Journal articles on the topic 'Successive approximation register analog-to-digital converter (SAR-ADC)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Successive approximation register analog-to-digital converter (SAR-ADC).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Al-Naamani, Yahya Mohammed Ali, K. Lokesh Krishna, and A. M. Guna Sekhar. "A Successive Approximation Register Analog to Digital Converter for Low Power Applications." Journal of Computational and Theoretical Nanoscience 17, no. 1 (January 1, 2020): 451–55. http://dx.doi.org/10.1166/jctn.2020.8689.

Full text
Abstract:
In recent years and continuing, widespread research work is carried out on medical implantable devices placed inside the human body. The essential and vital electronic circuit in implantable devices is the Analog to Digital Converter (ADC). The essential requirements in these applications such as long battery life-time, low power consumption and less die area poses a stringent requirement in designing and fabricating an ultra-low power ADCs. Among the diverse converter architectures existing, Successive Approximation Register (SAR) type converter architecture has shown better capabilities in terms of ultra-low power operation, medium resolution, less form factor and less silicon area. In this described paper a novel power effective, better resolution SAR type ADC to be used for biomedical related applications. The proposed work consists of capacitive type Digital to Analog Converter (DAC) based on charge distribution, a CMOS comparator, and SAR logic implemented using D-flip-flops. The different blocks of SAR architecture are simulated using EDA tools in CMOS 180 nm N-well process operated at VDD = 1.5 V voltage (VDD). The circuit is measured under various input frequencies with a sampling speed of 50 MHz and it consumes 22.6 μW. The proposed ADC technology shows SNDR of 48.6 dB and occupies a circuit area of 0.11 mm2 and the measured INL and DNL is calculated to be fewer than 0.54 LSB and 0.45 LSB respectively.
APA, Harvard, Vancouver, ISO, and other styles
2

Chauhan, Sarita. "Implementation of 32-BIT Pipelined ADC Using 90nm Analog CMOS Technology." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 31, 2021): 3073–80. http://dx.doi.org/10.22214/ijraset.2021.37002.

Full text
Abstract:
After seeing the technological evolution, we have understood about the A/D converter that it is the meeting point of the analog to digital domains. As technology is being continuously scaled down, the transistor sizes have decreased drastically resulting in reduced area and power consumption in the digital domain. The successive approximation ADC is best suitable for low power applications with moderate speed and simple design. Here, the implementation of 32-bit pipelined analog-to-digital converter with the help of successive approximation register based Sub-ADC. The SAR ADC architectures are popular for achieving high energy efficiency and low power applications. But they suffer from resolution and speed limitation. To overcome the speed limitations of SAR ADC, we proposed the implementation of 90nm using CMOS technology of a low power, high speed pipelined analog-to-digital converter (ADC). The capacitive digital-to-analog converter (DAC), two stage CMOS comparator with output inverter of proposed ADC are lower than those of a conventional ADC. To achieve low power and to minimize the size of the input sampling capacitance in order to ease durability.
APA, Harvard, Vancouver, ISO, and other styles
3

Bialek, J., A. Wickmann, F. Ohnhaeuser, G. Fischer, R. Weigel, and T. Ussmueller. "Implementation of a digital trim scheme for SAR ADCs." Advances in Radio Science 11 (July 4, 2013): 227–30. http://dx.doi.org/10.5194/ars-11-227-2013.

Full text
Abstract:
Abstract. Successive approximation register (SAR) analog-to-digital Converters (ADC) are based on a capacitive digital-to-analog converter (CDAC) (McCreary and Gray, 1975). The capacitor mismatch in the capacitor array of the CDAC impacts the differential non-linearity (DNL) of the ADC directly. In order to achieve a transfer function without missing codes, trimming of the capacitor array becomes necessary for SAR ADCs with a resolution of more than 12 bit. This article introduces a novel digital approach for trimming. DNL measurements of an 18 bit SAR ADC show that digital trimming allows the same performance as analog trimming. Digital trimming however reduces the power consumption of the ADC, the die size and the required time for the production test.
APA, Harvard, Vancouver, ISO, and other styles
4

Kobayashi, Yutaro, and Haruo Kobayashi. "Redundant SAR ADC Algorithm Based on Fibonacci Sequence." Key Engineering Materials 698 (July 2016): 118–26. http://dx.doi.org/10.4028/www.scientific.net/kem.698.118.

Full text
Abstract:
This paper describes a redundant Successive Approximation Register Analog-to-Digital Converter (SAR ADC) design method which enables high-reliability and high-speed AD conversion by using digital error correction. Especially we introduce to apply Fibonacci sequence and its property called Golden ratio to SAR ADC design to improve conventional redundant search algorithms. We also present some derived equations and many beautiful properties for well-balanced redundancy design for SAR ADC
APA, Harvard, Vancouver, ISO, and other styles
5

SARAFI, SAHAR, KHEYROLLAH HADIDI, EBRAHIM ABBASPOUR, ABU KHARI BIN AAIN, and JAVAD ABBASZADEH. "100 MS/s, 10-BIT ADC USING PIPELINED SUCCESSIVE APPROXIMATION." Journal of Circuits, Systems and Computers 23, no. 05 (May 8, 2014): 1450057. http://dx.doi.org/10.1142/s0218126614500571.

Full text
Abstract:
This paper presents an analog-to-digital converter (ADC), using pipelined successive approximation register (SAR) architecture. The structure which is a combination of SAR-ADC and pipelined ADC benefits from each of their advantages. A new synchronization method is proposed to improve the pipelined SAR-ADC's speed. The proposed method reduces the total conversion without limiting the ADC performance. To evaluate the proposed method a 10-bit 100 MS/s is designed in 0.5 μm CMOS process technology. According to the obtained simulation results, the designed ADC digitizes a 9-MHz input with 54.19 dB SNDR while consuming 57.3 mw from a 5-V supply.
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Manoj, and Raj Kumar. "A Ultra Low Power 12 Bit Successive Approximation Register for Bio-Medical Applications." International Journal of Engineering & Technology 7, no. 3.16 (July 26, 2018): 98. http://dx.doi.org/10.14419/ijet.v7i3.4.16192.

Full text
Abstract:
Successive Approximation Register (SAR) analog to digital Converters (ADC) is favorable choice for the high resolution. As resolution of ADC increases, the no. of redundant cycles increases which increases power. So the Paper presents clock gated ADC with no redundant cycles/transition cycles for low power requirement and comparison between without Clock Gating and Clock Gated SAR. Using Simulation, Power consumption for Clock gated SAR 736.1nW at 1.8V power supply where as without Clock Gating SAR consumption is 54µW at 1.8 power supply.
APA, Harvard, Vancouver, ISO, and other styles
7

Fahmy, Ghazal A., and Mohamed Zorkany. "Design of a Memristor-Based Digital to Analog Converter (DAC)." Electronics 10, no. 5 (March 7, 2021): 622. http://dx.doi.org/10.3390/electronics10050622.

Full text
Abstract:
A memristor element has been highlighted in recent years and has been applied to several applications. In this work, a memristor-based digital to analog converter (DAC) was proposed due to the fact that a memristor has low area, low power, and a low threshold voltage. The proposed memristor DAC depends on the basic DAC cell, consisting of two memristors connected in opposite directions. This basic DAC cell was used to build and simulate both a 4 bit and an 8 bit DAC. Moreover, a sneak path issue was illustrated and its solution was provided. The proposed design reduced the area by 40%. The 8 bit memristor DAC has been designed and used in a successive approximation register analog to digital converter (SAR-ADC) instead of in a capacitor DAC (which would require a large area and consume more switching power). The SAR-ADC with a memristor-based DAC achieves a signal to noise and distortion ratio (SNDR) of 49.3 dB and a spurious free dynamic range (SFDR) of 61 dB with a power supply of 1.2 V and a consumption of 21 µW. The figure of merit (FoM) of the proposed SAR-ADC is 87.9 fj/Conv.-step. The proposed designs were simulated with optimized parameters using a voltage threshold adaptive memristor (VTEAM) model.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Shubin, Haolin Han, and Ruixue Ding. "Energy-Efficient Switching Scheme with 93.41% Reduction in Capacitor Area for SAR ADC." Journal of Circuits, Systems and Computers 28, no. 13 (January 30, 2019): 1930010. http://dx.doi.org/10.1142/s0218126619300101.

Full text
Abstract:
A novel switching scheme for successive approximation register (SAR) analog-to-digital converter (ADC) is presented in this paper. Based on the asymmetric capacitor array and splitted MSB capacitor, the proposed scheme achieves 99.09% and 93.41% reductions in the average switching energy and capacitor area, respectively, over the conventional scheme. Moreover, the proposed SAR ADC obtains a moderate linearity performance with max(INL-RMS) less than 0.112 LSB, max(DNL-RMS) less than 0.160 LSB and consumes zero reset energy.
APA, Harvard, Vancouver, ISO, and other styles
9

Jung, Inseok, Kyung Ki Kim, and Yong-Bin Kim. "A Novel Built-in Self Calibration Technique to Minimize Capacitor Mismatch for 12-bit 32MS/s SAR ADC." Journal of Integrated Circuits and Systems 10, no. 3 (December 28, 2015): 187–200. http://dx.doi.org/10.29292/jics.v10i3.422.

Full text
Abstract:
This paper proposes a novel Built-in Self Calibration (BISC) technique for a 12-bit 32MS/s successive approximation register (SAR) analog-to-digital converter (ADC) using a single input to reduce the capacitor mismatch of the digital-to-analog converter (DAC) and to compensate the comparator input offset voltage. The proposed self-calibration scheme optimize the mismatch of the DAC by changing additional auxiliary capacitor array during calibration mode. In addition, in order to minimize the offset voltage of the comparator in the SAR ADC, a simplified voltage amplifier is proposed. The controller for the proposed algorithm operates as foreground operation to achieve low power consumption during operation. Compared to the converters that use the conventional procedure, INL and DNL are reduced by about 47% and 52%, respectively. The prototype was designed using 130nm single poly 6 metal standard CMOS technology. The ADC achieves a SNDR of 65.6 dB and consumes 4.62 mW. The ADC core occupies an active area of only 240μmÍ 298 μm using 1.2V supply and the sampling rate of 50 MS/s.
APA, Harvard, Vancouver, ISO, and other styles
10

Dastagiri Nadhindla, Bala, and K. Hari Kishore. "A 14-bit 10kS/s power efficient 65nm SAR ADC for cardiac implantable medical devices." International Journal of Engineering & Technology 7, no. 2.8 (March 19, 2018): 30. http://dx.doi.org/10.14419/ijet.v7i2.8.10319.

Full text
Abstract:
This brief presents a 10kS/s 14 bit 12.5 ENOB Successive Approximation Register Analog-to- Digital Converter for Cardiac Implantable Medical. For achieving power efficient operation, SAR ADC employ SAR control, a new power and noise efficient comparator topology, non- binary weighted capacitive DAC. The linearity of implemented SAR ADC is enhanced with the uniform geometry of non-binary weighted capacitive DAC.The proposed SAR ADC is implemented using 65nm CMOS technology. The latched comparator consumes a power of 2.4uW and it provides an ENOB of 12.6 at a supply voltage of 1V.The INL is between -2.7/+1.6 LSB and DNL is between -0.6/+1.4LSB. The FOM of ADC is 40fJ/conv. Step which is comparable with existing ADC topologies.
APA, Harvard, Vancouver, ISO, and other styles
11

An, Sheng-Biao, Li-Xin Zhao, Shi-Cong Yang, Tao An, and Rui-Xia Yang. "Design of Low Power and High Precision Successive Approximation Register Analog-to-Digital Converter (SAR-ADC) Based on Piecewise Capacitance and Calibration Technique." Journal of Nanoelectronics and Optoelectronics 15, no. 4 (April 1, 2020): 478–86. http://dx.doi.org/10.1166/jno.2020.2782.

Full text
Abstract:
This paper presents a charge redistributed successive approximation register analog-to-digital converter (SAR ADC). Compared with the traditional Digital-Analog Convertor (DAC), the power consumption of the DAC scheme is reduced by 90%, the area is reduced by 60%. The test chip fabricated in 180 nm Complementary Metal Oxide Semiconductor (CMOS) occupied an active area of 0.12 mm 2 . At 10 MS/s, a signal-to-noise and distortion ratio (SNDR) of 57.70 dB and a spurious-free dynamic range (SFDR) of 55.63 dB are measured with 1.68 Vpp differential-mode input signal. The total power consumption is 690 μW corresponding to 67 fJ/conversion step figure of merit.
APA, Harvard, Vancouver, ISO, and other styles
12

Idzura Yusuf, Siti, Suhaidi Shafie, Hasmayadi Abdul Majid, and Izhal Abdul Halin. "Differential input range driver for SAR ADC measurement setup." Indonesian Journal of Electrical Engineering and Computer Science 17, no. 2 (February 1, 2020): 750. http://dx.doi.org/10.11591/ijeecs.v17.i2.pp750-758.

Full text
Abstract:
<span>Differential successive approximation register (SAR) of analog to digital converter (ADC) requires two balancing input signals that have same amplitude with 180⁰ out of phase. Otherwise, it performs inaccurately and degrades the performance during ADC testing procedure. Therefore, an implementation of AD8139 chip single to differential amplifier was chosen as an ADC driver to generate sufficient differential output for the ADC. The chip was placed on a printed circuit board (PCB) to test the functionality as well as the performance of static and dynamic SAR ADC. The result shows that the single-ended input transform into differential voltage outputs. The amplitudes for the amplifier remain equal and is 180° out of phase for DC and AC voltage input signal. Besides, the fabricated 0.18µm CMOS technology of differential 10-bit SAR ADC is capable of digitising full code digital output and perform 9.5-bit effective number of bit (ENOB) from analog input driving by the ADC driver.</span>
APA, Harvard, Vancouver, ISO, and other styles
13

Osipov, Dmitry, Aleksandr Gusev, Vitaly Shumikhin, and Steffen Paul. "Noise shaping in SAR ADC." Facta universitatis - series: Electronics and Energetics 33, no. 1 (2020): 15–26. http://dx.doi.org/10.2298/fuee2001015o.

Full text
Abstract:
The successive approximation register (SAR) analog-to-digital converter (ADC) is currently the most popular type of ADC architecture, owing to its power efficiency. They are also used in multichannel systems, where power efficiency is of high importance because of the large number of simultaneously working channels. However, the SAR ADC architecture is not the most area efficient. In SAR ADCs, the binary weighted capacitive digital-to-analog converter (DAC) is used, which means that one additional bit of resolution costs double the increase of area. Oversampling and noise shaping are methods that allow an increase in resolution without an increase of area. In this paper we present the new SAR ADC architectures with a noise shaping. A first-order noise transfer function (NTF) with zero located nearly at one can be achieved. We propose two modifications of the architecture: with zero-only NTF and with the NTF with additional pole. The additional pole theoretically increases the efficiency of noise shaping to further 3 dB. The architectures were applied to the design of SAR ADCs in a 65 nm complementary metal-oxide semiconductor (CMOS) with OSR equal to 10. A 6-bit capacitive DAC was used. The proposed architectures provide nearly 4 additional bits in ENOB. The equalent input bandwitdth is equal to 200 kHz with the sampling rate equal to 4 MS/s.
APA, Harvard, Vancouver, ISO, and other styles
14

Gao, Bo, Xin Li, Jie Sun, and Jianhui Wu. "Modeling of High-Resolution Data Converter: Two-Step Pipelined-SAR ADC based on ISDM." Electronics 9, no. 1 (January 10, 2020): 137. http://dx.doi.org/10.3390/electronics9010137.

Full text
Abstract:
The features of high-resolution and high-bandwidth are in an increasing demand considering to the wide range application fields based on high performance data converters. In this paper, a modeling of high-resolution hybrid analog-to-digital converter (ADC) is proposed to meet those requirements, and a 16-bit two-step pipelined successive approximation register (SAR) analog-to-digital converter (ADC) with first-order continuous-time incremental sigma-delta modulator (ISDM) assisted is presented to verify this modeling. The combination of high-bandwidth two-step pipelined-SAR ADC with low noise ISDM and background comparator offset calibration can achieve higher signal-to-noise ratio (SNR) without sacrificing the speed and plenty of hardware. The usage of a sub-ranging scheme consists of a coarse SAR ADC followed by an fine ISDM, can not only provide better suppression of the noise added in 2nd stage during conversion but also alleviate the demands of comparator’s resolution in both stages for a given power budget, compared with a conventional Pipelined-SAR ADC. At 1.2 V/1.8 V supply, 33.3 MS/s and 16 MHz input sinusoidal signal in the 40 nm complementary metal oxide semiconductor (CMOS) process, the post-layout simulation results show that the proposed hybrid ADC achieves a signal-to-noise distortion ratio (SNDR) and a spurious free dynamic range (SFDR) of 86.3 dB and 102.5 dBc respectively with a total power consumption of 19.2 mW.
APA, Harvard, Vancouver, ISO, and other styles
15

Ren, Si Kui, and Zhi Qun Li. "Design of Low Voltage Low Power ADC for WSN Node." Advanced Materials Research 760-762 (September 2013): 561–66. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.561.

Full text
Abstract:
This paper presents a low power low voltage 7bit 16MS/s SAR ADC (successive approximation register analog-to-digital converter) for the application of ZigBee receiver. The proposed 7-bit ADC is designed and simulated in 180nm RF CMOS technology. Post simulation results show that at 1.0-V supply and 16 MS/s, the ADC achieves a SNDR (signal-to-noise-and-distortion ratio) and SFDR (Spurious Free Dynamic Range) are 43.6dB, 57.4dB respectively. The total power dissipation is 228μW, and it occupies a chip area of 0.525 mm2. It results in a figure-of-merit (FOM) of 0.11pJ/step.
APA, Harvard, Vancouver, ISO, and other styles
16

Rikan, Behnam, Sang-Yun Kim, Hamed Abbasizadeh, Arash Hejazi, Reza Rad, Khuram Shehzad, Keum Hwang, Youngoo Yang, Minjae Lee, and Kang-Yoon Lee. "A 10- and 12-Bit Multi-Channel Hybrid Type Successive Approximation Register Analog-to-Digital Converter for Wireless Power Transfer System." Energies 11, no. 10 (October 8, 2018): 2673. http://dx.doi.org/10.3390/en11102673.

Full text
Abstract:
This paper presents a successive approximation register (SAR) analog-to-digital converter (ADC) designed for a wireless power transfer system. This is a four–channel SAR ADC structure with 10-bit resolution for each channel, which can also be applied as a single 12-bit ADC. To reduce the area and the number of the required devices in the ADC module, a hybrid-type structure with capacitor and resistor DACs is applied, in which the resistor DAC is shared between channels and determines the seven least significant bits (LSB)s, while the capacitor DAC determines the three most significant bits (MSBs). For the 12-bit operation mode, and to reduce the number of capacitors required in the capacitor DAC, the capacitors of the four channels are shared to determine the five MSBs. A foreground calibration is applied to the capacitor DAC to remedy the gain and offset errors after fabrication. An additional low resistive path is also implemented in the resistor DAC for error correction. The conversion speed for 10- and 12-bit operations reaches up to 1 and 0.5 MS/s, respectively. The prototype ADC is designed in a 180 nm complementary metal-oxide semiconductor (CMOS) process. For 10- and 12-bit operating modes, this ADC module achieves up to 9.71 and 11.76 effective number of bits (ENOBs), respectively.
APA, Harvard, Vancouver, ISO, and other styles
17

Ro, Duckhoon, Minseong Um, and Hyung-Min Lee. "A Soft-Error-Tolerant SAR ADC with Dual-Capacitor Sample-and-Hold Control for Sensor Systems." Sensors 21, no. 14 (July 13, 2021): 4768. http://dx.doi.org/10.3390/s21144768.

Full text
Abstract:
For a reliable and stable sensor system, it is essential to precisely measure various sensor signals, such as electromagnetic field, pressure, and temperature. The measured analog signal is converted into digital bits through the sensor readout system. However, in extreme radiation environments, such as in space, during flights, and in nuclear fusion reactors, the performance of the analog-to-digital converter (ADC) constituting the sensor readout system can be degraded due to soft errors caused by radiation effects, leading to system malfunction. This paper proposes a soft-error-tolerant successive-approximation-register (SAR) ADC using dual-capacitor sample-and-hold (S/H) control, which has robust characteristics against total ionizing dose (TID) and single event effects (SEE). The proposed ADC was fabricated using 65-nm CMOS process, and its soft-error-tolerant performance was measured in radiation environments. Additionally, the proposed circuit techniques were verified by utilizing a radiation simulator CAD tool.
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Jianwen, Xuan Guo, Jian Luan, Danyu Wu, Lei Zhou, Nanxun Wu, Yinkun Huang, et al. "A 1 GS/s 12-Bit Pipelined/SAR Hybrid ADC in 40 nm CMOS Technology." Electronics 9, no. 2 (February 23, 2020): 375. http://dx.doi.org/10.3390/electronics9020375.

Full text
Abstract:
A 1 GS/s 12-bit pipelined/successive-approximation-register (pipelined/SAR) hybrid analog-to-digital converter (ADC) is presented in this paper, where the five most significant bits are resolved by two cascading 2.5-bit multiplying digital-to-analog converters, and the eight least significant bits are determined by a two-channel time-interleaved successive-approximation-register (TI-SAR) quantizer. An integrated input buffer and an operational amplifier with improved voltage efficiency at 1.8 V are adopted to achieve high-linearity stably in wide band for 1 GS/s. By designing a 500 MS/s 8-bit SAR quantizer at 1 V, the number of required interleaved channels is minimized to simplify the complexity and an adaptive power/ground is used to compensate the common-mode mismatch between the blocks in different power supply voltages. The offset and gain mismatches due to the TI-SAR quantizer are compensated by a calibration scheme based on virtually-interleaved channels. This ADC is fabricated in a 40 nm complementary metal-oxide-semiconductor (CMOS) technology, and it achieves a signal-to-noise-and-distortion ratio (SNDR) of 58.2 dB and a spurious free dynamic range (SFDR) of 72 dB with a 69 MHz input tone. When the input frequency increases to 1814 MHz in the fourth Nyquist zone, it can maintain an SNDR of 55.3 dB and an SFDR of 64 dB. The differential and integral nonlinearities are −0.94/+0.85 least significant bit (LSB) and −3.4/+3.9 LSB, respectively. The core ADC consumes 94 mW, occupies an active area of 0.47 mm × 0.25 mm. The Walden figure of merit reaches 0.14 pJ/step with a Nyquist input.
APA, Harvard, Vancouver, ISO, and other styles
19

Verma, Deeksha, Khuram Shehzad, Danial Khan, Sung Jin Kim, Young Gun Pu, Sang-Sun Yoo, Keum Cheol Hwang, Youngoo Yang, and Kang-Yoon Lee. "A Design of Low-Power 10-bit 1-MS/s Asynchronous SAR ADC for DSRC Application." Electronics 9, no. 7 (July 6, 2020): 1100. http://dx.doi.org/10.3390/electronics9071100.

Full text
Abstract:
A design of low-power 10-bit 1 MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) is presented in this paper. To improve the linearity of the digital-to-analog converter (DAC) and energy efficiency, a common mode-based monotonic charge recovery (CMMC) switching technique is proposed. The proposed switching technique consumes only 63.75 CVREF2 switching energy, which is far less as compared to the conventional switching technique without dividing or adding additional switches. In addition, bootstrap switching is implemented to ensure enhanced linearity. To reduce the power consumption from the comparator, a dynamic latch comparator with a self-comparator clock generation circuit is implemented. The proposed prototype of the SAR ADC is implemented in a 55 nm CMOS (complementary metal-oxide-semiconductor) process. The proposed architecture achieves a figure of merit (FOM) of 17.4 fJ/conversion, signal-to-noise distortion ratio (SNDR) of 60.39 dB, and an effective number of bits (ENOB) of 9.74 bits with a sampling rate of 1 MS/s at measurement levels. The implemented SAR ADC consumes 14.8 µW power at 1 V power supply.
APA, Harvard, Vancouver, ISO, and other styles
20

Tong, Xingyuan, and Tiantian Sun. "Improved Switching Energy Reduction Approach in Low-Power SAR ADC for Bioelectronics." VLSI Design 2016 (August 22, 2016): 1–6. http://dx.doi.org/10.1155/2016/6029254.

Full text
Abstract:
Low-power analog-to-digital converter (ADC) is a crucial part of wearable or implantable bioelectronics. In order to reduce the power of successive-approximation-register (SAR) ADC, an improved energy-efficient capacitor switching scheme of SAR ADC is proposed for implantable bioelectronic applications. With sequence initialization, novel logic control, and capacitive subconversion, 97.6% switching energy is reduced compared to the traditional structure. Moreover, thanks to the top-plate sampling and capacitive subconversion, 87% input-capacitance reduction can be achieved over the conventional structure. A 10-bit SAR ADC with this proposed switching scheme is realized in 65 nm CMOS. With 1.514 KHz differential sinusoidal input signals sampled at 50 KS/s, the ADC achieves an SNDR of 61.4 dB and only consumes power of 450 nW. The area of this SAR ADC IP core is only 136 μm × 176 μm, making it also area-efficient and very suitable for biomedical electronics application.
APA, Harvard, Vancouver, ISO, and other styles
21

Hu, Yunfeng, Chao Xiong, and Bin Li. "A 0.975 μW 10-bit 100 kS/s SAR ADC with an energy-efficient and area-efficient switching scheme." Modern Physics Letters B 31, no. 19-21 (July 27, 2017): 1740051. http://dx.doi.org/10.1142/s0217984917400516.

Full text
Abstract:
A 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) with an energy-efficient and area-efficient switching scheme was presented. By using C-2C dummy capacitor and an extra reference [Formula: see text] for the last capacitor, the proposed switching scheme achieves 97.65% switching energy saving, 87.2% capacitor area reduction and 47.06% switches reduction, compare to conventional switching scheme. The ADC was implemented in a 180 nm CMOS technology 1.8 V power supply, at sampling rate of 100 kS/s, the ADC achieves an SNDR of 57.84 dB and consumes 0.975 [Formula: see text], resulting in a figure-of-merit (FOM) of 15.3 fJ/conversion-step.
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Yushi, Yiqi Zhuang, and Hualian Tang. "An Ultra-Low Power Consumption High-Linearity Switching Scheme for SAR ADC." Journal of Circuits, Systems and Computers 29, no. 06 (August 2, 2019): 2050086. http://dx.doi.org/10.1142/s0218126620500863.

Full text
Abstract:
An ultra-low power consumption high-linearity switching scheme for successive approximation register (SAR) analog-to-digital converter (ADC) is presented with a mixed switching method. Based on the combination of C-2C dummy capacitors, the charge sharing technique and monotonic switching method, the proposed switching method achieves high-energy saving and high linearity. Compared with the conventional SAR ADC, the proposed method consumes no reset energy and achieves 98.9% less switching energy and 87.2% reduction in capacitor area. Moreover, the proposed scheme obtains good performance in linearity. Furthermore, the common-mode voltage variation of the proposed scheme is smaller than other published schemes, which is important for decreasing input-dependent offset of the comparator.
APA, Harvard, Vancouver, ISO, and other styles
23

Lv, Risheng, Weiping Chen, Qiang Fu, Liang Yin, Yufeng Zhang, and Xiaowei Liu. "A triple-channel incremental zoom-ADC for 3-DoF MEMS digital gyroscopes." Modern Physics Letters B 34, no. 13 (March 30, 2020): 2050136. http://dx.doi.org/10.1142/s0217984920501365.

Full text
Abstract:
This paper presents a multiplexed analog-to-digital converter (ADC) consisting mainly of high-precision sampling holders (S/H) and an incremental zoom ADC. Flip-around design is employed in S/H modules for power economy and noise suppression. Based on efficient coordination between S/H and multiplexers, synchronous sampling is available in the whole triple-channel ADC to maintain phase accordance. The core converter employed a hybrid architecture of successive approximation register (SAR) and Sigma-Delta [Formula: see text], which constitutes an energy-efficient zoom ADC. Final conversion result is a combination of the two steps. Both the SAR and [Formula: see text] modulation share a third-order loop filter to compromise between systematic stability and input range. On-chip digital logic include capacitor array controlling and dynamic-element-matching (DEM) technique. Manufactured in a standard [Formula: see text]m CMOS technology, the whole chip occupies an area of 2.7 mm2. Experimental results show a maximum signal-to-noise ratio (SNR) of 100.2 dB, with a power consumption of 2.1 mW from a 5 V supply.
APA, Harvard, Vancouver, ISO, and other styles
24

INANLOU, REZA, and MOHAMMAD YAVARI. "A 10-BIT 0.5 V 100 kS/s SAR ADC WITH A NEW RAIL-TO-RAIL COMPARATOR FOR ENERGY LIMITED APPLICATIONS." Journal of Circuits, Systems and Computers 23, no. 02 (February 2014): 1450026. http://dx.doi.org/10.1142/s0218126614500261.

Full text
Abstract:
In this paper, a 10-bit 0.5 V 100 kS/s successive approximation register (SAR) analog-to-digital converter (ADC) with a new fully dynamic rail-to-rail comparator is presented. The proposed comparator enhances the input signal range to the rail-to-rail mode, and hence, improves the signal-to-noise ratio (SNR) of the ADC in low supply voltages. The effect of the latch offset voltage is reduced by providing a higher voltage gain in the regenerative latch. To reduce the ADC power consumption further, the binary-weighted capacitive array with an attenuation capacitor (BWA) is employed as the digital-to-analog converter (DAC) in this design. The ADC is designed and simulated in a 90 nm CMOS process with a single 0.5 V power supply. Spectre simulation results show that the average power consumption of the proposed ADC is about 400 nW and the peak signal-to-noise plus distortion ratio (SNDR) is 56 dB. By considering 10% increase in total ADC power consumption due to the parasitics and a loss of 0.22 LSB in ENOB due to the DAC capacitors mismatch, the achieved figure of merit (FoM) is 11.4 fJ/conversion-step.
APA, Harvard, Vancouver, ISO, and other styles
25

Shetty, Chaya, M. Nagabushanam, and Venkatesh Nuthan Prasad. "A 14-bit High Speed 125MS/s Low Power SAR ADC using Dual Split Capacitor DAC Architecture in 90nm CMOS Technology." International Journal of Circuits, Systems and Signal Processing 15 (June 29, 2021): 556–68. http://dx.doi.org/10.46300/9106.2021.15.62.

Full text
Abstract:
The proposed work presents a High speed 14-bit 125MS/s successive-approximation-register asynchronous analog-to-digital-converter (SAR-ADC). A novel-based Dual-Split-Array-Three-Section (DSATS) capacitor DAC (DSATS-CDAC) is employed to increase the linearity and energy efficiency of the digital-to-analog converter (DAC), additional advantage of this work is that, the area is reduced by 59.76% of conventional design. The proposed switching technique of the (DSATS-CDAC) consumes less switching energy. Additionally, bootstrap switching is employed to ensure improved linearity and reduced power consumption.in order to enhance the speed of operation and increase the precision a preamplifier latch based comparator is implemented with the delay of 250ps. The proposed SAR-ADC prototype is implemented in a 90nm CMOS process and consumes a power of 42.8mW at 1V operating supply. The proposed design achieves a figure of merit (FOM) of 37.43 fJ/conversion-step, signal-to-noise-ratio (SNR) of 81 dB, and an effective-number-of-bits (ENOB) of 13.16 bits with a sampling rate of 125MS/s.
APA, Harvard, Vancouver, ISO, and other styles
26

Liang, Yuhua, and Zhangming Zhu. "An Energy-Efficient Switching Scheme for Low-Power SAR ADC Design." Journal of Circuits, Systems and Computers 27, no. 01 (August 23, 2017): 1850015. http://dx.doi.org/10.1142/s0218126618500159.

Full text
Abstract:
A novel energy-efficient switching scheme for successive approximation register (SAR) analog-to-digital converters (ADC) is proposed in this paper. The average switching energy of the proposed switching scheme can be reduced by 95.3%, compared with the [Formula: see text]-based scheme. Moreover, the linearity has been also improved significantly. Employing the proposed switching scheme, a 10-bit 100[Formula: see text]kS/s SAR ADC is designed in SMIC 0.18-[Formula: see text]m CMOS process. At a 0.6-V supply, the ADC consumes 43.7[Formula: see text]nW. Consequently, the figure-of-merit (FOM) is optimized to 0.58[Formula: see text]fJ/conversion-step.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhu, Donglin, Maliang Liu, and Zhangming Zhu. "A High Energy Efficiency and Low Common-Mode Voltage Variation Switching Scheme for SAR ADCs." Journal of Circuits, Systems and Computers 27, no. 01 (August 23, 2017): 1850010. http://dx.doi.org/10.1142/s021812661850010x.

Full text
Abstract:
In this paper, a high energy saving digital-to-analog converter (DAC) switching scheme with common-mode voltage variation in 1LSB is proposed for successive approximation register (SAR) analog-to-digital converters (ADCs). Based on the third reference ([Formula: see text]), split-capacitor technique and complementary switching method, the proposed switching scheme achieves a 99.6% switching energy reduction and a 75% area reduction compared to the conventional architecture, furthermore, the common-mode voltage varies only 1LSB during a conversion cycle.
APA, Harvard, Vancouver, ISO, and other styles
28

Kumar Y, L. V. Santosh. "Design and Implementation of SAR-ADC for Medical Electronic Applications." International Journal of Advanced Research in Computer Science and Software Engineering 8, no. 5 (June 2, 2018): 55. http://dx.doi.org/10.23956/ijarcsse.v8i5.665.

Full text
Abstract:
in today’s advance electronic and communication systems the role of high accuracy analog to digital converters are of great importance. Nowadays, a larger percentage of mixed-signal applications requires for health care systems. Also the speed of the chosen ADC design matters a lot as we are connected with the real world signals. SAR based ADC will provides us a better solution for various analog to digital systems. It is an essential device whenever data from the analog world, through sensors or transducers, should be digitally processed or when transmitting data between chips through either long-range wireless links or high-speed transmission between chips on the same printed circuit board. The paper projects up down and ring counter as a logic for successive approximation register (SAR logic for a ADC that is one of the best suited for low power. Here the resolution is of 4-bit and a power consumption of few milli watts. SAR ADC is implemented in 45 nm nano-meter scaling technology CMOS technology with a power supply of 0.5v by maintaining 4:1 w/l ratio.
APA, Harvard, Vancouver, ISO, and other styles
29

Villa, Jorge, José I. Artigas, Luis A. Barragán, and Denis Navarro. "An Amplifier-Less Acquisition Chain for Power Measurements in Series Resonant Inverters." Sensors 19, no. 19 (October 8, 2019): 4343. http://dx.doi.org/10.3390/s19194343.

Full text
Abstract:
Successive approximation register (SAR) analog-to-digital converter (ADC) manufacturers recommend the use of a driver amplifier to achieve the best performance. When a driver amplifier is not used, the conversion speed is severely penalized because of the need to meet the settling time constraint. This paper proposes a simple digital correction method to raise the performance (conversion speed and/or accuracy) when the acquisition chain lacks a driver amplifier. It is intended to reduce the cost, size and power consumption of the conditioning circuit while maintaining acceptable performance. The method is applied to the measurement of the output power delivered by a series resonant inverter for domestic induction heating.
APA, Harvard, Vancouver, ISO, and other styles
30

Shehzad, Khuram, Deeksha Verma, Danial Khan, Qurat Ain, Muhammad Basim, Sung Kim, YoungGun Pu, Keum Hwang, Youngoo Yang, and Kang-Yoon Lee. "Design of a Low Power 10-b 8-MS/s Asynchronous SAR ADC with On-Chip Reference Voltage Generator." Electronics 9, no. 5 (May 24, 2020): 872. http://dx.doi.org/10.3390/electronics9050872.

Full text
Abstract:
This paper presents an energy-efficient low power 10-b 8-MS/s asynchronous successive approximation register (SAR) analog-to-digital (ADC) converter. An inverted common-mode charge recovery technique is proposed to reduce the switching energy and to improve the linearity of the digital-to-analog converter (DAC). The proposed switching technique consumes only 149 CVREF2 switching energy for the 10-bit case. A rail-to-rail dynamic latch comparator is implemented with adaptive power control for better power efficiency. Additionally, to optimize the power consumption and performance of the logic part, a modified asynchronous type SAR control logic with digitally controllable delay cells is adopted. An on-chip reference voltage generator is also designed with an ADC core for practical use. The structure is realized using 55-nm complementary metal–oxide–semiconductor (CMOS) process technology. The proposed architecture achieves an effective number of bits (ENOB) of 9.56 bits and a signal-to-noise and distortion ratio (SNDR) level of 59.3 dB with a sampling rate of 8 MS/s at measurement level. The whole architecture consumes only 572 µW power when a power supply of 1 V is applied.
APA, Harvard, Vancouver, ISO, and other styles
31

Liang, Hongzhi, Ruixue Ding, Shubin Liu, and Zhangming Zhu. "Energy-Efficient and Area-Saving Asymmetric Capacitor Switching Scheme for SAR ADCs." Journal of Circuits, Systems and Computers 27, no. 07 (March 26, 2018): 1850109. http://dx.doi.org/10.1142/s0218126618501098.

Full text
Abstract:
An asymmetric architecture and energy-efficient capacitor switching scheme for successive approximation register (SAR) analog-to-digital converters (ADC) are proposed. The novel architecture achieves 81.25% reduction in capacitor area over the convention SAR. With the third reference voltage VCM and split-MSB switching procedure, the proposed switching scheme achieves 99.01% less switching energy over the convention SAR. Besides the significant energy saving, this asymmetric capacitor architecture also obtains a good performance in nonlinearity simulation. Based on the Matlab simulation for capacitor mismatch, the maximum differential nonlinearity and maximum integral nonlinearity of the proposed scheme are 0.166LSB and 0.122LSB, respectively.
APA, Harvard, Vancouver, ISO, and other styles
32

Lee, Juyong, Seungjun Lee, Kihyun Kim, and Hyungil Chae. "A Pipelined Noise-Shaping SAR ADC Using Ring Amplifier." Electronics 10, no. 16 (August 15, 2021): 1968. http://dx.doi.org/10.3390/electronics10161968.

Full text
Abstract:
In this study, a pipelined noise-shaping successive-approximation register analog-to-digital converter (PLNS-SAR ADC) structure was proposed to achieve high resolution and to be free from comparator design requirements. The inter-stage amplifier and integrator of the PLNS-SAR ADC were implemented through a ring amplifier with high gain and speed. The ring amplifier was designed to improve power efficiency and be tolerant to process–voltage–temperature (PVT) variation, and uses a single loop common-mode feedback (CMFB) circuit. By processing residual signals with a single ring amplifier, power efficiency can be maximized, and a low-power system with 30% lower power consumption than that of a conventional PLNS-SAR ADC is implemented. With a high-gain ring amplifier, noise leakage is greatly suppressed, and a structure can be implemented that is tolerant of mismatches between the analog loop and digital correction filters. The measured signal to noise distortion ratio (SNDR) is 70 dB for a 5.15 MHz bandwidth (BW) at a 72 MS/s sampling rate (Fs) with an oversampling ratio (OSR) of 7, and the power consumption is 2.4 mW. The FoMS,SNDR (= SNDR + 10log10BW/Power) is 163.5 dB. The proposed structure in this study can achieve high resolution and wide BW with good power efficiency, without a filter calibration process, through the use of a ring amplifier in the PLNS-SAR ADC.
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Xiaowei, Wei Fan, Jianxiong Xi, and Lenian He. "14-Bit Fully Differential SAR ADC with PGA Used in Readout Circuit of CMOS Image Sensor." Journal of Sensors 2021 (February 22, 2021): 1–17. http://dx.doi.org/10.1155/2021/6651642.

Full text
Abstract:
This paper proposes a 14-bit fully differential Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) with a programmable gain amplifier (PGA) used in the readout circuit of CMOS image sensor (CIS). SAR ADC adopts two-step scaled-reference voltages to realize 14-bit conversion, aimed at reducing the scale of capacitor array and avoiding using calibration to mitigate the impact of offset and mismatch. However, the reference voltage self-calibration algorithm is applied on the design to guarantee the precision of reference voltages, which affects the results of conversion. The three-way PGA provides three types of gains: 3x, 4x, and 6x, and samples at the same time to get three columns of pixel signal and increase the system speed. The pixel array of the mentioned CIS is 1026 × 1024 , and the pixel pitch is 12.5 μ m × 12.5 μ m . The prototype chip is fabricated in the 180 nm CMOS process, and both digital and analog voltages are 3.3 V. The total area of the chip is 6.25 × 18.38 mm2. At 150 kS/s sampling rate, the SNR of SAR ADC is 71.72 dB and the SFDR is 82.91 dB. What is more, the single SAR ADC consumes 477.2 uW with the 4.8 V PP differential input signal and the total power consumption of the CIS is about 613 mW.
APA, Harvard, Vancouver, ISO, and other styles
34

Bekal, Anush, Shabi Tabassum, and Manish Goswami. "Low Power Design of a 1 V 8-bit 125 fJ Asynchronous SAR ADC with Binary Weighted Capacitive DAC." Journal of Circuits, Systems and Computers 26, no. 05 (February 8, 2017): 1750077. http://dx.doi.org/10.1142/s0218126617500773.

Full text
Abstract:
The work proposes an improved technique to design a low power 8-bit asynchronous successive approximation register (ASAR), an analog-to-digital converter (ADC). The proposed ASAR ADC consists of a comparator, ASAR (digital control logic block), and a capacitive-digital-to-analog convertor (C-DAC). The comparator is a preamplier-based improved positive feedback latch circuit which has a built-in sample and hold (S/H) functionality and saves an enormous amount of power. The implemented digital control logic block performing the successive approximation (SA) algorithm is totally unrestrained of the external clock pulse. The outputs from the comparator are given to a XOR logic whose outputs serve as an internally generated clock (ready signal) to trigger the digital control block. Hence, an external clock is not required to initiate the digital control block making its operation asynchronous. By implementing this, the ADC can circumvent the usage of an oversampled clock and can operate on a single low-speed sample clock. This, in turn, saves power and it cuts down the required resilience in sampling rates. The proposed ADC has been designed and simulated using UMC-0.18[Formula: see text][Formula: see text]m CMOS technology which dissipates 32.18[Formula: see text][Formula: see text]W power when operated on a single 1[Formula: see text]V power supply and achieves complete 8-bit conversion in 1.09[Formula: see text][Formula: see text]s. The relative accuracy of capacitor ratio, aperture jitter and FOM are 0.39[Formula: see text], 1.2[Formula: see text]ns and 125[Formula: see text]fJ/conversion-step, respectively.
APA, Harvard, Vancouver, ISO, and other styles
35

Ro, Duckhoon, Changhong Min, Myounggon Kang, Ik Joon Chang, and Hyung-Min Lee. "A Radiation-Hardened SAR ADC with Delay-Based Dual Feedback Flip-Flops for Sensor Readout Systems." Sensors 20, no. 1 (December 27, 2019): 171. http://dx.doi.org/10.3390/s20010171.

Full text
Abstract:
For stable and effective control of the sensor system, analog sensor signals such as temperature, pressure, and electromagnetic fields should be accurately measured and converted to digital bits. However, radiation environments, such as space, flight, nuclear power plants, and nuclear fusion reactors, as well as high-reliability applications, such as automotive semiconductor systems, suffer from radiation effects that degrade the performance of the sensor readout system including analog-to-digital converters (ADCs) and cause system malfunctions. This paper investigates an optimal ADC structure in radiation environments and proposes a successive- approximation-register (SAR) ADC using delay-based double feedback flip-flops to enhance the system tolerance against radiation effects, including total ionizing dose (TID) and single event effects (SEE). The proposed flip-flop was fabricated using 130 nm complementary metal–oxide–semiconductor (CMOS) silicon-on-insulator (SOI) process, and its radiation tolerance was measured in actual radiation test facilities. Also, the proposed radiation-hardened SAR ADC with delay-based dual feedback flip-flops was designed and verified by utilizing compact transistor models, which reflect radiation effects to CMOS parameters, and radiation simulator computer aided design (CAD) tools.
APA, Harvard, Vancouver, ISO, and other styles
36

V. Fonseca, Adriano, Pietro Maris Ferreira, Ludwig Cron, Fernando A. P. Barúqui, Carlos F. T. Soares, and Philippe Benabes. "A Temperature-Aware Analysis of SAR ADCs for Smart Vehicle Applications." Journal of Integrated Circuits and Systems 13, no. 1 (August 24, 2018): 1–10. http://dx.doi.org/10.29292/jics.v13i1.8.

Full text
Abstract:
The challenges of the Internet of Things (IoT) in an urban environment are driven by smart vehicles which need to be able to efficiently sense and communicate with other nearby vehicles. The automotive market have strict circuit performances and reliability requirements for a temperature range of up to 175 ◦C. This proposal overviews an analysis of latched-comparators performance, considering process variability and temperature variation of previous works. This analysis is then extended to the metastability and performance metrics of successive approximation register (SAR) analog-to-digital converter (ADC) topology. Building blocks necessary for the SAR ADC are designed using an XH018 technology. Post-layout simulation results are drawn to validate the proposed temperature-aware analysis. Besides the known advantages of the Double-Tail comparator, this work demonstrates that such a comparator has a serious drawback under harsh environments. This proposal also shows that, once calibrated and operated at a frequency of around 100 MHz, the SAR ADC performance can be maintained in a wide temperature range. Both SA- and DT-SAR ADC achieve an ENOB of 9.8 bits, which is reduced to 9.6 bits in high-temperature operation. The results also show that background calibration is not required for the SAR ADC operation at the 100 MHz frequency range.
APA, Harvard, Vancouver, ISO, and other styles
37

Lin, Chih-Hsuan, and Kuei-Ann Wen. "An Innovative Successive Approximation Register Analog-to-Digital Converter for a Nine-Axis Sensing System." Journal of Low Power Electronics and Applications 11, no. 1 (January 9, 2021): 3. http://dx.doi.org/10.3390/jlpea11010003.

Full text
Abstract:
With nine-axis sensing systems in 5G smartphones, mobile power consumption has become increasingly important, and ultra-low-power (ULP) sensor circuits can decrease power consumption to tens of microwatts. This paper presents an innovative successive approximation register analog-to-digital converter, which comprises fine (three most significant bits (MSBs) plus course conversion (11 least significant bits (LSBs)) capacitive digital-to-analog converters (CDACs), ULP, four-mode reconfigurable resolution (9, 10, 11, or 12 bits), an internally generated clock, meta-detection, the switching base midpoint voltage (Vm) (SW-B-M), bit control logic, multi-phase control logic, fine (three MSBs) plus course conversion (11 LSBs) switch control logic, phase control logic, and an input signal plus negative voltage (VI + NEG) voltage generator. Then, the mechanism of the discrete Fourier transform (DFT)-based calibration is applied. The scalable voltage technique was used, and the analog/digital voltage was Vanalog (1.5 V) and Vdigital (0.9 V) to meet the specifications of the nine-axis ULP sensing system. The CDACs can reconfigure four-mode resolutions, 9–12 bits, for use in nine-axis sensor applications. The corresponding dynamic signal-to-noise and distortion ratio performance was 50.78, 58.53, 62.42, and 66.51 dB. In the 12-bit mode, the power consumption of the ADC was approximately 2.7 μW, and the corresponding figure of merit (FoM) was approximately 30.5 fJ for each conversion step.
APA, Harvard, Vancouver, ISO, and other styles
38

Lin, Chih-Hsuan, and Kuei-Ann Wen. "An Innovative Successive Approximation Register Analog-to-Digital Converter for a Nine-Axis Sensing System." Journal of Low Power Electronics and Applications 11, no. 1 (January 9, 2021): 3. http://dx.doi.org/10.3390/jlpea11010003.

Full text
Abstract:
With nine-axis sensing systems in 5G smartphones, mobile power consumption has become increasingly important, and ultra-low-power (ULP) sensor circuits can decrease power consumption to tens of microwatts. This paper presents an innovative successive approximation register analog-to-digital converter, which comprises fine (three most significant bits (MSBs) plus course conversion (11 least significant bits (LSBs)) capacitive digital-to-analog converters (CDACs), ULP, four-mode reconfigurable resolution (9, 10, 11, or 12 bits), an internally generated clock, meta-detection, the switching base midpoint voltage (Vm) (SW-B-M), bit control logic, multi-phase control logic, fine (three MSBs) plus course conversion (11 LSBs) switch control logic, phase control logic, and an input signal plus negative voltage (VI + NEG) voltage generator. Then, the mechanism of the discrete Fourier transform (DFT)-based calibration is applied. The scalable voltage technique was used, and the analog/digital voltage was Vanalog (1.5 V) and Vdigital (0.9 V) to meet the specifications of the nine-axis ULP sensing system. The CDACs can reconfigure four-mode resolutions, 9–12 bits, for use in nine-axis sensor applications. The corresponding dynamic signal-to-noise and distortion ratio performance was 50.78, 58.53, 62.42, and 66.51 dB. In the 12-bit mode, the power consumption of the ADC was approximately 2.7 μW, and the corresponding figure of merit (FoM) was approximately 30.5 fJ for each conversion step.
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Dong, Xiaoge Zhu, Xuan Guo, Jian Luan, Lei Zhou, Danyu Wu, Huasen Liu, Jin Wu, and Xinyu Liu. "A 2.6 GS/s 8-Bit Time-Interleaved SAR ADC in 55 nm CMOS Technology." Electronics 8, no. 3 (March 8, 2019): 305. http://dx.doi.org/10.3390/electronics8030305.

Full text
Abstract:
This paper presents an eight-channel time-interleaved (TI) 2.6 GS/s 8-bit successive approximation register (SAR) analog-to-digital converter (ADC) prototype in a 55-nm complementary metal-oxide-semiconductor (CMOS) process. The channel-selection-embedded bootstrap switch is adopted to perform sampling times synchronization using the full-speed master clock to suppress the time skew between channels. Based on the segmented pre-quantization and bypass switching scheme, double alternate comparators clocked asynchronously with background offset calibration are utilized in sub-channel SAR ADC to achieve high speed and low power. Measurement results show that the signal-to-noise-and-distortion ratio (SNDR) of the ADC is above 38.2 dB up to 500 MHz input frequency and above 31.8 dB across the entire first Nyquist zone. The differential non-linearity (DNL) and integral non-linearity (INL) are +0.93/−0.85 LSB and +0.71/−0.91 LSB, respectively. The ADC consumes 60 mW from a 1.2 V supply, occupies an area of 400 μm × 550 μm, and exhibits a figure-of-merit (FoM) of 348 fJ/conversion-step.
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Daiguo, Kaikai Xu, Shiliu Xu, Lu Liu, and Tao Liu. "A System-Level Correction SAR ADC with Noise-Tolerant Technique." Journal of Circuits, Systems and Computers 27, no. 13 (August 3, 2018): 1850202. http://dx.doi.org/10.1142/s021812661850202x.

Full text
Abstract:
A system-level correction successive approximation register analog-to-digital converter (SAR ADC) with regulated comparator of noise-tolerant technique is proposed. First, a substrate voltage boost technique is provided to improve the linearity and speed of sampling switch. Secondly, the proposed SAR ADC provides a comparator of noise regulation without redundant comparison cycle. The proposed comparator would be regulated in high-speed large noise state in large input differential signals. In the condition of small input differential signals, the comparator would be adjusted to low-speed small noise state. Furthermore, a high-speed low-power technique is proposed to optimize the performance of dynamic comparator. Additionally, a fast SAR logic structure is provided to increase the conversion speed of SAR ADC. To demonstrate the proposed techniques, a design example of SAR ADC is fabricated in 65[Formula: see text]nm CMOS technology. The SAR ADC is able to tolerate about 1.1 LSB noise errors in post-simulation with the operation state regulated automatically. The core occupies an active area of only 0.025[Formula: see text]mm2 and consumes 1.5[Formula: see text]mW. Measurement results achieve SFDR [Formula: see text][Formula: see text]dB and SNDR [Formula: see text][Formula: see text]dB, resulting in the FOM of 21.6[Formula: see text]fJ per conversion step.
APA, Harvard, Vancouver, ISO, and other styles
41

Shehzad, Khuram, Deeksha Verma, Danial Khan, Qurat Ul Ain, Muhammad Basim, Sung Jin Kim, Behnam Samadpoor Rikan, et al. "A Low-Power 12-Bit 20 MS/s Asynchronously Controlled SAR ADC for WAVE ITS Sensor Based Applications." Sensors 21, no. 7 (March 24, 2021): 2260. http://dx.doi.org/10.3390/s21072260.

Full text
Abstract:
A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.
APA, Harvard, Vancouver, ISO, and other styles
42

Xu, Daiguo, Hequan Jiang, Dongbin Fu, Xiaoquan Yu, Shiliu Xu, Jun Yuan, Rongbin Hu, Can Zhu, and Jianan Wang. "A Linearity Improved 10-bit 120-MS/s 1.5 mW SAR ADC with High-Speed and Low-Noise Dynamic Comparator Technique." Journal of Circuits, Systems and Computers 29, no. 06 (July 31, 2019): 2050084. http://dx.doi.org/10.1142/s021812662050084x.

Full text
Abstract:
This paper presents a linearity improved 10-bit 120-MS/s successive approximation register (SAR) analog-to-digital converter (ADC) with high-speed and low-noise dynamic comparator. A gate cross-coupled technique is introduced in boost sampling switch, the clock feedthrough effect is compensated without extra auxiliary switch and the linearity of sampling switch is enhanced. Further, substrate voltage boost technique is proposed, the absolute values of threshold voltage and equivalent impedances of MOSFETs are both depressed. Consequently, the delay of comparator is also reduced. Moreover, the reduction of threshold voltages for input MOSFETs could bring higher transconductance and lower equivalent input noise. To demonstrate the proposed techniques, a design of SAR ADC is fabricated in 65-nm CMOS technology, consuming 1.5[Formula: see text]mW from 1[Formula: see text]V power supply with a SNDR [Formula: see text][Formula: see text]dB and SFDR [Formula: see text][Formula: see text]dB. The proposed ADC core occupies an active area of 0.021[Formula: see text]mm2, and the corresponding FoM is 24.4 fJ/conversion-step with Nyquist frequency.
APA, Harvard, Vancouver, ISO, and other styles
43

Seo, Min-Jae. "A Single-Amplifier Dual-Residue Pipelined-SAR ADC." Electronics 10, no. 4 (February 9, 2021): 421. http://dx.doi.org/10.3390/electronics10040421.

Full text
Abstract:
This work presents a 12 bit 200 MS/s dual-residue pipelined successive approximation registers (SAR) analog-to-digital converter (ADC) with a single open-loop residue amplifier (RA). By using the inherent characteristics of the SAR conversion scheme, the proposed ADC sequentially generates two residue levels from the single RA, which eliminates the need for inter-stage gain-matching calibration. To convert the sequentially generated the two residues, a capacitive interpolating SAR ADC (I-SAR ADC) is also proposed. The I-SAR ADC is very compact because it consists of the one comparator, a CDAC, and control logic like a conventional SAR ADC. In addition, the I-SAR ADC needs no static power dissipation for the residue interpolation. A prototype ADC fabricated in a 40 nm CMOS technology occupies an active area of 0.026 mm2. At a 200 MS/s sampling-rate with the Nyquist input, the ADC achieves an SNDR (Signal-to-Noise distortion ratio) of 62.1 dB and 67.1 dB SFDR (Spurious-Free Dynamic Range), respectively. The total power consumed is 3.9 mW under a 0.9 V supply. Without any inter-stage mismatch calibration, the ADC achieve Walden Figure-of-Merit (FoM) of 19.0 fJ/conversion-step.
APA, Harvard, Vancouver, ISO, and other styles
44

Sosa, J., Juan A. Montiel-Nelson, R. Pulido, and Jose C. Garcia-Montesdeoca. "Design and Optimization of a Low Power Pressure Sensor for Wireless Biomedical Applications." Journal of Sensors 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/352036.

Full text
Abstract:
A blood pressure sensor suitable for wireless biomedical applications is designed and optimized. State-of-the-art blood pressure sensors based on piezoresistive transducers in a full Wheatstone bridge configuration use low ohmic values because of relatively high sensitivity and low noise approach resulting in high power consumption. In this paper, the piezoresistance values are increased in order to reduce by one order of magnitude the power consumption in comparison with literature approaches. The microelectromechanical system (MEMS) pressure sensor, the mixed signal circuits signal conditioning circuitry, and the successive approximation register (SAR) analog-to-digital converter (ADC) are designed, optimized, and integrated in the same substrate using a commercial 1 μm CMOS technology. As result of the optimization, we obtained a digital sensor with high sensitivity, low noise (0.002 μV/Hz), and low power consumption (358 μW). Finally, the piezoresistance noise does not affect the pressure sensor application since its value is lower than half least significant bit (LSB) of the ADC.
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Shouping, Jianjun Chen, Bin Liang, and Yang Guo. "Low Power SAR ADC Design with Digital Background Calibration Algorithm." Symmetry 12, no. 11 (October 23, 2020): 1757. http://dx.doi.org/10.3390/sym12111757.

Full text
Abstract:
This paper proposed a digital background calibration algorithm with positive and negative symmetry error tolerance to remedy the capacitor mismatch for successive approximation register analog-to-digital converters (SAR ADCs). Compensate for the errors caused by capacitor mismatches and improve the ADC performance. Combination with a tri-level switching scheme based on the common-mode voltage Vcm to achieve capacitor reduction and high switching energy efficiency. The proposed calibration algorithm significantly improves capacitor mismatch without resorting to extensive computation or dedicated circuits. The active area is 0.046 mm2 in 40 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The post-simulation results show the effective number of bits (ENOB) improves from 8.23 bits to 11.36 bits, signal-to-noise-and distortion ratio (SNDR) improves from 51.33 dB to 70.15 dB, respectively, before and after calibration. This improves the spurious-free dynamic range (SFDR) by 24.13 dB, from 61.50 dB up to 85.63 dB. The whole ADC’s power consumption is only 0.3564 mW at sampling rate fs =2 MS/s and Nyquist input frequency, with a figure-of-merit (FOM) 67.8 fJ/conv.-step.
APA, Harvard, Vancouver, ISO, and other styles
46

Choi, Gyuri, Hyunwoo Heo, Donggeun You, Hyungseup Kim, Kyeongsik Nam, Mookyoung Yoo, Sangmin Lee, and Hyoungho Ko. "A Low-Power, Low-Noise, Resistive-Bridge Microsensor Readout Circuit with Chopper-Stabilized Recycling Folded Cascode Instrumentation Amplifier." Applied Sciences 11, no. 17 (August 28, 2021): 7982. http://dx.doi.org/10.3390/app11177982.

Full text
Abstract:
In this paper, a low-power and low-noise readout circuit for resistive-bridge microsensors is presented. The chopper-stabilized, recycling folded cascode current-feedback instrumentation amplifier (IA) is proposed to achieve the low-power, low-noise, and high-input impedance. The chopper-stabilized, recycling folded cascode topology (with a Monticelli-style, class-AB output stage) can enhance the overall noise characteristic, gain, and slew rate. The readout circuit consists of a chopper-stabilized, recycling folded cascode IA, low-pass filter (LPF), ADC driving buffer, and 12-bit successive-approximation-register (SAR) analog-to-digital converter (ADC). The prototype readout circuit is implemented in a standard 0.18 µm CMOS process, with an active area of 12.5 mm2. The measured input-referred noise at 1 Hz is 86.6 nV/√Hz and the noise efficiency factor (NEF) is 4.94, respectively. The total current consumption is 2.23 μA, with a 1.8 V power supply.
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Shouping, Yang Guo, Jianjun Chen, and Bin Liang. "A 12-bit 30 MS/s Successive Approximation-Register Analog-to-Digital Converter with Foreground Digital Calibration Algorithm." Symmetry 12, no. 1 (January 14, 2020): 165. http://dx.doi.org/10.3390/sym12010165.

Full text
Abstract:
This paper presents a foreground digital calibration algorithm based on a dynamic comparator that aims to reduce comparator offset and capacitor mismatch, as well as improve the performance of the successive approximation analog-to-digital converter (SARADC). The dynamic comparator is designed with two preamplifiers and one latch to facilitate high speed, high precision, and low noise. The foreground digital calibration algorithm provides high speed with minimal area consumption. This design is implemented on a 12-bit 30 MS/s SARADC with a standard 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) process. The simulation Nyquist 68.56 dB signal-to-noise-and-distortion ratio (SNDR) and 84.45 dBc spurious free dynamic range (SFDR) at 30 MS/s, differential nonlinearity (DNL) and integral nonlinearity (INL) are within 0.64 Least Significant Bits (LSB) and 1.3 LSB, respectively. The ADC achieves an effective number of bits (ENOB) of 11.08 and a figure-of-merit (FoM) of 39.45 fJ/conv.-step.
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Dengquan, Liang Zhang, Zhangming Zhu, and Yintang Yang. "An 8-Bit 0.333–2 GS/s Configurable Time-Interleaved SAR ADC in 65-nm CMOS." Journal of Circuits, Systems and Computers 24, no. 06 (May 26, 2015): 1550093. http://dx.doi.org/10.1142/s0218126615500930.

Full text
Abstract:
This paper presents an 8-bit configurable time-interleaved (TI) successive approximation register (SAR) analog-to-digital converter (ADC). By using a mode selection circuit, four modes of sampling rate are provided: Single channel at 333.3 MS/s, 2-channel at 666.7 MS/s, 3-channel at 1 GS/s and 6-channel at 2 GS/s. An on-chip delay-locked loop (DLL) uniformly generates six-phase clock with 20% duty cycle, and the timing errors are reduced to a tolerable range. In low sampling rate modes, the corresponding sampling switches and comparators in the idle sub-ADCs are shut down to save power consumption. Based on the 65-nm CMOS technology, the post-layout simulation results show that at 1.2 V supply, the proposed ADC consumes 8.6, 10.9, 13.1 and 19.9 mW under different modes. With an ENOB of 7.92, 7.34, 7.01 and 6.37 bit, this results in a FOM of 106.6, 100.9, 101.6 and 120.3 fJ/conversion-step respectively.
APA, Harvard, Vancouver, ISO, and other styles
49

Hao, Yunqiang, Dongbai Yi, Xiaowei Zhang, Wenxin Yu, Jianxiong Xi, and Lenian He. "A Power Management IC Used for Monitoring and Protection of Li-Ion Battery Packs." Journal of Sensors 2021 (April 8, 2021): 1–13. http://dx.doi.org/10.1155/2021/6611648.

Full text
Abstract:
A power management system is a critical component of the system which needs Li-ion battery packs for power supply. This paper proposes a fully integrated, high-precision, and high-reliability Integrated Circuit (IC) for the power management system of Li-ion battery packs. It has full protection circuits including overvoltage, overtemperature, and overcurrent circuits with measuring voltage accuracy of 0.2 mV and a 15-bit internal Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC). This IC is designed to protect the system automatically and measure the battery cells’ voltage, temperature, and charging or discharging current with high precision. It also provides an I2C interface to communicate with an external Microcontroller Unit (MCU), making it achievable to perform battery cells’ voltage balancing and SOC estimation with 0.1% estimation accuracy in an hour.
APA, Harvard, Vancouver, ISO, and other styles
50

Babayan-Mashhadi, Samaneh, and Mona Jahangiri-Khah. "A Low-Power, Signal-Specific SAR ADC for Neural Sensing Applications." Journal of Circuits, Systems and Computers 27, no. 14 (August 23, 2018): 1850230. http://dx.doi.org/10.1142/s0218126618502304.

Full text
Abstract:
As power consumption is one of the major issues in biomedical implantable devices, in this paper, a novel quantization method is proposed for successive approximation register (SAR) analog-to-digital converters (ADCs) which can save 80% power consumption in contrast to conventional structure for electroencephalogram (EEG) signal recording systems. According to the characteristics of neural signals, the principle of the proposed power saving technique was inspired such that only the difference between current input sample and the previous one is quantized, using a power efficient SAR ADC with fewer resolutions. To verify the proposed quantization scheme, the ADC is systematically modeled in Matlab and designed and simulated in circuit level using 0.18[Formula: see text][Formula: see text]m CMOS technology. When applied to neural signal acquisition, spice simulations show that at sampling rate of 25[Formula: see text]kS/s, the proposed 8-bit ADC consumes 260[Formula: see text]nW of power from 1.8[Formula: see text]V supply voltage while achieving 7.1 effective number of bits.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography