Dissertations / Theses on the topic 'Sulfid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sulfid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ehm, Lars. "Hochdruckpulverdiffraktometrie an Sulfid- und Halogenid-Schichtstrukturen." [S.l.] : [s.n.], 2003. http://e-diss.uni-kiel.de/diss_766/d766.pdf.
Full textDilner, David. "Profitability = f(G) : Computational Thermodynamics, Materials Design and Process Optimization." Doctoral thesis, KTH, Materialvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191243.
Full textQC 20160829
COMPASS
Schödl, Thomas. "Sulfid-Chinon-Reduktase (SQR) aus Aquifex aeolicus Gensynthese, Expression, Reinigung und biochemische Charakterisierung /." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968918344.
Full textStauder, Stefan. "Schwefelhaltige Arsenspezies in Grundwässern." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1187198174710-08914.
Full textThe motivation for the thesis was a project at an industrial site conducted in 1999 to define a remediation concept for soil and groundwater contaminated with arsenic. The contamination resulted from the deposition of residuals from pyrite burning (iron oxides containing different trace elements) in the upper soil many years ago. Because of long-term pollution with process waters rich in organic substances and sulfate, the aquifer is strongly reduced (sulfidic). Most of the arsenic was transferred out of the contaminated soil into the saturated zone in a depth of 7-10 m. There it is partly immobilized as sulfide precipitations, but part of it is solved in the groundwater in form of arsenic-sulfur-complexes (up to 4 ppm). These complexes were detected for the first time in a groundwater by means of an improved IC-ICP-MS method. It was also found that approx. 80 m downstream of the contaminated spot the concentrations of arsenic in soil and groundwater were not increased. On this basis a natural attenuation concept was proposed in 2000. The data from the investigated site was evaluated and specific laboratory tests were carried out in order to identify the unknown arsenic species as well as the processes which lead to their immobilization in the aquifer. The key role of the soluble arsenic-sulfur complexes for the mobility and toxicity of arsenic in sulfate-reducing environments is commonly accepted. In the past, thioarsenites were assumed to be the existing species in sulfidic systems. In this study, however, thioarsenates were identified in solutions spiked with in arsenite and hydrogen sulfide as well as in the contaminated groundwater. The unexpected finding of an oxidation of arsenite to thioarsenates in strongly reducing systems can be explained by the high affinity between As(III) and sulfur. In sulfide containing solutions without any oxidant, arsenite therefore undergoes disproportionation to thioarsenates and elemental arsenic. This was already found out in the 19th century, but has been neglected in publications from the last decades. According to the results of this study the anions of oxomonothioarsenate, oxodithioarsenate, oxotrithioarsenate und tetrathioarsenate are the dominating arsenic species in sulfidic waters. The partitioning of the four species is governed mainly by the sulfide concentration. Beside the high affinity between arsenic and sulfur, the instability of the As-SH group is essential to understand the reactions in the arsenic-sulfur system. As soon as the arsenic-sulfur complexes form As-SH groups (according to their dissociation characteristics) they condensate in separating hydrogen sulfide. Thioarsenates form polymers in the pH range of approx. 7-8.5. Therefore beside the mentioned monomers, thioarsenate polymers can also be important in natural environments. In more acidic solutions they decay into arsenite and sulfur or precipitate as arsenic-pentasulfide. When analyzing arsenic in sulfide containing solutions, it has always to be taken into account that thioarsenates are highly sensitive to oxygen and pH. Therefore, e.g. arsenic speciation by means of HG-AAS is not suitable for sulfidic waters and can wrongly indicate a mixture of arsenite and arsenate. It has previously been supposed that the mobility as well as the toxicity of arsenic increase if the redox state decreases. For sulfidic waters the opposite is probably the case owing to the formation of thioarsenates. The toxicity of arsenite is due to the high reactivity of the As(III) towards sulfohydroxyl groups in proteins. Without a free electron pair and sulfur already incorporated, thioarsenates should be less toxic compared to arsenite. Arsenic can be mobilized out of contaminated soils in form of thioarsenates via infiltration of sulfide solutions or by input of sulfate and biodegradable organic matter. In the presence of iron, thioarsenates can be fixated in sulfidic aquifers as a minor substitute in mackinawite and biogenic pyrite or as arsenic pyrite. Bacterial sulfate reduction is a crucial factor for the mobilization and immobilization of arsenic in reduced aquifers. Considering the negative health impacts of arsenic for millions of people worldwide, as well as the implementation of the mentioned remediation strategies the arsenic-sulfur chemistry deserves closer attention
Griesbeck, Christoph. "Sulfid-Chinon-Reduktase (SQR) aus Rhodobacter capsulatus physikochemische Charakterisierung und Studien zum katalytischen Mechanismus /." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963623826.
Full textSchnurbus-Duhs, Annika Jeannine [Verfasser]. "Strahlenbiologische Effekte nach Radiosynoviorthese mit Rhenium-186-Sulfid und Erbium-169-Citrat / Annika Jeannine Schnurbus-Duhs." Gießen : Universitätsbibliothek, 2013. http://d-nb.info/1065395280/34.
Full textDonner, Jan. "Aufbereitung schwefelwasserstoffhaltiger Wässer durch katalytische Oxidation an porphyrinmodifizierten kohlenstoffhaltigen Materialien." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1236021478050-88453.
Full textHydrogen sulfide often occurs in groundwater of arid areas. Because of its malodour, H2S containing water cannot be used as drinking water without treatment. Aeration as the most common treatment technique is less effective and leads to nasty odour of ambient air. Catalytic oxidation could be an alternative. The aim of this work was to develop and to optimize a technically applicable oxidation catalyst as well as to test its applicability under practical conditions. Various N4-chelates (e. g. porphyrins), which are frequently used for the reduction of oxygen in fuel cells, were evaluated for catalytic oxidation of sulfide at selected boundary conditions and process parameters using batch and column experiments. The new catalysts should be characterized in comparison with other materials. The oxidation kinetics, the long-time stability of the catalyst and the composition of oxidation products were the main criteria used for catalyst assessment. Cobalt tetraphenylporphyrin (CoTPP) showed the highest catalytic activity of all tested materials. The rate of sulfide transformation increased significantly with increasing temperature and at pH values higher than 6. A catalyst suitable for technical use in fixed-bed reactors was obtained by coating of a supporting material (carbon felt KFA) with the active substance. For all investigated materials, sulfur was found to be the main reaction product of the sulfide oxidation. In contrast to activated carbon, which showed catalytic activity for sulfide oxidation too, modified KFA felt materials were not blocked and deactivated by formed sulfur, even after long-term use. The new catalyst is well qualified for a stable oxidation of sulfide in water. In comparison to activated carbon, higher investment costs are required, but the carbon felt supported porphyrin has a significant longer lifetime. Because of its easy use, modified KFA felt is applicable both in small local plants and in large waterworks. There is no necessity to add chemicals or to install complex control equipment. As a positive side-effect, further improvement of sulfide elimination caused by sulfide-oxidizing bacteria was found during long filter run times
Stauder, Stefan. "Schwefelhaltige Arsenspezies in Grundwässern: Strukturaufklärung, Analytik und Sanierungsstrategien." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A23946.
Full textThe motivation for the thesis was a project at an industrial site conducted in 1999 to define a remediation concept for soil and groundwater contaminated with arsenic. The contamination resulted from the deposition of residuals from pyrite burning (iron oxides containing different trace elements) in the upper soil many years ago. Because of long-term pollution with process waters rich in organic substances and sulfate, the aquifer is strongly reduced (sulfidic). Most of the arsenic was transferred out of the contaminated soil into the saturated zone in a depth of 7-10 m. There it is partly immobilized as sulfide precipitations, but part of it is solved in the groundwater in form of arsenic-sulfur-complexes (up to 4 ppm). These complexes were detected for the first time in a groundwater by means of an improved IC-ICP-MS method. It was also found that approx. 80 m downstream of the contaminated spot the concentrations of arsenic in soil and groundwater were not increased. On this basis a natural attenuation concept was proposed in 2000. The data from the investigated site was evaluated and specific laboratory tests were carried out in order to identify the unknown arsenic species as well as the processes which lead to their immobilization in the aquifer. The key role of the soluble arsenic-sulfur complexes for the mobility and toxicity of arsenic in sulfate-reducing environments is commonly accepted. In the past, thioarsenites were assumed to be the existing species in sulfidic systems. In this study, however, thioarsenates were identified in solutions spiked with in arsenite and hydrogen sulfide as well as in the contaminated groundwater. The unexpected finding of an oxidation of arsenite to thioarsenates in strongly reducing systems can be explained by the high affinity between As(III) and sulfur. In sulfide containing solutions without any oxidant, arsenite therefore undergoes disproportionation to thioarsenates and elemental arsenic. This was already found out in the 19th century, but has been neglected in publications from the last decades. According to the results of this study the anions of oxomonothioarsenate, oxodithioarsenate, oxotrithioarsenate und tetrathioarsenate are the dominating arsenic species in sulfidic waters. The partitioning of the four species is governed mainly by the sulfide concentration. Beside the high affinity between arsenic and sulfur, the instability of the As-SH group is essential to understand the reactions in the arsenic-sulfur system. As soon as the arsenic-sulfur complexes form As-SH groups (according to their dissociation characteristics) they condensate in separating hydrogen sulfide. Thioarsenates form polymers in the pH range of approx. 7-8.5. Therefore beside the mentioned monomers, thioarsenate polymers can also be important in natural environments. In more acidic solutions they decay into arsenite and sulfur or precipitate as arsenic-pentasulfide. When analyzing arsenic in sulfide containing solutions, it has always to be taken into account that thioarsenates are highly sensitive to oxygen and pH. Therefore, e.g. arsenic speciation by means of HG-AAS is not suitable for sulfidic waters and can wrongly indicate a mixture of arsenite and arsenate. It has previously been supposed that the mobility as well as the toxicity of arsenic increase if the redox state decreases. For sulfidic waters the opposite is probably the case owing to the formation of thioarsenates. The toxicity of arsenite is due to the high reactivity of the As(III) towards sulfohydroxyl groups in proteins. Without a free electron pair and sulfur already incorporated, thioarsenates should be less toxic compared to arsenite. Arsenic can be mobilized out of contaminated soils in form of thioarsenates via infiltration of sulfide solutions or by input of sulfate and biodegradable organic matter. In the presence of iron, thioarsenates can be fixated in sulfidic aquifers as a minor substitute in mackinawite and biogenic pyrite or as arsenic pyrite. Bacterial sulfate reduction is a crucial factor for the mobilization and immobilization of arsenic in reduced aquifers. Considering the negative health impacts of arsenic for millions of people worldwide, as well as the implementation of the mentioned remediation strategies the arsenic-sulfur chemistry deserves closer attention.
Donner, Jan. "Aufbereitung schwefelwasserstoffhaltiger Wässer durch katalytische Oxidation an porphyrinmodifizierten kohlenstoffhaltigen Materialien." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23632.
Full textHydrogen sulfide often occurs in groundwater of arid areas. Because of its malodour, H2S containing water cannot be used as drinking water without treatment. Aeration as the most common treatment technique is less effective and leads to nasty odour of ambient air. Catalytic oxidation could be an alternative. The aim of this work was to develop and to optimize a technically applicable oxidation catalyst as well as to test its applicability under practical conditions. Various N4-chelates (e. g. porphyrins), which are frequently used for the reduction of oxygen in fuel cells, were evaluated for catalytic oxidation of sulfide at selected boundary conditions and process parameters using batch and column experiments. The new catalysts should be characterized in comparison with other materials. The oxidation kinetics, the long-time stability of the catalyst and the composition of oxidation products were the main criteria used for catalyst assessment. Cobalt tetraphenylporphyrin (CoTPP) showed the highest catalytic activity of all tested materials. The rate of sulfide transformation increased significantly with increasing temperature and at pH values higher than 6. A catalyst suitable for technical use in fixed-bed reactors was obtained by coating of a supporting material (carbon felt KFA) with the active substance. For all investigated materials, sulfur was found to be the main reaction product of the sulfide oxidation. In contrast to activated carbon, which showed catalytic activity for sulfide oxidation too, modified KFA felt materials were not blocked and deactivated by formed sulfur, even after long-term use. The new catalyst is well qualified for a stable oxidation of sulfide in water. In comparison to activated carbon, higher investment costs are required, but the carbon felt supported porphyrin has a significant longer lifetime. Because of its easy use, modified KFA felt is applicable both in small local plants and in large waterworks. There is no necessity to add chemicals or to install complex control equipment. As a positive side-effect, further improvement of sulfide elimination caused by sulfide-oxidizing bacteria was found during long filter run times.
Guschlbauer, Jannick [Verfasser], and Jörg [Akademischer Betreuer] Sundermeyer. "Organische Salze Sulfid- und Selenid-basierter Anionen: Bausteine für die Materialsynthese bi- und multinärer Metallchalkogenide / Jannick Guschlbauer ; Betreuer: Jörg Sundermeyer." Marburg : Philipps-Universität Marburg, 2020. http://d-nb.info/1203299605/34.
Full textPersson, Mattias. "Kostnad-nytta-analys för tungmetallrening av tvätthallsslam i fullskala." Thesis, KTH, Skolan för kemivetenskap (CHE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173314.
Full textThis thesis is done in cooperation with SRV Återvinning AB which is a recycling company. SRV has a new plant to clean THS. THS is oily water from car washes, sludges from manholes and oil separators. THS polluted with heavy metals. Henriksdals sewage treatment plant receives the cleaned THS water. It is desirable to reduce six heavy metals in this inflow. The sewage treatment plant in Henriksdal is ReVAQ certified. The ReVAQ certification is to ensure that sludge produced in a ReVAQ certified plant is of very high quality and can be used as fertilizer on arable land. The six priority metals are: lead, cadmium, chromium, copper, mercury and zinc. Two of the new treatment steps are included in this study: normalization with sulfuric acid and metal precipitation with an organic sulfide, Na3T. DOE (Design of Experiments) were conducted in the THS facility to examine the effectiveness of the two new treatment steps. Further experiments was carried out to see how an increased feed affects the purification of THS and also to confirm that it is not necessary to add Na3T. The content of the metals in the purified water was lower than the requirements stated by Stockholm Vatten for process water from industries and the annually release of metal was lower than the requirements of an adjudication proclaimed in the Swedish Environmental Court ( Case 5717-07), even if Na3T is not used. If Na3T is not used an environmental benefit is obtained due to reduced chemical transports and smaller amount of chemicals need to be made. If the received THS becomes more polluted or more difficult to treat, depending on the other content, than the so far received THS, it may be necessary to add Na3T to reduce the metals to the desired level. The normalization step was not working satisfactory, probably due to that the pH-value cannot be kept low enough in the purification step. To replace the dosage pump or to use more concentrated sulfuric acid in order to improve the normalization step is not seen to be worth the effort. The concentrations of lead and cadmium in the purified water from THS have several times been below the limit of quantification, LOQ, (0.2 μgPb / l and 0.02 μgCd / l). Na3T can be needed if the cadmium content of incoming THS would increase drastically because cadmium does not form a hydroxide precipitation. It was not possible to prove that the normalization step contributed to a reduction of the chromium content in the THS-water, but the DOE showed that the amount of chromium was decreased if Na3T is used. The chromium content in the outgoing THS-water is below the requirements although no Na3T is added. In the experiments the purification of copper was good, the change in concentration was around 99 % and therefore the process does not need to be fine-tuned to reduce the amount of copper. The concentrations of mercury in all experiments have been below the limit of quantification (0.1 gHg /literTHS). It is good for everybody (carwash owners, SRV, Henriksdal sewage treatment plants and arable land) that the incoming content of mercury was so low that it was not possible to quantify. Zinc was the metal which was most affected by a lower pH in the normalization step. Although a higher pH was used the content of zinc in outgoing THS-water fulfilled the current requirements. The greatest working environmental risk for the workers in the plant is the risk of being exposed by chemicals. The risks for being exposed to chemicals in the THS-facility have been reduced and emergency equipment is easily accessible in the facility. The filling of Na3T was done in a different way than for the other bulk chemicals. The procedure increases the risk of chemical exposure and is both problematic and requires more staff. The chemical costs for Na3T, if used, is about 100 000 SEK per year and the cost for sulfuric acid is about 110 000 SEK per year, depending on the alkalinity and the chosen pH value in the normalization step. The risk of using chemicals is estimated to be a bit more than 12 000 SEK annually for Na3T and just under 154 000 SEK annually for the sulfuric acid. The total volume of water sent to Henriksdal in 2013 was 329 000 m3. If the THS-facility works at its dimensioned flow rate, the volume to Henriksdal is increased by approximately 18 000 m3 per year. But since the THS-stream is cleaner and about one twentieth of the other streams a larger metal reduction could be achieved by treating the other water streams more efficient.
McGinnity, Justin. "Sulfur dioxide leaching of zinc sulfide." Curtin University of Technology, Department of Applied Chemistry, 2001. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=12896.
Full textat low ZnS pulp density (0.5 g L-1), the rate of ZnS dissolution in sulfuric acid increased due to the removal of H2S(aq) by reaction with S02(aq) or HS03-(aq). However the increase in rate was much less than that expected for the complete removal of H2S(aq). As with leaches of ZnS in sulfurous acid at ambient temperature, the inhibition was not attributable to the presence of residual H2S(aq) or to occlusion of unreacted ZnS by elemental sulfur, but is thought to be due to aqueous species that are like "H2S", in that they may react with Zn2+ to reprecipitate W.To this end, sulfane monosulfonates have again been postulated. The rate of ZnS dissolution, under conditions of low pulp density, was independent Of S02 concentration, suggesting that under these conditions the rate of the H2S / S02 reaction is also independent of the S02 concentration.At higher pulp densities (200 g L-1), similar to those expected in an industrial application, synthetic zinc sulfide leached rapidly in H2S04 / S02 solutions to approximately 60% zinc extraction, but was then inhibited by the large amounts of sulfur that formed. These caused agglomerates of zinc sulfide and elemental sulfur to form, even at temperatures below the melting point of sulfur, reducing the surface area of zinc sulfide available for reaction.Leaches of zinc concentrate at low pulp densities in H2S04 / S02 solutions and at temperatures above sulfur's meting point, were inhibited by the formation of molten sulfur. In contrast to synthetic zinc sulfide, zinc concentrate is readily wet by molten sulfur. Three surfactants orthophenylenediamine, quebracho and sodium ligninsulfonate were found to be reasonably effective in preventing molten sulfur from occluding the mineral surface. At high pulp densities, the H2S04 / S02 leach solution was unable to effect, the extraction of zinc from a zinc concentrate beyond approximately ++
10%.Integral S02 / H2S04 leaching of zinc concentrate was found not to be a commercial prospect. However, sidestream processing of zinc concentrate in an acid leach stage followed by reaction of generated H2S with S02 from the roasting stage to produce elemental sulfur may be viable.
Oen, Endre Nerhus. "Dannelse av sulfidforekomster i Reinfjord og Lokkarfjord, Seiland magmatiske provins : En svovelisotopstudie av økonomisk interessante sulfid-forekomster dannet i forbindelse med ultramafisk magmatisk aktivitet." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for geologi og bergteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24242.
Full textDo, Thi Lien, Thi To Uyen Do, Thi Nhi Cong Le, Phuong Ha Hoang, and Thi Ngoc Mai Cung. "Optimization production conditions of photosynthetic purple bacteria biomass at pilot scale to remove sulphide from aquaculture pond." Technische Universität Dresden, 2018. https://tud.qucosa.de/id/qucosa%3A32725.
Full textNhằm mục tiêu xử lý sulphide trong môi trường nuôi trồng thủy sản, chúng tôi đã phân lập và lựa chọn được ba chủng vi khuẩn tía quang hợp có khả năng loại bỏ sulphide cao nhất ký hiệu TH21, QN71, QN52 từ các vùng ven biển Thanh Hóa và Quảng Ninh. Các chủng này đã được định loại và thử nghiệm tại một số ao nuôi thủy sản ở các vùng khác nhau thu được kết quả tốt về chất lượng nước. Để tạo chế phẩm vi khuẩn tía quang hợp từ 3 chủng lựa chọn được ứng dụng rộng rãi và có giá thành phù hợp cho nông hộ, trong nghiên cứu này, chúng tôi nghiên cứu tối ưu hóa các điều kiện sản xuất sinh khối hỗn hợp 3 chủng vi khuẩn tía quang hợp ở quy mô pilot. Kết quả cho thấy đã tìm kiếm được nguồn cơ chất là bột đậu tương (1g/l) và acetate (0.5g/l) là những chất có giá thành thấp, dễ tìm kiếm, thuận tiện trong nhân nuôi ở quy mô lớn. Hỗn hợp vi khuẩn tía quang hợp có thể nuôi trong các bể kính, ở điều kiện vi hiếu khí, có ánh sáng chiếu tự nhiên có thể sản xuất được chế phẩm vi khuẩn tía quang hợp có mật độ cao, cơ chất còn lại sau sản xuất là ít nhất.
Tong, Libin. "Sulfur dispersing agents for nickel sulfide leaching above the melting point of sulfur." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/3427.
Full textHedberg, Johanna. "Effects of meiofauna and cable bacteria on oxygen, pH and sulphide dynamics in Baltic Sea hypoxic sediment." Thesis, Stockholms universitet, Institutionen för ekologi, miljö och botanik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188795.
Full textSiu, Tung. "Kinetic and mechanistic study of aqueous sulfide-sulfite-thiosulfate system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0007/MQ45585.pdf.
Full textCrowell, Brendan William. "Biological sulfur reactions and the influence on fluid flow at mid-ocean ridge hydrothermal systems." Thesis, Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07092007-085654/.
Full textLiu, Yanan 1981. "Sulfur concentration at sulfide saturation in anhydrous silicate melts at crustal conditions." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98753.
Full textThis model predicts the SCSS in anhydrous silicate melts from rhyolitic to basaltic compositions at crustal conditions from 1 bar to 1.25 GPa, temperatures from ~1200 to 1400ºC, and oxygen fugacities between approximately two log units below the fayalite-quartz-magnetite buffer and one log unit above the nickel-nickel oxide buffer. For cases where the oxygen and sulfur fugacities cannot be adequately estimated a simpler model also works acceptably: lnSppm =-5328T+8.431+1.244 lnMFM-0.01704P T+lnaFeS where aFes is the activity of FeS in the sulfide melt and is well approximated by a value of 1. Additional experiments were performed on other basalts in a temperature range from 1250ºC to 1450ºC at 1 GPa to test the models. The model predictions and the measurements of the SCSS agree within 5%. Although I cannot fix exactly the stoichiometric coefficients of the reaction controlling sulfur dissolution, my experiments and models suggest that the solution reaction for sulfur in melts saturated with sulfide is similar to: 8FeSsulfide +3FeOsilicate+4O2-silicat e+2O2gas ⇔4S2-silicate+2S 2gas+11FeOsulfide where the subscripts indicate the phase and O 2- represents "free" oxygens in the silicate melt.
Keywords. sulfur, solubility model, dissolution mechanism, silicate melts
Morra, Matthew John. "Gaps in the sulfur cycle : biogenic hydrogen sulfide production and atmospheric deposition /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487323583619796.
Full textJi, Yijie. "Metal Organic Frameworks Derived Nickel Sulfide/Graphene Composite for Lithium-Sulfur Batteries." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron152233332526446.
Full textMorris, Robert Eugene. "THE CONTROL OF SULFUR EMISSIONS DURING THE ROASTING OF METAL SULFIDES (LIME, ZINC)." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275396.
Full textAguilar, Luis Felipe. "Development of Sulfur Tolerant Materials for the Hydrogen Sulfide Solid Oxide Fuel Cell." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6979.
Full textBlack, Julia. "Quantifying Carbonyl Sulfide and Other Sulfur-Containing Compounds Over the Santa Barbara Channel." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/scripps_theses/998.
Full textSweeney, Jason T. (Jason Thomas) 1971. "Novel metal oxide nanocomposites for oxygen storage, sulfur dioxide adsorption and hydrogen sulfide absorption." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29295.
Full textIncludes bibliographical references.
Increasingly stringent regulations on automotive emissions have resulted in the need for improved pollution control technology. To reduce mobile emissions, researchers have investigated alternatives such as lean-bum engines and fuel cells. This work is focused on the synthesis, characterization and testing of novel metal oxide nanocomposites to facilitate the utilization of these technologies. In lean-bum engines, the use of adsorbents to remove NOx faces two major challenges: (1) excess hydrocarbon and CO emissions during fuel-rich pulses for adsorbent regeneration, and (2) reduced NOx adsorption efficiencies due to competitive adsorption of SO2 in the gas stream. To provide for the low-temperature oxidation of hydrocarbons and CO under a reducing atmosphere, CeO2, a well-known oxygen storage material, was modified through secondary metal oxide doping to improve thermal stability and oxygen accessibility. 20 at% substitution of Pr, Sc and Zr in CeO2 successfully promoted microstructural stability, with Ceo.8Zro0.202- retaining grain size of 30 nm even after calcination at 10000C. At high doping levels, Zr improved grain size stability further, but ZrO2 phase segregation was noted in CelxZrxO2.8 with x > 0.2. TPR experiments under 2.5% H2 in He showed that Ceo8Pr0.202- provided superior low-temperature reduction and overall reducibility amongst Ce0.8M0.2026- materials. Moreover, CelxPrxO2-8 showed increased reducibility with increasing x, achieving a maximum weight loss of 4.8% at x = 1.0. CO oxidation studies over Ceo.8M0.202-8 identified Sc and Zr doping with the lowest CO light-off temperatures (247⁰C and 264⁰C, respectively).
(cont.) For CelPrxO2- and CelxZrxO2-, low levels of doping resulted in the highest CO oxidation activity; light-off was successfully achieved at 264⁰C and 252⁰C for x = 0.4 and 0. 1, respectively. Metal oxide-based materials were developed to selectively adsorb SO2 during fuel-lean conditions and desorb SO2 during fuel-rich conditions, thereby preventing the SO2 poisoning of the NOX adsorbent. Of various simple and mixed metal oxides, the Cr203-CuO system was found to provide SO2 adsorption under oxidizing conditions at 400⁰C, and SO2 evolution under reducing conditions below 350⁰C. The CuCr20O4 phase present at the optimal Cr20O3-CuO composition gave rise to improved low-temperature CO activity, which facilitated SO2 desorption. With increased CuO content, both adsorption capacity and regenerability were increased. Through the introduction of dopants, phase-pure CuCr2yCoyO4 was obtained to allow for SO2 desorption below 300Ê»C, which corresponded well with increased CO2 evolution. By introducing excess CuO onto CuCr1.9Co0.1O4 via various synthesis routes, improved SO2 sorption characteristics were attained. In pulse adsorption/desorption studies, the CuO/ CuCr.9Co0.104 materials and CuO/CuCr204 also demonstrated excellent capacity and superior regenerability relative to the conventional CuO/A1203 adsorbent. For on-board H2 production for fuel cells, the removal of H2S is paramount to avoiding poisoning of the H2 separation membrane and the fuel cell. Conventional coarse-grained ZnO is not viable for H2S ...
by Jason T. Sweeney.
Ph.D.
Lennartz, Sinikka T. [Verfasser]. "From local to global scale - marine emissions of the climate relevant sulfur gases carbonyl sulfide, carbon disulfide and dimethyl sulfide / Sinikka T. Lennartz." Kiel : Universitätsbibliothek Kiel, 2017. http://d-nb.info/1140054023/34.
Full textLigmajer, Filip. "Pokročilé plazmonické materiály pro metapovrchy a fotochemii." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2018. http://www.nusl.cz/ntk/nusl-387738.
Full textŠlechtová, Tereza. "Možnosti odstranění zápachu na stokové síti." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409710.
Full textJamieson, John William. "Tracing sulfur sources in an Archean hydrothermal system using sulfur multiple isotopes a case study from the Kidd Creek volcanogenic massive sulfide deposit /." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2697.
Full textThesis research directed by: Geology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Lohmayer, Regina [Verfasser], and Britta [Akademischer Betreuer] Planer-Friedrich. "Importance of Sulfide, Polysulfides, and Elemental Sulfur for Abiotic and Biotic Redox Processes in Sulfur-Metal(loid)Systems / Regina Lohmayer. Betreuer: Britta Planer-Friedrich." Bayreuth : Universität Bayreuth, 2015. http://d-nb.info/1080237569/34.
Full textBailey, Thomas. "Development of Tools for Understanding Biological Sulfur Chemistry." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20444.
Full textChin, Mian. "An atmospheric study of carbonyl sulfide and carbon disulfide and their relationship to stratospheric background sulfur aerosol." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/26226.
Full textPahlevanzadeh, Hassan. "Solubility of the toxic gases, hydrogen sulfide and sulfur dioxide in some polar and non-polar solvents." Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/5243.
Full textNelen, Louis M. "Investigating the chemistry of H₂S/Ge(100), and Fe/Ge surfaces /." free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9988687.
Full textHarahuc, Lesia. "Control of iron and sulfur oxidation activities of Thiobacillus ferrooxidans and bacterial leaching of metals from sulfide ores." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0027/NQ51648.pdf.
Full textTrupiano, Vito. "EVALUATION OF OXIDIZED MEDIA FILTRATION PROCESSES FOR THE TREATMENT OF HYDROGEN SULFIDE IN GROUNDWATER." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3026.
Full textM.S.Env.E.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Environmental Engr MSEnvE
Těšík, Jan. "Luminiscence polovodičů studovaná rastrovací optickou mikroskopií v blízkém poli." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-320110.
Full textForsythe, Robert. "The Development of New Methods for Coal Sulfer Forms & Sulfur in Ash Determination." TopSCHOLAR®, 1993. https://digitalcommons.wku.edu/theses/2352.
Full textKuba, Jakub. "Studium fotoluminiscence tenkých vrstev MoS2." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254284.
Full textKovařík, Martin. "Charakterizace elektronických vlastností nanodrátů pro elektrochemii." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402570.
Full textHall, Donald Lewis. "Fluid evolution during metamorphism and uplift of the massive sulfide deposits at Ducktown, Tennessee, U.S.A." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54186.
Full textPh. D.
Friedman, Carrie T. 1972. "Analysis of stable sulfur isotopes and trace cobalt on sulfides from the TAG hydrothermal mound." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/53034.
Full textIncludes bibliographical references (leaves 86-90).
by Carrie T. Friedman.
M.S.
Lamanna, William Christopher. "Functional characterization of the novel heparan sulfate 6O-endosulfatases Sulf1 and Sulf2." Göttingen Cuvillier, 2008. http://d-nb.info/989809897/04.
Full textAnglen, Brandy Lynn. "Contrasting sulfur isotopic characteristics for sulfate and sulfide in water and sediment profiles from three lakes in Taylor Valley, Antarctica." [Bloomington, Ind.] : Indiana University, 2005. http://wwwlib.umi.com/dissertations/fullcit/3183912.
Full textChauk, Shriniwas S. "High-pressure high-temperature control of Hydrogen Sulfide, Sulfur Dioxide and Selenium from fuel/flue gas using Ca-based sorbents /." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488186329503714.
Full textLi, Wen. "Synthesis and solubility of arsenic tri-sulfide and sodium arsenic oxy-sulfide complexes in alkaline sulfide solutions." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44546.
Full textMeyer, Amanda Lynn. "Biogeochemistry of Sulfur Isotopes in Crystal Lake, Clark County, West-Central Ohio." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1420911116.
Full textBabcock, Kevin Brian. "Alkali carbonate-sulfide electrolytes for medium temperature hydrogen sulfide removal." Thesis, Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/12959.
Full textHao, Yong. "Sulfur Based Electrode Materials For Secondary Batteries." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2582.
Full textHuang, Shanshan. "Nanoparticulate nickel sulfide." Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/54754/.
Full text