Journal articles on the topic 'Successive Approximation Register Analog-to- Digital Converter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Successive Approximation Register Analog-to- Digital Converter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cao, Chao, and Haijun Guo. "High-resolution calibrated successive-approximation-register analog-to-digital converter." Integration 87 (November 2022): 205–10. http://dx.doi.org/10.1016/j.vlsi.2022.08.005.
Full textCao, Chao, and Haijun Guo. "High-resolution calibrated successive-approximation-register analog-to-digital converter." Integration 87 (November 2022): 205–10. http://dx.doi.org/10.1016/j.vlsi.2022.08.005.
Full textAl-Naamani, Yahya Mohammed Ali, K. Lokesh Krishna, and A. M. Guna Sekhar. "A Successive Approximation Register Analog to Digital Converter for Low Power Applications." Journal of Computational and Theoretical Nanoscience 17, no. 1 (2020): 451–55. http://dx.doi.org/10.1166/jctn.2020.8689.
Full textDu, Ling, Ning Ning, Shuangyi Wu, Qi Yu, and Yang Liu. "A Digital Background Calibration Technique for Successive Approximation Register Analog-to-Digital Converter." Journal of Computer and Communications 01, no. 06 (2013): 30–36. http://dx.doi.org/10.4236/jcc.2013.16006.
Full textArafa, Kawther I., Dina M. Ellaithy, Abdelhalim Zekry, Mohamed Abouelatta, and Heba Shawkey. "Successive Approximation Register Analog-to-Digital Converter (SAR ADC) for Biomedical Applications." Active and Passive Electronic Components 2023 (January 4, 2023): 1–29. http://dx.doi.org/10.1155/2023/3669255.
Full textChauhan, Sarita. "Implementation of 32-BIT Pipelined ADC Using 90nm Analog CMOS Technology." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (2021): 3073–80. http://dx.doi.org/10.22214/ijraset.2021.37002.
Full textZhu, Donglin, Maliang Liu, and Zhangming Zhu. "A High Energy Efficiency and Low Common-Mode Voltage Variation Switching Scheme for SAR ADCs." Journal of Circuits, Systems and Computers 27, no. 01 (2017): 1850010. http://dx.doi.org/10.1142/s021812661850010x.
Full textPham, Duy Phong, Thanh Pham Xuan, Nguyen Thi Viet Ha, and Manh Kha Hoang. "Designing and simulation a 15-bit successive approximation register analog-to-digital converter." Journal of Military Science and Technology 87 (May 25, 2023): 1–8. http://dx.doi.org/10.54939/1859-1043.j.mst.87.2023.1-8.
Full textR, Yashaswini, and Kumar N. Krishna Murthy. "Design and Simulation of 16 Bit ADC." International Journal for Research in Applied Science and Engineering Technology 11, no. 7 (2023): 1017–24. http://dx.doi.org/10.22214/ijraset.2023.54790.
Full textZghoul, Fadi Nessir, Yousra Hussein Al-Bakrawi, Issa Etier, and Nithiyananthan Kannan. "An 8-bit successive-approximation register analog-to-digital converter operating at 125 kS/s with enhanced comparator in 180 nm CMOS technology." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 4 (2024): 3830. http://dx.doi.org/10.11591/ijece.v14i4.pp3830-3854.
Full textNessir, Zghoul Fadi, Al-Bakrawi Yousra Hussein, Issa Etier, and Nithiyananthan Kannan. "An 8-bit successive-approximation register analog-to-digital converter operating at 125 kS/s with enhanced comparator in 180 nm CMOS technology." An 8-bit successive-approximation register analog-to-digital converter operating at 125 kS/s with enhanced comparator in 180 nm CMOS technology 14, no. 4 (2024): 3830–54. https://doi.org/10.11591/ijece.v14i4.pp3830-3854.
Full textLin, Chih-Hsuan, and Kuei-Ann Wen. "An Innovative Successive Approximation Register Analog-to-Digital Converter for a Nine-Axis Sensing System." Journal of Low Power Electronics and Applications 11, no. 1 (2021): 3. http://dx.doi.org/10.3390/jlpea11010003.
Full textLin, Chih-Hsuan, and Kuei-Ann Wen. "An Innovative Successive Approximation Register Analog-to-Digital Converter for a Nine-Axis Sensing System." Journal of Low Power Electronics and Applications 11, no. 1 (2021): 3. http://dx.doi.org/10.3390/jlpea11010003.
Full textChavhan, Sarvesh S., and K. M. Bogawar. "Energy Efficient Quaternary Capacitive DAC Switching Scheme for SAR -ADC." Journal of Advance Research in Electrical & Electronics Engineering (ISSN: 2208-2395) 2, no. 6 (2015): 13–16. http://dx.doi.org/10.53555/nneee.v2i6.191.
Full textAn, Sheng-Biao, Li-Xin Zhao, Shi-Cong Yang, Tao An, and Rui-Xia Yang. "Design of Low Power and High Precision Successive Approximation Register Analog-to-Digital Converter (SAR-ADC) Based on Piecewise Capacitance and Calibration Technique." Journal of Nanoelectronics and Optoelectronics 15, no. 4 (2020): 478–86. http://dx.doi.org/10.1166/jno.2020.2782.
Full textBialek, J., A. Wickmann, F. Ohnhaeuser, G. Fischer, R. Weigel, and T. Ussmueller. "Implementation of a digital trim scheme for SAR ADCs." Advances in Radio Science 11 (July 4, 2013): 227–30. http://dx.doi.org/10.5194/ars-11-227-2013.
Full textHUANG, Jhin-Fang, Wen-Cheng LAI, and Cheng-Gu HSIEH. "A 10-bit 100 MS/s Successive Approximation Register Analog-To-Digital Converter Design." IEICE Transactions on Electronics E97.C, no. 8 (2014): 833–36. http://dx.doi.org/10.1587/transele.e97.c.833.
Full textPark, Joonsung, Jiwon Lee, Jacob A. Abraham, and Byoungho Kim. "A Tunable Foreground Self-Calibration Scheme for Split Successive-Approximation Register Analog-to-Digital Converter." Electronics 13, no. 4 (2024): 755. http://dx.doi.org/10.3390/electronics13040755.
Full textKobayashi, Yutaro, and Haruo Kobayashi. "Redundant SAR ADC Algorithm Based on Fibonacci Sequence." Key Engineering Materials 698 (July 2016): 118–26. http://dx.doi.org/10.4028/www.scientific.net/kem.698.118.
Full textMomeni, Mahdi, and Mohammad Yavari. "Shifting the sampled input signal in successive approximation register analog‐to‐digital converters to reduce the digital‐to‐analog converter switching energy and area." International Journal of Circuit Theory and Applications 48, no. 11 (2020): 1873–86. http://dx.doi.org/10.1002/cta.2852.
Full textFuente-Cortes, Gisela De La, Guillermo Espinosa Flores-Verdad, Alejandro Díaz-Méndez, and Victor R. Gonzalez-Diaz. "A Non-Linear Successive Approximation Finite State Machine for ADCs with Robust Performance." Electronics 13, no. 14 (2024): 2756. http://dx.doi.org/10.3390/electronics13142756.
Full textAdsul, Jayamala, and Harsh Sawardekar. "Reconfigurable Successive Approximation Register ADC and SAR-Assisted Pipeline ADC." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 13, no. 02 (2021): 93–97. http://dx.doi.org/10.18090/samriddhi.v13i02.6.
Full textLaoudias, Costas, George Souliotis, and Fotis Plessas. "A High ENOB 14-Bit ADC without Calibration." Electronics 13, no. 3 (2024): 570. http://dx.doi.org/10.3390/electronics13030570.
Full textZhao, Yi-qiang, Ming Yang, and Hong-liang Zhao. "A cryogenic 10-bit successive approximation register analog-to-digital converter design with modified device model." Journal of Shanghai Jiaotong University (Science) 18, no. 5 (2013): 520–25. http://dx.doi.org/10.1007/s12204-013-1436-8.
Full textJagadish, D. N., and M. S. Bhat. "Low Energy and Area Efficient Nonbinary Capacitor Array Based Successive Approximation Register Analog-to-Digital Converter." Journal of Low Power Electronics 11, no. 3 (2015): 436–43. http://dx.doi.org/10.1166/jolpe.2015.1389.
Full textHe, Xinyuan, Weifeng Qiao, Xinpeng Xing та Haigang Feng. "A Power-Efficient 16-bit 1-MS/s Successive Approximation Register Analog-to-Digital Converter with Digital Calibration in 0.18 μm Complementary Metal Oxide Semiconductor". Journal of Low Power Electronics and Applications 14, № 2 (2024): 32. http://dx.doi.org/10.3390/jlpea14020032.
Full textLi, Shouping, Yang Guo, Jianjun Chen, and Bin Liang. "A 12-bit 30 MS/s Successive Approximation-Register Analog-to-Digital Converter with Foreground Digital Calibration Algorithm." Symmetry 12, no. 1 (2020): 165. http://dx.doi.org/10.3390/sym12010165.
Full textSARAFI, SAHAR, KHEYROLLAH HADIDI, EBRAHIM ABBASPOUR, ABU KHARI BIN AAIN, and JAVAD ABBASZADEH. "100 MS/s, 10-BIT ADC USING PIPELINED SUCCESSIVE APPROXIMATION." Journal of Circuits, Systems and Computers 23, no. 05 (2014): 1450057. http://dx.doi.org/10.1142/s0218126614500571.
Full textJia, Shichao, Tianchun Ye, and Shimao Xiao. "Analysis of the Second-Order NS SAR ADC Performance Enhancement Based on Active Gain." Electronics 13, no. 17 (2024): 3400. http://dx.doi.org/10.3390/electronics13173400.
Full textLee, Hyun-Yeop, Jin-Seop Lee, Chang-Kyun Noh, et al. "Low-Power Switching Scheme with Quarter Reference Voltage Sources for SAR ADCs." Journal of Electromagnetic Engineering and Science 22, no. 2 (2022): 129–37. http://dx.doi.org/10.26866/jees.2022.2.r.69.
Full textSiti, Idzura Yusuf, Shafie Suhaidi, Abdul Majid Hasmayadi, and Abdul Halin Izhal. "Differential input range driver for SAR ADC measurement setup." Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 17, no. 2 (2020): 750–58. https://doi.org/10.11591/ijeecs.v17.i2.pp750-758.
Full textMelnychuk, S. I., M. H. Tarnovskyi, and O. H. Murashchenko. "ANALYSIS OF THE ARCHITECTURE OF SUCCESSIVE APPROXIMATION REGISTER ADC AND APPROACHES TO ITS IMPROVEMENT." Information technology and computer engineering 57, no. 2 (2023): 4–12. http://dx.doi.org/10.31649/1999-9941-2023-57-2-4-12.
Full textJung, Inseok, Kyung Ki Kim, and Yong-Bin Kim. "A Novel Built-in Self Calibration Technique to Minimize Capacitor Mismatch for 12-bit 32MS/s SAR ADC." Journal of Integrated Circuits and Systems 10, no. 3 (2015): 187–200. http://dx.doi.org/10.29292/jics.v10i3.422.
Full textFahmy, Ghazal A., and Mohamed Zorkany. "Design of a Memristor-Based Digital to Analog Converter (DAC)." Electronics 10, no. 5 (2021): 622. http://dx.doi.org/10.3390/electronics10050622.
Full textHuang, Jhin-Fang, Jin-Yu Wen, and Cheng-Ku Hsieh. "An 8-bit 20 MS/s Successive Approximation Register Analog-to-digital Converter with Low Input Capacitance." International Journal of Engineering Practical Research 3, no. 4 (2014): 83. http://dx.doi.org/10.14355/ijepr.2014.0304.04.
Full textBai, Suping, Zhi Wan, Peiyuan Wan, et al. "A 9-Bit 1-GS/s Hybrid-Domain Pseudo-Pipelined SAR ADC Based on Variable Gain VTC and Segmented TDC." Electronics 10, no. 21 (2021): 2650. http://dx.doi.org/10.3390/electronics10212650.
Full textLiu, Wenbo, Pingli Huang, and Yun Chiu. "A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration." IEEE Journal of Solid-State Circuits 46, no. 11 (2011): 2661–72. http://dx.doi.org/10.1109/jssc.2011.2163556.
Full textMalandruccolo, Vezio, Mauro Ciappa, Hubert Rothleitner, M. Hommel, and Wolfgang Fichtner. "A new built-in screening methodology for Successive Approximation Register Analog to Digital Converters." Microelectronics Reliability 50, no. 9-11 (2010): 1750–57. http://dx.doi.org/10.1016/j.microrel.2010.07.096.
Full textLiu, Shubin, Haolin Han, and Ruixue Ding. "Energy-Efficient Switching Scheme with 93.41% Reduction in Capacitor Area for SAR ADC." Journal of Circuits, Systems and Computers 28, no. 13 (2019): 1930010. http://dx.doi.org/10.1142/s0218126619300101.
Full textLi, Nan, Xinyuan He, and Xinpeng Xing. "A calibration-free 10.7 fJ/conv.-step 12-bit 120-MS/s pipelined SAR ADC in 40nm CMOS." Journal of Physics: Conference Series 2613, no. 1 (2023): 012021. http://dx.doi.org/10.1088/1742-6596/2613/1/012021.
Full textBontems, W., and D. Dzahini. "Design of a very low power 12 bits, 40 MS/s ADC based on a time-interleaved SAR architecture." Journal of Instrumentation 19, no. 05 (2024): C05033. http://dx.doi.org/10.1088/1748-0221/19/05/c05033.
Full textWang, Jiaqi. "A 10-bit 160 MS/s Asynchronous SAR ADC design." Journal of Physics: Conference Series 2645, no. 1 (2023): 012001. http://dx.doi.org/10.1088/1742-6596/2645/1/012001.
Full textArzate-Palma, Victor H., David G. Rivera-Orozco, Gerardo Molina Salgado, and Federico Sandoval-Ibarra. "A Review on Fundamentals of Noise-Shaping SAR ADCs and Design Considerations." Chips 3, no. 2 (2024): 153–81. http://dx.doi.org/10.3390/chips3020007.
Full textSun, Lei, Chi Tung Ko, Marco Ho, et al. "23 µW 8.9-effective number of bit 1.1 MS/s successive approximation register analog-to-digital converter with an energy-efficient digital-to-analog converter switching scheme." Journal of Engineering 2014, no. 8 (2014): 420–25. http://dx.doi.org/10.1049/joe.2014.0137.
Full textSilpa, Kesav Velagaleti, K. S. Nayanathara, and B. K. Madhavi. "A 9.38-bit, 422nW, high linear SAR-ADC for wireless implantable system." TELKOMNIKA Telecommunication, Computing, Electronics and Control 19, no. 2 (2021): pp. 547~555. https://doi.org/10.12928/TELKOMNIKA.v19i2.18318.
Full textRo, Duckhoon, Minseong Um, and Hyung-Min Lee. "A Soft-Error-Tolerant SAR ADC with Dual-Capacitor Sample-and-Hold Control for Sensor Systems." Sensors 21, no. 14 (2021): 4768. http://dx.doi.org/10.3390/s21144768.
Full textJyoti, Sehgal, and Kumar Manoj. "12-Bit Clock Gated SAR-ADC for Bio-Medical Applications." Indian Journal of Science and Technology 15, no. 34 (2022): 1648–54. https://doi.org/10.17485/IJST/v15i34.1033.
Full textYoung-Kyun Cho, Young-Deuk Jeon, Jae-Won Nam, and Jong-Kee Kwon. "A 9-bit 80 MS/s Successive Approximation Register Analog-to-Digital Converter With a Capacitor Reduction Technique." IEEE Transactions on Circuits and Systems II: Express Briefs 57, no. 7 (2010): 502–6. http://dx.doi.org/10.1109/tcsii.2010.2048387.
Full textChi, Yingying, and Dongmei Li. "A 1.8 V 1.1 MS/s 96.1 dB-SFDR successive approximation register analog-to-digital converter with calibration." Journal of Semiconductors 34, no. 4 (2013): 045007. http://dx.doi.org/10.1088/1674-4926/34/4/045007.
Full textVilla, Jorge, José I. Artigas, Luis A. Barragán, and Denis Navarro. "An Amplifier-Less Acquisition Chain for Power Measurements in Series Resonant Inverters." Sensors 19, no. 19 (2019): 4343. http://dx.doi.org/10.3390/s19194343.
Full text