope protein (DHBs S) is produced as soluble in mg amounts using WG-CFPS. Even more, the protein forms SVPs upon translation, and is thus expressed in a biologically relevant form. After SVPs disassembly, the protein displays a mostly -helical folding, which is characteristic of a well-folded protein, and also very similar to the secondary structure of an assembly-incompetent mutant. After further isolation by ultracentrifugation on a sucrose gradient, the SVPs were sedimented in a 0.7 mm rotor and observed by solid-state NMR. Very promising hNH 2D spectra, with a good signal, were obtained. They display numerous isolated peaks and a resolution alike to other sedimented membrane proteins observed by solid-state NMR. Moreover, superimposition of the DHBs S spectrum with simulated spectra from proteins with extreme secondary structure content confirms that the protein is mostly -helical in the context of the SVPs. Nonetheless, the signal still needs to be improved in order to perform the experiments necessary for in-depth structural analysis. To that end, sample optimization assays were conducted. On the one hand, protein yield improvement, by the use of a commercial wheat germ extract, and SVPs stabilization, by incubation with KSCN, were tried. On the other hand, different methods for SVPs purification were tested, including PEG6000 or ammonium sulfate precipitation, incubation at high temperature, contaminant removal with an ultrafiltration device, affinity or size-exclusion purification as well as tests of particles disassembly, purification followed by SVPs reconstitution in lipids. Finally, amino-acid specific isotopic labeling of DHBs S was evaluated. In the second part, we could show extended possibilities of WG-CFPS through expression of DHBV large envelope protein (DHBs L). In vivo, the protein undergo specific phosphorylation as well as alternative translation, and we could show that it is also the case upon wheat germ cell-free expression. We also tested coexpression of DHBs S, DHBs L and of the DHBV capsid in order to assess the possibility of DHBs L inclusion in SVPs, or even complete virion reconstitution, which could even augment WG-CFPS possibilities. Ultimately, we also detail some critical parameters for SVPs formation in the WG-CFPS
Stange, Annett. "Determinanten und Mechanismen der foamyviralen Partikelfreisetzung." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23849.
Full textLüftenegger, Daniel. "Einfluss posttranslationaler Modifikationen auf die Funktion des Prototyp Foamy Virus Hüllproteins." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1207905094649-72075.
Full textHütter, Sylvia, Irena Zurnic, and Dirk Lindemann. "Foamy Virus Budding and Release." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-127060.
Full textLüftenegger, Daniel. "Einfluss posttranslationaler Modifikationen auf die Funktion des Prototyp Foamy Virus Hüllproteins." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23754.
Full textLiew, Steven Christopher. "Development of novel vaccines for the concurrent immunisation against multiple dengue virus serotypes." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16199/.
Full textLo, Chung-yan Joanne, and 羅頌恩. "Characterization by electron microscopy of dengue virus egress using dengue recombinant subviral particle (RSPs) as a model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48330115.
Full textpublished_or_final_version
Pathology
Master
Master of Philosophy
Penner, Inessa [Verfasser]. "The impact of a human cytomegalovirus subviral particle vaccine on the host cell proteome and on virus replication / Inessa Penner." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2021. http://d-nb.info/1239239106/34.
Full textSonveaux, Nathalie. "Etude de la topologie de la protéine constitutive des particules subvirales HBSAG de l'hépatite B." Doctoral thesis, Universite Libre de Bruxelles, 1994. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212686.
Full textBook chapters on the topic "Subviral Particles"
Ganem, D. "Assembly of Hepadnaviral Virions and Subviral Particles." In Current Topics in Microbiology and Immunology, 61–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76015-0_4.
Full textDobrica, Mihaela-Olivia, Catalin Lazar, and Norica Branza-Nichita. "Production of Chimeric Hepatitis B Virus Surface Antigens in Mammalian Cells." In Vaccine Delivery Technology, 83–94. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0795-4_7.
Full textKienzle, Christian, Gordian Schudt, Stephan Becker, and Thomas Schanze. "Multiple Subviral Particle in Fluorecsence Microscopy Sequences." In Informatik aktuell, 330–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54111-7_61.
Full textBamford, Dennis H., Päivi M. Ojala, Mikko Frilander, Laura Walin, and Jaana K. H. Bamford. "[25] Isolation, purification, and function of assembly intermediates and subviral particles of bacteriophages PRD1 and σ6." In Microbial Gene Techniques, 455–74. Elsevier, 1995. http://dx.doi.org/10.1016/s1067-2389(06)80028-2.
Full textLynch, David K., and Kenneth Sassen. "Subvisual Cirrus." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0016.
Full textLiou, K. N., and Y. Gu. "Radiative Transfer in Cirrus Clouds: Light Scatting and Spectral Information." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0017.
Full textConference papers on the topic "Subviral Particles"
Rausch, Andreas, and Thomas Schanze. "Fractal Characterization of Subviral Particle Motion: On the Influence of Spatio-Temporal Interpolation Methods." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857721.
Full text