Journal articles on the topic 'Successive approximation register analog-to-digital converter (SAR-ADC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Successive approximation register analog-to-digital converter (SAR-ADC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Al-Naamani, Yahya Mohammed Ali, K. Lokesh Krishna, and A. M. Guna Sekhar. "A Successive Approximation Register Analog to Digital Converter for Low Power Applications." Journal of Computational and Theoretical Nanoscience 17, no. 1 (January 1, 2020): 451–55. http://dx.doi.org/10.1166/jctn.2020.8689.
Full textChauhan, Sarita. "Implementation of 32-BIT Pipelined ADC Using 90nm Analog CMOS Technology." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 31, 2021): 3073–80. http://dx.doi.org/10.22214/ijraset.2021.37002.
Full textBialek, J., A. Wickmann, F. Ohnhaeuser, G. Fischer, R. Weigel, and T. Ussmueller. "Implementation of a digital trim scheme for SAR ADCs." Advances in Radio Science 11 (July 4, 2013): 227–30. http://dx.doi.org/10.5194/ars-11-227-2013.
Full textKobayashi, Yutaro, and Haruo Kobayashi. "Redundant SAR ADC Algorithm Based on Fibonacci Sequence." Key Engineering Materials 698 (July 2016): 118–26. http://dx.doi.org/10.4028/www.scientific.net/kem.698.118.
Full textSARAFI, SAHAR, KHEYROLLAH HADIDI, EBRAHIM ABBASPOUR, ABU KHARI BIN AAIN, and JAVAD ABBASZADEH. "100 MS/s, 10-BIT ADC USING PIPELINED SUCCESSIVE APPROXIMATION." Journal of Circuits, Systems and Computers 23, no. 05 (May 8, 2014): 1450057. http://dx.doi.org/10.1142/s0218126614500571.
Full textKumar, Manoj, and Raj Kumar. "A Ultra Low Power 12 Bit Successive Approximation Register for Bio-Medical Applications." International Journal of Engineering & Technology 7, no. 3.16 (July 26, 2018): 98. http://dx.doi.org/10.14419/ijet.v7i3.4.16192.
Full textFahmy, Ghazal A., and Mohamed Zorkany. "Design of a Memristor-Based Digital to Analog Converter (DAC)." Electronics 10, no. 5 (March 7, 2021): 622. http://dx.doi.org/10.3390/electronics10050622.
Full textLiu, Shubin, Haolin Han, and Ruixue Ding. "Energy-Efficient Switching Scheme with 93.41% Reduction in Capacitor Area for SAR ADC." Journal of Circuits, Systems and Computers 28, no. 13 (January 30, 2019): 1930010. http://dx.doi.org/10.1142/s0218126619300101.
Full textJung, Inseok, Kyung Ki Kim, and Yong-Bin Kim. "A Novel Built-in Self Calibration Technique to Minimize Capacitor Mismatch for 12-bit 32MS/s SAR ADC." Journal of Integrated Circuits and Systems 10, no. 3 (December 28, 2015): 187–200. http://dx.doi.org/10.29292/jics.v10i3.422.
Full textDastagiri Nadhindla, Bala, and K. Hari Kishore. "A 14-bit 10kS/s power efficient 65nm SAR ADC for cardiac implantable medical devices." International Journal of Engineering & Technology 7, no. 2.8 (March 19, 2018): 30. http://dx.doi.org/10.14419/ijet.v7i2.8.10319.
Full textAn, Sheng-Biao, Li-Xin Zhao, Shi-Cong Yang, Tao An, and Rui-Xia Yang. "Design of Low Power and High Precision Successive Approximation Register Analog-to-Digital Converter (SAR-ADC) Based on Piecewise Capacitance and Calibration Technique." Journal of Nanoelectronics and Optoelectronics 15, no. 4 (April 1, 2020): 478–86. http://dx.doi.org/10.1166/jno.2020.2782.
Full textIdzura Yusuf, Siti, Suhaidi Shafie, Hasmayadi Abdul Majid, and Izhal Abdul Halin. "Differential input range driver for SAR ADC measurement setup." Indonesian Journal of Electrical Engineering and Computer Science 17, no. 2 (February 1, 2020): 750. http://dx.doi.org/10.11591/ijeecs.v17.i2.pp750-758.
Full textOsipov, Dmitry, Aleksandr Gusev, Vitaly Shumikhin, and Steffen Paul. "Noise shaping in SAR ADC." Facta universitatis - series: Electronics and Energetics 33, no. 1 (2020): 15–26. http://dx.doi.org/10.2298/fuee2001015o.
Full textGao, Bo, Xin Li, Jie Sun, and Jianhui Wu. "Modeling of High-Resolution Data Converter: Two-Step Pipelined-SAR ADC based on ISDM." Electronics 9, no. 1 (January 10, 2020): 137. http://dx.doi.org/10.3390/electronics9010137.
Full textRen, Si Kui, and Zhi Qun Li. "Design of Low Voltage Low Power ADC for WSN Node." Advanced Materials Research 760-762 (September 2013): 561–66. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.561.
Full textRikan, Behnam, Sang-Yun Kim, Hamed Abbasizadeh, Arash Hejazi, Reza Rad, Khuram Shehzad, Keum Hwang, Youngoo Yang, Minjae Lee, and Kang-Yoon Lee. "A 10- and 12-Bit Multi-Channel Hybrid Type Successive Approximation Register Analog-to-Digital Converter for Wireless Power Transfer System." Energies 11, no. 10 (October 8, 2018): 2673. http://dx.doi.org/10.3390/en11102673.
Full textRo, Duckhoon, Minseong Um, and Hyung-Min Lee. "A Soft-Error-Tolerant SAR ADC with Dual-Capacitor Sample-and-Hold Control for Sensor Systems." Sensors 21, no. 14 (July 13, 2021): 4768. http://dx.doi.org/10.3390/s21144768.
Full textLi, Jianwen, Xuan Guo, Jian Luan, Danyu Wu, Lei Zhou, Nanxun Wu, Yinkun Huang, et al. "A 1 GS/s 12-Bit Pipelined/SAR Hybrid ADC in 40 nm CMOS Technology." Electronics 9, no. 2 (February 23, 2020): 375. http://dx.doi.org/10.3390/electronics9020375.
Full textVerma, Deeksha, Khuram Shehzad, Danial Khan, Sung Jin Kim, Young Gun Pu, Sang-Sun Yoo, Keum Cheol Hwang, Youngoo Yang, and Kang-Yoon Lee. "A Design of Low-Power 10-bit 1-MS/s Asynchronous SAR ADC for DSRC Application." Electronics 9, no. 7 (July 6, 2020): 1100. http://dx.doi.org/10.3390/electronics9071100.
Full textTong, Xingyuan, and Tiantian Sun. "Improved Switching Energy Reduction Approach in Low-Power SAR ADC for Bioelectronics." VLSI Design 2016 (August 22, 2016): 1–6. http://dx.doi.org/10.1155/2016/6029254.
Full textHu, Yunfeng, Chao Xiong, and Bin Li. "A 0.975 μW 10-bit 100 kS/s SAR ADC with an energy-efficient and area-efficient switching scheme." Modern Physics Letters B 31, no. 19-21 (July 27, 2017): 1740051. http://dx.doi.org/10.1142/s0217984917400516.
Full textChen, Yushi, Yiqi Zhuang, and Hualian Tang. "An Ultra-Low Power Consumption High-Linearity Switching Scheme for SAR ADC." Journal of Circuits, Systems and Computers 29, no. 06 (August 2, 2019): 2050086. http://dx.doi.org/10.1142/s0218126620500863.
Full textLv, Risheng, Weiping Chen, Qiang Fu, Liang Yin, Yufeng Zhang, and Xiaowei Liu. "A triple-channel incremental zoom-ADC for 3-DoF MEMS digital gyroscopes." Modern Physics Letters B 34, no. 13 (March 30, 2020): 2050136. http://dx.doi.org/10.1142/s0217984920501365.
Full textINANLOU, REZA, and MOHAMMAD YAVARI. "A 10-BIT 0.5 V 100 kS/s SAR ADC WITH A NEW RAIL-TO-RAIL COMPARATOR FOR ENERGY LIMITED APPLICATIONS." Journal of Circuits, Systems and Computers 23, no. 02 (February 2014): 1450026. http://dx.doi.org/10.1142/s0218126614500261.
Full textShetty, Chaya, M. Nagabushanam, and Venkatesh Nuthan Prasad. "A 14-bit High Speed 125MS/s Low Power SAR ADC using Dual Split Capacitor DAC Architecture in 90nm CMOS Technology." International Journal of Circuits, Systems and Signal Processing 15 (June 29, 2021): 556–68. http://dx.doi.org/10.46300/9106.2021.15.62.
Full textLiang, Yuhua, and Zhangming Zhu. "An Energy-Efficient Switching Scheme for Low-Power SAR ADC Design." Journal of Circuits, Systems and Computers 27, no. 01 (August 23, 2017): 1850015. http://dx.doi.org/10.1142/s0218126618500159.
Full textZhu, Donglin, Maliang Liu, and Zhangming Zhu. "A High Energy Efficiency and Low Common-Mode Voltage Variation Switching Scheme for SAR ADCs." Journal of Circuits, Systems and Computers 27, no. 01 (August 23, 2017): 1850010. http://dx.doi.org/10.1142/s021812661850010x.
Full textKumar Y, L. V. Santosh. "Design and Implementation of SAR-ADC for Medical Electronic Applications." International Journal of Advanced Research in Computer Science and Software Engineering 8, no. 5 (June 2, 2018): 55. http://dx.doi.org/10.23956/ijarcsse.v8i5.665.
Full textVilla, Jorge, José I. Artigas, Luis A. Barragán, and Denis Navarro. "An Amplifier-Less Acquisition Chain for Power Measurements in Series Resonant Inverters." Sensors 19, no. 19 (October 8, 2019): 4343. http://dx.doi.org/10.3390/s19194343.
Full textShehzad, Khuram, Deeksha Verma, Danial Khan, Qurat Ain, Muhammad Basim, Sung Kim, YoungGun Pu, Keum Hwang, Youngoo Yang, and Kang-Yoon Lee. "Design of a Low Power 10-b 8-MS/s Asynchronous SAR ADC with On-Chip Reference Voltage Generator." Electronics 9, no. 5 (May 24, 2020): 872. http://dx.doi.org/10.3390/electronics9050872.
Full textLiang, Hongzhi, Ruixue Ding, Shubin Liu, and Zhangming Zhu. "Energy-Efficient and Area-Saving Asymmetric Capacitor Switching Scheme for SAR ADCs." Journal of Circuits, Systems and Computers 27, no. 07 (March 26, 2018): 1850109. http://dx.doi.org/10.1142/s0218126618501098.
Full textLee, Juyong, Seungjun Lee, Kihyun Kim, and Hyungil Chae. "A Pipelined Noise-Shaping SAR ADC Using Ring Amplifier." Electronics 10, no. 16 (August 15, 2021): 1968. http://dx.doi.org/10.3390/electronics10161968.
Full textZhang, Xiaowei, Wei Fan, Jianxiong Xi, and Lenian He. "14-Bit Fully Differential SAR ADC with PGA Used in Readout Circuit of CMOS Image Sensor." Journal of Sensors 2021 (February 22, 2021): 1–17. http://dx.doi.org/10.1155/2021/6651642.
Full textBekal, Anush, Shabi Tabassum, and Manish Goswami. "Low Power Design of a 1 V 8-bit 125 fJ Asynchronous SAR ADC with Binary Weighted Capacitive DAC." Journal of Circuits, Systems and Computers 26, no. 05 (February 8, 2017): 1750077. http://dx.doi.org/10.1142/s0218126617500773.
Full textRo, Duckhoon, Changhong Min, Myounggon Kang, Ik Joon Chang, and Hyung-Min Lee. "A Radiation-Hardened SAR ADC with Delay-Based Dual Feedback Flip-Flops for Sensor Readout Systems." Sensors 20, no. 1 (December 27, 2019): 171. http://dx.doi.org/10.3390/s20010171.
Full textV. Fonseca, Adriano, Pietro Maris Ferreira, Ludwig Cron, Fernando A. P. Barúqui, Carlos F. T. Soares, and Philippe Benabes. "A Temperature-Aware Analysis of SAR ADCs for Smart Vehicle Applications." Journal of Integrated Circuits and Systems 13, no. 1 (August 24, 2018): 1–10. http://dx.doi.org/10.29292/jics.v13i1.8.
Full textLin, Chih-Hsuan, and Kuei-Ann Wen. "An Innovative Successive Approximation Register Analog-to-Digital Converter for a Nine-Axis Sensing System." Journal of Low Power Electronics and Applications 11, no. 1 (January 9, 2021): 3. http://dx.doi.org/10.3390/jlpea11010003.
Full textLin, Chih-Hsuan, and Kuei-Ann Wen. "An Innovative Successive Approximation Register Analog-to-Digital Converter for a Nine-Axis Sensing System." Journal of Low Power Electronics and Applications 11, no. 1 (January 9, 2021): 3. http://dx.doi.org/10.3390/jlpea11010003.
Full textWang, Dong, Xiaoge Zhu, Xuan Guo, Jian Luan, Lei Zhou, Danyu Wu, Huasen Liu, Jin Wu, and Xinyu Liu. "A 2.6 GS/s 8-Bit Time-Interleaved SAR ADC in 55 nm CMOS Technology." Electronics 8, no. 3 (March 8, 2019): 305. http://dx.doi.org/10.3390/electronics8030305.
Full textXu, Daiguo, Kaikai Xu, Shiliu Xu, Lu Liu, and Tao Liu. "A System-Level Correction SAR ADC with Noise-Tolerant Technique." Journal of Circuits, Systems and Computers 27, no. 13 (August 3, 2018): 1850202. http://dx.doi.org/10.1142/s021812661850202x.
Full textShehzad, Khuram, Deeksha Verma, Danial Khan, Qurat Ul Ain, Muhammad Basim, Sung Jin Kim, Behnam Samadpoor Rikan, et al. "A Low-Power 12-Bit 20 MS/s Asynchronously Controlled SAR ADC for WAVE ITS Sensor Based Applications." Sensors 21, no. 7 (March 24, 2021): 2260. http://dx.doi.org/10.3390/s21072260.
Full textXu, Daiguo, Hequan Jiang, Dongbin Fu, Xiaoquan Yu, Shiliu Xu, Jun Yuan, Rongbin Hu, Can Zhu, and Jianan Wang. "A Linearity Improved 10-bit 120-MS/s 1.5 mW SAR ADC with High-Speed and Low-Noise Dynamic Comparator Technique." Journal of Circuits, Systems and Computers 29, no. 06 (July 31, 2019): 2050084. http://dx.doi.org/10.1142/s021812662050084x.
Full textSeo, Min-Jae. "A Single-Amplifier Dual-Residue Pipelined-SAR ADC." Electronics 10, no. 4 (February 9, 2021): 421. http://dx.doi.org/10.3390/electronics10040421.
Full textSosa, J., Juan A. Montiel-Nelson, R. Pulido, and Jose C. Garcia-Montesdeoca. "Design and Optimization of a Low Power Pressure Sensor for Wireless Biomedical Applications." Journal of Sensors 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/352036.
Full textLi, Shouping, Jianjun Chen, Bin Liang, and Yang Guo. "Low Power SAR ADC Design with Digital Background Calibration Algorithm." Symmetry 12, no. 11 (October 23, 2020): 1757. http://dx.doi.org/10.3390/sym12111757.
Full textChoi, Gyuri, Hyunwoo Heo, Donggeun You, Hyungseup Kim, Kyeongsik Nam, Mookyoung Yoo, Sangmin Lee, and Hyoungho Ko. "A Low-Power, Low-Noise, Resistive-Bridge Microsensor Readout Circuit with Chopper-Stabilized Recycling Folded Cascode Instrumentation Amplifier." Applied Sciences 11, no. 17 (August 28, 2021): 7982. http://dx.doi.org/10.3390/app11177982.
Full textLi, Shouping, Yang Guo, Jianjun Chen, and Bin Liang. "A 12-bit 30 MS/s Successive Approximation-Register Analog-to-Digital Converter with Foreground Digital Calibration Algorithm." Symmetry 12, no. 1 (January 14, 2020): 165. http://dx.doi.org/10.3390/sym12010165.
Full textLi, Dengquan, Liang Zhang, Zhangming Zhu, and Yintang Yang. "An 8-Bit 0.333–2 GS/s Configurable Time-Interleaved SAR ADC in 65-nm CMOS." Journal of Circuits, Systems and Computers 24, no. 06 (May 26, 2015): 1550093. http://dx.doi.org/10.1142/s0218126615500930.
Full textHao, Yunqiang, Dongbai Yi, Xiaowei Zhang, Wenxin Yu, Jianxiong Xi, and Lenian He. "A Power Management IC Used for Monitoring and Protection of Li-Ion Battery Packs." Journal of Sensors 2021 (April 8, 2021): 1–13. http://dx.doi.org/10.1155/2021/6611648.
Full textBabayan-Mashhadi, Samaneh, and Mona Jahangiri-Khah. "A Low-Power, Signal-Specific SAR ADC for Neural Sensing Applications." Journal of Circuits, Systems and Computers 27, no. 14 (August 23, 2018): 1850230. http://dx.doi.org/10.1142/s0218126618502304.
Full text