Academic literature on the topic 'Sumatran tiger'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sumatran tiger.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sumatran tiger"

1

Yultisman, Yultisman, Mia Azizah, and Supriono Eko Wardoyo. "KONSERVASI EX-SITU HARIMAU SUMATERA (Panthera tigris sumatrae) DI TMR JAKARTA." Jurnal Sains Natural 9, no. 1 (March 28, 2019): 29. http://dx.doi.org/10.31938/jsn.v9i1.190.

Full text
Abstract:
Ex-situ conservation of Sumatran tigers (Panthera tigris sumatrae) in Ragunan wildlife park, Jakarta Sumatran tiger (Panthera tigris sumatrae) is one of the endemic species of Indonesia, which until now still live on the island of Sumatra. According to the International Conservation Agency, the existence of the animal is approaching extinction. Taman Marga Satwa Ragunan is one of Sumatran tiger conservation institution. The purpose of the research was to know the breeding of Sumatran tiger in Ragunan Wildlife Park conservation area, to know the proper conservation strategy for Sumatran tiger and to know Sumatran tiger activity ex-situ. The research was conducted at the Sumatran Tiger in Taman Marga Satwa Ragunan. Data were analyzed by descriptive analysis. Taman Marga Satwa Ragunan has made a proper effort in tiger conservation, this is marked by an increase in the Sumatran Tiger population.Keywords: Sumatran Tiger, Conservation, Ragunan Wildlife Park ABSTRAK Harimau sumatera (Panthera tigris sumatrae) merupakan salah satu satwa endemik Indonesia, yang hingga saat ini masih hidup di pulau Sumatera. Menurut lembaga konservasi Internasional keberadaan satwa ini sudah mendekati kepunahan.Taman Marga Satwa Ragunan adalah salah satu lembaga konservasi Harimau Sumatera.Tujuan penelitian ini adalah mengetahui perkembangbiakan harimau sumatera dikawasan konservasi TMR, mengetahui strategi konservasi yang tepat untuk harimau sumatera dan mengetahui aktivitas harimau sumatera secara ex-situ.Penelitian ini di lakukan di kandang Harimau Sumatera di Taman Marga Satwa Ragunan, hasil dianalisis dengan analisis deskriptif.Taman Margasatawa Ragunan merupakan tempat konservasi yang cocok bagi Harimau Sumatera, ini ditandai dengan adanya peningkatan populasi dari awal tahun pendirian TMR (Tahun 1980) sampai dengan saat sekarang iniKata Kunci : Harimau Sumatera, Konservasi, TMR
APA, Harvard, Vancouver, ISO, and other styles
2

Patana, Pindi, Meta Winda Saputri, and King Marpatasino. "The occurrence of Sumatran tiger (Panthera tigris sumatrae) in an industrial plantation forest area, North Sumatra, Indonesia." Indonesian Journal of Applied Environmental Studies 2, no. 1 (April 30, 2021): 47–51. http://dx.doi.org/10.33751/injast.v2i1.3079.

Full text
Abstract:
Sumatran tiger lives in the remaining forests on the Sumatra island, both in conservation and production areas. There are not many tiger monitoring activities conducted in production forest. Using camera traps this occupancy survey of Sumatran tiger (Panthera tigris sumatrae) carried out in a plantation forest area of PT. Toba Pulp Lestari (PT. TPL) to obtain information and monitor tiger presence in the area. However, there were no Sumatran tigers captured by the camera traps during the occupancy activities. The existence of Sumatran tiger was proven by the finding of footprints and scrapes. Other species were photographed by the camera traps, such as marbled cat ((Pardofelis marmorata), pig-tailed monkey (Macaca nemestrina), treeshrew (Tupaia sp.), Asian palm civet (Paradoxurus hermaphroditus), lizards (Eutropis sp.), Hoogerwerf’s pheasant (Lophura hoogerwerfi), wood mouse (Apodemus sylvaticus) as well as birds. It is assumed that the Sumatran tiger didn’t cross the location of research during the camera installation period. However, there are several other reasons why Sumatran tigers weren’t captured by camera traps, such as the camera traps observation time was too short and didn’t cover a larger area, so it lessens the opportunity of encounter with Sumatran tiger.Harimau Sumatera hidup di hutan yang masih tersisa di pulau Sumatera, baik di kawasan hutan konservasi maupun hutan produksi. Kegiatan pemantauan harimau di hutan produksi belum banyak dilakukan. Dengan menggunakan camera trap, survei okupansi harimau sumatera (Panthera tigris sumatrae) ini dilakukan di areal konsesi hutan tanaman industri PT. Toba Pulp Lestari (PT. TPL) untuk mendapatkan informasi dan memantau keberadaan harimau di kawasan tersebut. Namun, tidak ada harimau sumatera yang terfoto oleh kamera trap selama kegiatan survei okupansi. Keberadaan harimau sumatera dibuktikan dengan ditemukannya jejak tapak dan cakaran. Selain itu, terdapat ppesies lain yang terfoto oleh kamera trap, seperti kucing batu ((Pardofelis marmorata), beruk (Macaca nemestrina), tupai tanah (Tupaia sp.), musang pandan (Paradoxurus hermaphroditus), kadal (Eutropis sp.), sempidan aceh (Lophura hoogerwerfi), tikus hutan (Apodemus sylvaticus) serta burung. Diasumsikan bahwa harimau sumatera tidak melintasi lokasi penelitian selama masa pemasangan kamera. Namun, terdapat beberapa alasan lain mengapa harimau sumatera tidak terfoto kamera trap, seperti waktu pengamatan kamera trap yang terlalu singkat dan tidak mencakup area yang lebih luas, sehingga memperkecil peluang perjumpaan dengan harimau sumatera.
APA, Harvard, Vancouver, ISO, and other styles
3

Ronas Salfitra and Tetty Barunawati Siagian. "Pemeriksaan cacing saluran pencernaan Harimau sumatra (Panthera tigris sumatrae) di Kebun Binatang Kandi Sawahlunto." ARSHI Veterinary Letters 6, no. 2 (July 27, 2022): 25–26. http://dx.doi.org/10.29244/avl.6.2.25-26.

Full text
Abstract:
The purpose of this study was to identify gastrointestinal worms in Sumatran tigers (Panthera tigris sumatrae) in The Taman Satwa Kandi Sawahlunto, West Sumatra. The qualitative examination was carried out on male and female tigers with native and floating methods. The results showed that both of Sumatran tigers were positive for nematode eggs, namely ascarid and trichurid worm eggs. The type of adult worm that produces eggs for ascarid worms on the Sumatran tiger is Toxocara cati while the adult worm that produces eggs of trichurid worms is Trichuris trichiura.
APA, Harvard, Vancouver, ISO, and other styles
4

Suryanda, Ade, Ratna Komala, and Suci Rahmawati. "SIKAP MASYARAKAT DI DESA BATU BUSUK, SUMATERA BARAT TERHADAP KONSERVASI HARIMAU SUMATERA (PANTHERA TIGRIS SUMATRAE) BERDASARKAN PENGETAHUANNYA." BIOSFER: JURNAL PENDIDIKAN BIOLOGI 10, no. 2 (December 18, 2017): 73–81. http://dx.doi.org/10.21009/biosferjpb.10-2.9.

Full text
Abstract:
Sumatran tiger are one of the potential biodiversity populations which continue to decline. One of the few causes of this can occur because of human activities and actions unfavorable to the environment. Therefore, people need to have an attitude of conservation of Sumatran tiger. One of the factors that influence the attitude is knowledge. The study aims to determine the correlation between knowledge with the attitude of the Sumatran tiger conservation. The research was conducted in the village of Batu busuk, West Sumatra in May 2016. The method used was survey method with correlational studies. Data was normally distributed and homogeneous. The simple regression equation is Ŷ = 110,936 + 0.414X. Correlation coefficient obtained is 0,14 which means that there is a correlation between knowledge and towards Sumatran tiger conservation. Knowledge of Sumatran tiger conservation accounted for 1,92% of the behavior towards Sumatran tiger conservation. The result of this study concluded that there was positive correlation between knowledge and attitude of Sumatran tiger conservation.
APA, Harvard, Vancouver, ISO, and other styles
5

Ariyanto, Tomi, Yoan Dinata, Dwiyanto, Waluyo Sugito, Erwan Turyanto, Sophie Kirklin, and Rajan Amin. "Status of Sumatran Tiger in the Berbak-Sembilang landscape (2020)." Journal of Threatened Taxa 13, no. 6 (May 26, 2021): 18419–26. http://dx.doi.org/10.11609/jott.6271.13.6.18419-18426.

Full text
Abstract:
Monitoring the status of the Critically Endangered Sumatran Tiger Panthera tigris sumatrae is a key component for assessing the effectiveness of conservation interventions, and thus informing and adapting strategic planning for the remaining 600 Sumatran Tigers on the island. The Berbak-Sembilang National Park is an integral part of the priority Berbak-Sembilang Tiger Conservation Landscape, in a unique habitat of mixed peat and freshwater swamp in eastern Sumatra. Our camera trap survey covered both the Berbak and Sembilang Tiger Core Areas (BTCA, STCA) over a period of 10 years, with surveys undertaken in 2010, 2015, 2018–2019. The most recent population density estimates (BTCA 1.33 adults/100 km2, 95% CI 0.82–1.91 with 19 adults; and STCA 0.56 adults/100 km2, 95% CI 0.45–0.89 with five adults) confirmed a small but stable population. A landscape level management approach is a priority for tiger population recovery, consolidating ground-based protection and establishing a well-maintained fire management system with reforestation of affected areas along with multi-stakeholder engagement and partnerships. The study also recommends extending the BTCA to include the primary swamp forest in the north of the national park, based on evidence from camera trap surveys.
APA, Harvard, Vancouver, ISO, and other styles
6

Zahrah, M., M. Ulfa, and R. P. Saragih. "Welfare management of Sumatran Tiger (Panthera tigris sumatrae) in Medan Zoo and Siantar Zoo." IOP Conference Series: Earth and Environmental Science 1115, no. 1 (December 1, 2022): 012008. http://dx.doi.org/10.1088/1755-1315/1115/1/012008.

Full text
Abstract:
Abstract Panthera tigris sumatrae is one of endemic species of Sumatera Island included in the endangered species red list by the IUCN. The efforts to preserve the sumatran tiger is with conservation activities both in-situ and ex-situ. One form of ex-situ conservation is to keep animals in the zoos. This study aims to assess the welfare level of Sumatran tigers are in Medan Zoo and Siantar Zoo. Aspects of tiger welfare are measured through 5 variables basedon five animal freedom, namely the free of hunger and thirst, the free of environmental discomfort, the free of pain, wounds and diseases, the free of natural behavior and the free of fear and suffering. Data collection through direct observation of animal management and assessment of minimum animal welfare standards. Interviews with veterinarians and animal keepers about human resources and management activities carried out in supporting animal welfare. The assessment is carried out by the management, namely veterinarians, animal keepers, researchers and visitors to obtain objective results. The implementation of sumatran tiger welfare management in Medan Zoo has an average of 76.9 with the category is good and for Siantar Zoo has an average of 95 with the category is very good. Recommendation that needs to be considered from the results of this study is that Medan Zoo needs to add enrichment in the cages that tigers can behave naturally.
APA, Harvard, Vancouver, ISO, and other styles
7

Bullock, Natalie, Charlotte James, and Ellen Williams. "Using Keeper Questionnaires to Capture Zoo-Housed Tiger (Panthera tigris) Personality: Considerations for Animal Management." Journal of Zoological and Botanical Gardens 2, no. 4 (November 30, 2021): 650–63. http://dx.doi.org/10.3390/jzbg2040047.

Full text
Abstract:
Individual personalities affect animal experiences of zoo environments, impact on an animal’s coping ability and have potential implications for welfare. Keeper assessments have been identified as a quick and reliable way of capturing data on personality in a range of species and have practical application in improving animal welfare on an individual level. Despite widespread recognition of the importance of animal personality within a zoo environment, there is a paucity of research into tiger personality and the potential impact of this on tiger experiences within zoos. This research investigated the personality of 34 tigers (19 Amur and 15 Sumatran) across 14 facilities in the UK using keeper ratings and identified changes keepers made in animal husbandry to support tiger welfare. Reliability across keepers (n = 49) was established for nine adjectives and a principal component analysis identified three personality components: ‘anxious’, ‘quiet’ and ‘sociable’. When subspecies were combined, there was no relationship between tiger scores on the personality components and age or sex of tigers (p > 0.05). Subspecies of tiger was not related to scores on the ‘quiet’ or ‘sociable’ components (p > 0.05). Sumatran tigers scored more highly than Amur tigers on the ‘anxious’ component (mean ± SD, Sumatran: 3.0 ± 1.7, Amur: 1.8 ± 0.6, p < 0.05). Analysis within subspecies found that male Amur tigers were more sociable than females (mean ± SD, males: 5.5 ± 0.707; females: 4.15 ± 0.55). Amur tiger age was also negatively correlated with scores on the sociable personality component (R = −0.742, p < 0.05). No significant differences were seen in Sumatran tigers. Keepers reported a number of changes to husbandry routines based on their perceptions of their tigers’ personality/needs. However, there was no significant relationship between these changes and tiger personality scores (p > 0.05). Despite significant evolutionary differences between Amur and Sumatran tigers, there are no subspecies specific guidelines for zoo tigers. This research has highlighted the potential for these two subspecies to display personality differences and we advocate further research into this area. Specifically, we highlight a need to validate the relationship between tiger personality, management protocols and behavioural and physiological metrics of welfare. This will enable a fuller understanding of the impact of personality on zoo tiger experiences and will enable identification of evidence-based best practice guidelines.
APA, Harvard, Vancouver, ISO, and other styles
8

Et. al., Firahmi Rizky ,. "Application Of Certainty Factor Methods To Diagnose Gastrointestinal Worm Infections In Sumatran Tigers." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 10, 2021): 3102–9. http://dx.doi.org/10.17762/turcomat.v12i2.2354.

Full text
Abstract:
Gastrointestinal worm infection affects the Sumatran tiger. Due to the lack of tools to diagnose the disease, the Sumatran tigers are very often located in Medan Zoo, North Sumatra, and their handling is very rare.Based on the above problems, we need an application in the form of an expert system by applying the Certainty Factor method which is expected to help in diagnosing Gastrointestinal worm infection in Sumatran tigers. With the existing symptoms, the CF value can be determined to get a diagnosis of Gastrointestinal worm infection. So that it can make it easier for a doctor to treat and diagnose gastrointestinal worm infections in Sumatran tigers.The conclusion obtained from the system, is able to diagnose quickly, precisely and accurately the symptoms of gastrointestinal worm infections and is expected to help the community in diagnosing gastrointestinal worms experienced by Sumatran tigers so that treatment can be carried out immediately. This is an open access article under the CC BY-SA license
APA, Harvard, Vancouver, ISO, and other styles
9

Plowden, Campbell, and David Bowles. "The illegal market in tiger parts in northern Sumatra, Indonesia." Oryx 31, no. 1 (January 1997): 59–66. http://dx.doi.org/10.1046/j.1365-3008.1997.d01-4.x.

Full text
Abstract:
The Sumatran tiger is the only one of three original subspecies of tigers that survives in Indonesia today. Its wild population, estimated to be 400–650 animals, has progressively diminished because of habitat destruction, poaching and the removal of tigers involved in conflicts with local farmers. This paper presents previously undocumented information on the market in tiger products. It shows that, while no documentation of intentional tiger poaching to meet an international demand for tiger bones was recorded, the domestic demand for tiger bones, teeth and claws is still a potential threat to the future survival of this subspecies. In addition to continuing work to protect the integrity of tiger habitat in Sumatra, enforcement actions are required to prevent the domestic market for tiger parts increasing the threats to this subspecies and to ensure its conservation.
APA, Harvard, Vancouver, ISO, and other styles
10

Khalis, Muhammad Atha, Ulfa Hansri Ar Rasyid, and Erdiansyah Rahmi. "JURNAL PERILAKU HARIAN HARIMAU SUMATERA (Panthera tigris sumatrae) DI TAMAN MARGASATWA DAN BUDAYA KINANTAN BUKITTINGGI SUMATERA BARAT." Jurnal Ilmiah Mahasiswa Pertanian 6, no. 4 (November 1, 2021): 749–56. http://dx.doi.org/10.17969/jimfp.v6i4.18183.

Full text
Abstract:
Abstrak. Menurut IUCN (International Union for Conservation of Nature) harimau sumatera masuk kedalam kategori terancam punah (Critical endangered). Harimau sumatera termasuk salah satu hewan dengan tingkat perawatan yang sulit dan sangat rawan kematian. Kematian tersebut tak terkecuali di wilayah kawasan ex-situ. Penelitian ini menggunakan metode observsi dan Focal animal sampling yang dilakukan dari pukul 08.00 sampai dengan pukul 17.00 WIB. Persentase perilaku harian harimau sumatera secara umum di Taman Margasatwa dan Budaya Kinantan (TMSBK) yaitu Boncel melakukan perilaku bergerak (43%), istirahat (39%), individu (12%), sosial (3%) dan agonistik (3%). Perilaku yang dilakukan Bujang Kinantan yaitu perilaku bergerak (17%), istirahat (64%), individu (14%), sosial (1%) dan agonistik (3%). Perilaku Bancah selama pengamatan yaitu perilaku bergerak (12%), istirahat (62%), individu (17%), sosial (10%) dan agonistik (0%). Perilaku Dara Jingga yaitu perilaku bergerak (5%), istirahat (79%), individu (15%), sosial (1%) dan agonistik (0%). Berdasarkan persentase perilaku harian harimau yang diperoleh dapat dilihat bahwasanya perilaku istirahat lebih dominan tinggi pada tiap individu, tetapi pada harimau Boncel memiliki persentase perilaku bergerak yang dominan, dikarenakan umur Boncel terbilang masih muda.Journal Daily Behavior of Sumatran Tigers (Panthera tigris sumatrae) at Kinantan Cultural and Wildlife Park Bukittinggi West SumatraAbstract. Accordinglto the IUCN (International Union for Conservation of Nature), the Sumatran tiger is in the critically endangered category. The Sumatran tiger is one of the animals with a difficult level of care and is very prone to death. These deaths are no exception in the ex-situ area. This research used observation method and Focal animal sampling which was conducted from 08.00 to 17.00 WIB. The percentage of daily behavior of Sumatran tigers in general at the Kinantan Wildlife and Culture Park (TMSBK) is that Boncel engages in moving behavior (43%), resting (39%), individual (12%), social (3%) and agonistic (3%). The behavior of Bujang Kinantan is moving behavior (17%), resting (64%), individual (14%), social (1%) and agonistic (3%). Bancah's behavior during the observation was moving behavior (12%), resting (62%), individual (17%), social (10%) and agonistic (0%). Dara Jingga's behavior is moving behavior (5%), resting (79%), individual (15%), social (1%) and agonistic (0%). Based on the percentage of daily behavior of tigers obtained, it can be seen that resting behavior is more dominant in each individual, but the Boncel tiger has a dominant percentage of moving behavior, because Boncel's age is relatively young.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sumatran tiger"

1

Poor, Erin Elizabeth. "A multiscale analysis and quantification of human impacts on Sumatran tiger (Panthera tigris sumatrae) habitat in Riau, Sumatra." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85130.

Full text
Abstract:
Worldwide, we are losing biodiversity at unprecedented rates, and due to deforestation, degradation and poaching, Southeast Asian wildlife is facing extreme threats. Indonesia recently eclipsed Brazil in having the world's highest deforestation rate, largely due to the rise of the palm oil industry. Indonesia contains multiple biodiversity hotspots and endangered species such as the Sumatran tiger (Panthera tigris sumatrae). While Riau Province, Sumatra, produces approximately 20% of the world's palm oil, tigers still inhabit parts of Riau, though their habitat and prey are understudied. Thus, in this research, I aim to assess and quantify how tiger habitat has changed, how it will continue to change, and provide recommendations on how to improve the landscape for tigers. I create the first accuracy-assessed land cover maps of Riau, and then predict land cover change from 2016 – 2050. Using this newly created land cover map, I assess whether Tesso Nilo National Park, Bukit Tigapuluh National Park, and Rimbang Baling Wildlife Reserve are effective at preventing deforestation. Next, I examine human impacts within Tesso Nilo specifically, due to its suitability for oil palm and its potential as a stepping stone for wildlife movement from the western, mountains to the eastern peatlands of Sumatra. Finally, I examine impacts of human presence within Rimbang Baling on felid-prey relationships. I predict that by 2050, over 60% of natural forest in Riau will be lost, and all protected areas only confer low levels of protection. I determined that Tesso Nilo National Park has nearly 2500 km of roads within it and no areas within the park are untouched by humans. Wildlife detections were low near the boundary of Rimbang Baling and there was evidence of humans negatively impacting mousedeer (Tragulus spp) behavior. I suggest focusing on securing the habitat within Rimbang Baling and Bukit Tigapuluh to ensure habitat for dispersing tigers from the western mountains, in addition to, and perhaps before focusing on restoring Tesso Nilo and creating wildlife corridors. While tiger recovery in Riau will be difficult, with education, dedication, persistence and intelligent planning, tigers may be able to persist in this unique ecosystem in the long-term.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Franklin, Neil. "Conservation biology of the Sumatran Tiger in Way Kambus National Park, Sumatra, Indonesia." Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Imron, Muhammad Ali. "An Individual-based Model Approach for the Conservation of the Sumatran Tiger Panthera tigris sumatrae Population in Central Sumatra." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-66463.

Full text
Abstract:
This dissertation demonstrates the construction of the Panthera Population Persistence (PPP), an individual-based model for the Sumatran tiger (Panthera tigris sumatrae) which provides proper theoretical and application frameworks for the conservation of this tiger sub-species in central Sumatra. The PPP model was developed to gain insight into tiger-preyhabitat relationships as well as the effect of human impacts on the persistence of tiger populations. The model addresses three main problems for the survival of the Sumatran tiger: tiger poaching, prey depletion, and habitat loss. The description of the PPP model serves as an in-depth study of existing literature and covers the most important factors of existing models for tiger conservation. Existing modelling approaches have been improved by the inclusion of finer description of individual-level traits and behaviours in the PPP model. The modelling approach allows a direct inter-relationships between individuals and their environment. The relationship between individual behaviours, intrinsic states, and external factors are simulated spatially explicitly in a bottom-up approach where the emergence of the population dynamics of tiger and prey can be observed under different scenarios. The integration between the PPP model and geographical information system (GIS) has provided a much more meaningful spatial data by revealing the mechanism of the response of individuals to the present land-use types. The relative importance of the parameters within the PPP model was tested using two modes of sensitivity analysis: The Morris Method and the traditional One-factor-at-a-time method. The results provided guidance for the application of reasonable sensitivity analysis during the development of individual-based models. The Morris Method suggested that the overall output of the PPP model showed a high sensitivity on the change of time required by a tigress to take care of cubs. The analysis also revealed that the number of dispersers was sensitive toward perceptual distance of individuals to detect the presence of prey. Comparison with a similar predator-prey models provided insight into the predator-prey relationship. The comparison also suggested that perceptual distance of the individual is important for any spatially explicit individual-based model involving predator-prey relationships. The parameterization of the individual perceptual distance of tigers was tested by using existing literature on prey consumption by tigers as a benchmark. The simulation results were within the range of scientific acceptance for the number of prey killed by a tiger. Thus, further use of the set of parameters for a tiger’s perceptual distance is less uncertain for the output of the PPP model. The effect of habitat quality and landscape configuration on the mortality and migration of prey were evaluated through the use of virtual habitats and landscapes. The findings suggested that a good habitat quality enables prey survival, increases the population available for predation by tigers. When a low-quality habitat is combined with a high-quality habitat, the number of migrating prey was high, reducing resources for tigers. This suggested that landscape composition should be considered when predicting population persistence of the Sumatran tiger. Optimal movement of two different prey resulted in a high density of prey in high-quality habitat, providing a concentration of prey in a tiger’s habitat, but resulted in a lower tiger predation rate than random movement and species specific movement. The PPP model has been applied to evaluate the effect of poaching, prey depletion, and their combination for the probability of extinction of a tiger population. The results from the evaluation showed that prey depletion, tiger poaching, and a combination of both, created a 100% probability of extinction within 20 years if the density and frequency of those threats at high rates. However, the duration of those threats in the system caused a 100% probability of extinction from tiger poaching. The results are able to contribute to optimize anti-poaching programs in future, to reduce significantly the probability of total extinction of Sumatran tiger. Furthermore, various landscape configurations have been tested against the probability and time of extinction for the Sumatran tiger population. The integration of spatial GIS-data in the model provides an insight into the relationship between tiger-prey-habitat. The results suggested that habitat quality surrounding a protected area plays an important role for the persistence of the Sumatran tiger population. This study also recommends agroforestry systems as reasonable land-use type in the vicinity of protected areas. They provide not only positive effects for tiger conservation purpose but they also appear as adaptable to the current land-use situation in Sumatra island
Die vorliegende Dissertation beschreibt die Entwicklung des Panthera Populations Persistence (PPP) Modells, eines individuenbasierten Simulationsmodells für den Sumatra-Tiger (Panthera tigris sumatrae). Dieses stellt einen geeigneten theoretischen und anwendungsbezogenen Rahmen für den Schutz dieser Tiger-Unterart in Zentralsumatra bereit. Das PPP-Modell wurde entwickelt, um Einblicke in die Tiger-Beute-Habitat-Beziehungen zu gewinnen, sowie um den Effekt anthropogener Einflüsse auf den Fortbestand von Tigerpopulationen abzuschätzen. Dabei werden die drei Hauptprobleme für das Überleben des Sumatra-Tigers analysiert: die Wilderei, der Rückgang von Beutetieren und der Verlust von geeigneten Habitaten. Die Beschreibung des PPP-Modells gibt zunächst einen umfassenden Überblick zum aktuellen Wissensstand auf dem Gebiet des Tigerschutzes und integriert die wichtigsten Faktoren bereits existierender Modellansätze. Diese konnten durch die Einbeziehung einer detaillierten Beschreibung von individuellen Merkmalen und Verhalten verbessert werden. Das PPPModell stellt somit das Individuum in einen direkten Zusammenhang mit dessen Umwelt. Die Beziehung zwischen individuellem Verhalten, intrinsischen Merkmalen und externen Faktoren werden räumlich-explizit in einem bottom-up Ansatz simuliert. Damit kann sowohl die Populationsdynamik des Tigers als auch die seiner Beutetiere unter verschiedenen Annahmen beobachtet werden. Die Verknüpfung des PPP-Modells mit Geographischen Informationssystemen (GIS) bietet die Möglichkeit, die Reaktionsmechanismen der Individuen basierend auf der gegenwärtigen Landnutzungssituation zu simulieren und somit realitätsnahe räumliche Daten zu generieren. Die relative Bedeutung der Modell-Parameter auf die Simulationsergebnisse kann durch Sensitivitätsanalysen ermittelt werden. Hier wurden zwei verschiedene Ansätze verwendet: die Morris-Methode und die herkömmliche One-factor-at-a-time Methode. Der Vergleich beider methodischen Ansätze zeigte somit beispielhaft die Eignung unterschiedlicher Sensitivitätsanalysen für individuenbasierte Modelle auf. Die Morris-Methode zeigte, dass das Gesamtergebnis des PPP-Modells eine hohe Sensitivität gegenüber der Veränderung der Zeit aufweist, die ein Tigerweibchen braucht, um ihre Jungen aufzuziehen. Die Analyse zeigt auch, dass die Anzahl an abwandernden Tigern sensitiv gegenüber der IndividuellenWahrnehmungsdistanz von Beute ist. Der Vergleich mit einem ähnlichen Räuber-Beute-Modell lässt vermuten, dass diese Wahrnehmungsdistanz eines Individuums generell als ein entscheidender Faktor für Räuber-Beute-Beziehungen in räumlich-expliziten Individuenmodellen an- gesehen werden kann. Die Parametrisierung der IndividuellenWahrnehmungsdistanz des Tigers wurde so gewahlt, dass die damit ermittelten Simulationsergebnisse den Beutekonsum des Tigers, wie in der Literatur beschrieben, weitgehen widerspiegeln. Sie ist somit für die weitere Anwendung im PPP-Modell ausreichend gut beschrieben. Simulationsszenarien, welche verschiedene Habitatqualitäten sowie Landnutzungsmuster berücksichtigen, zeigen auch deren Bedeutung für die Mortalität und Migration der Beutetiere. Eine gute Habitatqualität hat eine geringe Mortalität der Beutetiere zur Folge, welche dann wiederum für den Tiger in ausreichender Zahl zur Verfügung stehen. Treten geringe Habitatqualitäten angrenzend an ein Habitat mit hoher Qualität auf, führte dies zu einer hohen Anzahl an abwandernden Beutetieren, womit sich die Ressourcen für den Tiger verringern. Die Landschaftsmerkmale sollten also bei der Vorhersage des Populationsfortbestandes des Sumatra-Tigers berücksichtigt werden. Die optimale Bewegung von zwei verschiedenen Beutetieren ergab eine hohe Beutedichte in einem Habitat mit hoher Qualität und stellte konzentriert Beute in einem Tigerhabitat bereit. Allerdings resultierte dies auch in einer geringeren Prädationsrate des Tigers, verglichen mit zufälligen oder artenspezifischen Bewegungen. Das PPP-Modell wurde angewandt, um die Auswirkungen von Wilderei, Beutetierrückgang sowie die Kombination beider Faktoren auf die Aussterbewahrscheinlichkeit einer Tigerpopulation zu bewerten. Die Ergebnisse zeigen, dass die genannten Faktoren eine 100-prozentige Aussterbewahrscheinlichkeit innerhalb von 20 Jahren zur Folge haben, wenn die Dichte und Häufigkeit dieser Bedrohungen hoch sind. Die Dauer dieser Bedrohungen im System verursachte allerdings eine 100-prozentige Aussterbewahrscheinlichkeit nur für die Wilderei von Tigern. Betrachtet man unabhängig von Dichte und Häufigkeit einzig die Dauer der Bedrohung, führt lediglich die Wilderei zum 100%-igen Aussterben. Diese Ergebnisse können maßgeblich dazu beitragen, zukünftig Schutzprogramme gegen die Wilderei zu optimieren, um das Aussterben des Sumatra-Tigers zu verhindern. DesWeiteren wurde der Einfluss von unterschiedlichen Landnutzungsmustern auf die Aussterbewahrscheinlichkeit und -zeit einer Sumatra-Tigerpopulation aufgezeigt. Die Integration von räumlichen GIS-Daten in das Modell ermöglichte einen Einblick in die Beziehungen zwischen Tiger, Beutetieren und Habitat. Die Ergebnisse zeigen, dass die Habitatqualität um Schutzgebiete herum eine wichtige Rolle für den Fortbestand der Population spielt. Die vorliegende Arbeit empfiehlt Agroforstsysteme als eine geeignete Landnutzungsform in der Nähe von Schutzgebieten, welche sowohl positive Effekte für den Tigerschutz bietet als auch mit den gegenwärtigen Landnutzungsmustern in Sumatra vereinbar erscheint
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Olutolani. "Population genetics and structure of the Sumatran tiger." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/11756.

Full text
Abstract:
The two key determinants of population persistence in fragmented landscapes are population size and connectivity. Populations with high levels of genetic variation and large population size are expected to have a lower risk of extinction. Similarly, populations with high rates of connectivity are expected to persist long-term. For many elusive landscape species it is difficult to obtain direct estimates of these parameters, but genetic sampling can offer powerful indirect assessments. Whilst these techniques have been applied to the study of many wide-ranging carnivores, this study represents the first example in the Sumatran tiger (Panthera tigris sumatrae). Extensive field surveys were conducted to collect faecal samples from several Tiger Conservation Landscapes and protected areas on Sumatra. Samples were then processed according to optimised protocols to obtain reliable results. In order to quantify extinction risk I first estimated genetic variation and effective population size using microsatellite loci. I also determined relative levels of connectivity using estimates of differentiation (FST), gene flow and genetic clustering. Results indicate that Sumatran tigers have high levels of genetic variation and that their effective population size is within the expected range. There is very little population structure and there is no obvious evidence for barriers to dispersal. The Batang Hari/Kerinci Seblat ecosystem emerged as a potential source population and in contrast there was some evidence of isolation affecting the population of Way Kambas NP in the extreme south of the island. Overall, despite high levels of human land cover conversion over the past 20-30 years, few genetic changes have been expressed in the Sumatran tiger. The immediate threat to tigers is not the loss of genetic diversity, but the rapidly declining area of suitable habitat in which they can survive.
APA, Harvard, Vancouver, ISO, and other styles
5

Imron, Muhammad Ali [Verfasser], Sven [Akademischer Betreuer] Herzog, Uta [Akademischer Betreuer] Berger, and Ilse [Akademischer Betreuer] Storch. "An Individual-based Model Approach for the Conservation of the Sumatran Tiger Panthera tigris sumatrae Population in Central Sumatra / Muhammad Ali Imron. Gutachter: Uta Berger ; Ilse Storch. Betreuer: Sven Herzog." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://d-nb.info/1019001712/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sunarto, Sunarto. "Ecology and restoration of Sumatran tigers in forest and plantation landscapes." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37392.

Full text
Abstract:
Tigers (Panthera tigris Linnaeus, 1758) are in danger of extinction. Their populations have declined from ~100,000 to only ~3,000 individuals in a century and their habitat has shrunk to less than 7% of the historic range. Of the five extant tiger subspecies, the Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is the most seriously threatened. Currently determined as Critically Endangered under IUCN criteria, the Sumatran tiger is likely to become extinct unless effective conservation measures are enacted. Threats to the tiger include habitat destruction, killing due to conflict with humans and livestock, and poaching for illegal wildlife trade. Long-term survival of Sumatran tigers depends largely on the effectiveness of current conservation efforts in every tiger landscape. Successful conservation and management require accurate information on ecology of the species upon which decisions can be based. This study investigated basic ecological aspects of tigers and developed strategies for management and restoration to improve tiger viability in the Central Sumatra landscape. This landscape is comprised of natural forests and plantations managed for timber and agricultural commodities. The first chapter assesses the variation in tiger abundance across forest types in Southern Riau, and over time in Tesso Nilo National Park, all in Central Sumatra. Using camera traps, my team and I systematically sampled five blocks representing three major forest types in the region: peat land, flat lowland, and hilly lowland. I found that tiger abundance varied by forest type and through time. Excluding two sampling blocks where no tigers were photographed, the lowest tiger density was in peat land forest of Kerumutan, and the highest density was in the flat lowland forest of Tesso Nilo. Repeated sampling in the newly established Tesso Nilo National Park documented a trend of increasing tiger density (SE) from 0.90 (0.38) individuals/100 km2 in 2005 to 1.70 (0.66) individuals/100 km2 in 2008. Overall, tiger densities from this study were lower than most previous estimates from other parts of Sumatra. The trend of increasing tiger density in Tesso Nilo, however, suggests that the tiger population could be augmented by protection of habitats that were previously logged and severely disturbed. The second chapter examines the occupancy and habitat-use of the tiger across the major landcover types (natural forest, acacia plantation, oilpalm plantation, rubber plantation, and mixed agriculture). I found that tigers used some plantation areas, although they significantly preferred forests over plantations. In all landcover types, sites with tiger detections had thicker understory cover than sites without tiger detection. Modeling tiger occupancy while recognizing that probability of detection is not always perfect, I found that tiger occupancy covaried positively and significantly with altitude and negatively, but not significantly, with distance-to-forest-cores. Probability of habitat use by tigers covaried positively and significantly with understory cover and altitude, and negatively and significantly with human settlement and landcover rank. The results suggested that with adjustments in plantation management, tigers could use or roam through plantations within the habitat mosaic provided that the plantations had adequate understory cover and low level of human activity. They also could use riparian forests (as corridors) and smaller forest patches (as stepping stones) to travel between the main habitat patches across the forest and plantation landscape. The third chapter investigates the ecological characteristics and possible inter-specific interactions among wild felids, including tigers and smaller cats, based on data collected using systematic camera trapping in combination with information on their natural history. I found that despite overlap in resource needs of the five felid species, each appears adapted to specific environmental conditions allowing coexistence with other felids. The five felid species used statistically different elevations, with the golden cat found to inhabit the highest elevation. Two-species occupancy models showed that only leopard cats were found to co-occur with other felid species more frequently than expected by chance under independence. Species of similar size or eating similar-sized prey generally tended to have low coefficients of temporal activity overlap, suggesting avoidance. Temporal avoidance is likely occurring in three pairs of felids, namely clouded leopards and golden cats, clouded leopards and marbled cats, and marbled cats and leopard cats. Based on the differences in morphological and ecological characteristics, and on patterns of spatial and temporal occurrence, I identified six possible mechanisms by which felids in Central Sumatra maintain coexistence. I discussed the implications of this study for management, focusing on how to balance diversity and abundance of felids. The fourth chapter presents the tiger distribution models as a case study to illustrate the importance of accounting for uncertainty in species distribution mapping. I applied four modeling approaches, differing in how the response variable (tiger presence) is constructed and used in the models. I compared the performance and output of different models based on the relative importance of variables, descriptive statistics of the predictions, cross comparison between models using an error matrix, and validation using tiger presence data collected from independent surveys. All models consistently identified forest area within the grid as one of the most important variables explaining tiger probability of occurrence. Three models identified altitude as another important factor. While the four models were consistent in predicting relatively high probability of tiger occurrence for high elevation forest areas such as Rimbang Baling and Bukit Tigapuluh, they generally had a lower level of agreement in predictions for low elevation areas, particularly the peat land in the northeastern part of the study area. Based on the results of cross evaluation of the predictions among models and validation with the independent data, I considered the occupancy model to be superior to the others. If data collection format permits, I advocate the use of occupancy instead of the other modeling techniques to develop predictive species distribution maps. The last chapter constructs a strategy to restore the tiger population across the ecosystem of Central Sumatra through integration of knowledge on tiger ecology from previous chapters with consideration of the ecological conditions of the landscape in the region. The strategy combines existing knowledge of tiger conservation and regional ecosystem restoration. It recognizes the limitations and challenges of traditional nature protection and considers existing and new opportunities. Emerging opportunities and new mechanisms, such as direct and indirect economic incentives for nature conservation and restoration, are taken into account. These, coupled with increased awareness of the stakeholders, better policies and implementation of good governance, and the willingness and know-how to maintain coexistence with wildlife among the local people, are expected to support and accelerate the recovery of tigers and their ecosystem.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Snyder, Rebecca Jo. "Reproduction in Sumatran tigers (Panthera tigris sumatrae) : an observational, archival, and survey study." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/29396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bakels, Jet. "Het verbond met de tijger : visies op mensenetende dieren in Kerinci, Sumatra /." Leiden : Research school of Asian, African, and Amerindian studies, Universiteit Leiden, 2000. http://catalogue.bnf.fr/ark:/12148/cb400443979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Linkie, Matthew. "Tigers, prey loss and deforestation patterns in Sumatra." Thesis, University of Kent, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Imron, Muhammad Ali. "An Individual-based Model Approach for the Conservation of the Sumatran Tiger Panthera tigris sumatrae Population in Central Sumatra." Doctoral thesis, 2010. https://tud.qucosa.de/id/qucosa%3A25529.

Full text
Abstract:
This dissertation demonstrates the construction of the Panthera Population Persistence (PPP), an individual-based model for the Sumatran tiger (Panthera tigris sumatrae) which provides proper theoretical and application frameworks for the conservation of this tiger sub-species in central Sumatra. The PPP model was developed to gain insight into tiger-preyhabitat relationships as well as the effect of human impacts on the persistence of tiger populations. The model addresses three main problems for the survival of the Sumatran tiger: tiger poaching, prey depletion, and habitat loss. The description of the PPP model serves as an in-depth study of existing literature and covers the most important factors of existing models for tiger conservation. Existing modelling approaches have been improved by the inclusion of finer description of individual-level traits and behaviours in the PPP model. The modelling approach allows a direct inter-relationships between individuals and their environment. The relationship between individual behaviours, intrinsic states, and external factors are simulated spatially explicitly in a bottom-up approach where the emergence of the population dynamics of tiger and prey can be observed under different scenarios. The integration between the PPP model and geographical information system (GIS) has provided a much more meaningful spatial data by revealing the mechanism of the response of individuals to the present land-use types. The relative importance of the parameters within the PPP model was tested using two modes of sensitivity analysis: The Morris Method and the traditional One-factor-at-a-time method. The results provided guidance for the application of reasonable sensitivity analysis during the development of individual-based models. The Morris Method suggested that the overall output of the PPP model showed a high sensitivity on the change of time required by a tigress to take care of cubs. The analysis also revealed that the number of dispersers was sensitive toward perceptual distance of individuals to detect the presence of prey. Comparison with a similar predator-prey models provided insight into the predator-prey relationship. The comparison also suggested that perceptual distance of the individual is important for any spatially explicit individual-based model involving predator-prey relationships. The parameterization of the individual perceptual distance of tigers was tested by using existing literature on prey consumption by tigers as a benchmark. The simulation results were within the range of scientific acceptance for the number of prey killed by a tiger. Thus, further use of the set of parameters for a tiger’s perceptual distance is less uncertain for the output of the PPP model. The effect of habitat quality and landscape configuration on the mortality and migration of prey were evaluated through the use of virtual habitats and landscapes. The findings suggested that a good habitat quality enables prey survival, increases the population available for predation by tigers. When a low-quality habitat is combined with a high-quality habitat, the number of migrating prey was high, reducing resources for tigers. This suggested that landscape composition should be considered when predicting population persistence of the Sumatran tiger. Optimal movement of two different prey resulted in a high density of prey in high-quality habitat, providing a concentration of prey in a tiger’s habitat, but resulted in a lower tiger predation rate than random movement and species specific movement. The PPP model has been applied to evaluate the effect of poaching, prey depletion, and their combination for the probability of extinction of a tiger population. The results from the evaluation showed that prey depletion, tiger poaching, and a combination of both, created a 100% probability of extinction within 20 years if the density and frequency of those threats at high rates. However, the duration of those threats in the system caused a 100% probability of extinction from tiger poaching. The results are able to contribute to optimize anti-poaching programs in future, to reduce significantly the probability of total extinction of Sumatran tiger. Furthermore, various landscape configurations have been tested against the probability and time of extinction for the Sumatran tiger population. The integration of spatial GIS-data in the model provides an insight into the relationship between tiger-prey-habitat. The results suggested that habitat quality surrounding a protected area plays an important role for the persistence of the Sumatran tiger population. This study also recommends agroforestry systems as reasonable land-use type in the vicinity of protected areas. They provide not only positive effects for tiger conservation purpose but they also appear as adaptable to the current land-use situation in Sumatra island.:Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Contents 12 1 Introduction 15 1.1 Cornerstones of Sumatran Tiger Conservation . . . . . . . . 16 1.2 Scientific Challenges to Tiger Conservation . . . . . . . . . 22 1.3 Roles of Modelling in Tiger Conservation . . . . . . . . . . 26 1.4 Individual-Based Models for Tiger Conservation . . . . . . . 30 1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Thesis Structures . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Literature Review 34 2.1 Fragmentation and Population Dynamics . . . . . . . . . . . 35 2.2 Population Extinction and its measures . . . . . . . . . . . 37 2.3 Modelling the Effect of Fragmentation on Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4 Individual-Based Modelling of Population Persistence . . . . 51 2.5 Sensitivity Analysis in Individual-based Model . . . . . . . . 53 3 Methods ..........................................................................55 3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Land-use Map Development . . . . . . . . . . . . . . . . . . 68 3.4 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Results 73 4.1 Structure and Sensitivity Analysis of Individual-based Predator- Prey Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Where to Go and How to Hide? Measuring the Relative Effect of Movement Decisions, Habitat Quality, and Landscape Configuration on theMortality andMigration of Tigers’ Prey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3 The Extinction Potential of a Sumatran Tiger Population after the Removal of Poaching . . . . . . . . . . . . . . . . . 117 4.4 The Influence of Agroforest and Other Land-use Types on the Persistence of a Sumatran tiger (Panthera tigris suma- trae) Population: An Individual-Based Model Approach . . 135 5 General Discussion 159 5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.2 Discussion of the results . . . . . . . . . . . . . . . . . . . . 161 6 Conclusions and Perspectives 170 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2 Perspectives for Future Research . . . . . . . . . . . . . . . 171 Bibliography 174 Appendices 191
Die vorliegende Dissertation beschreibt die Entwicklung des Panthera Populations Persistence (PPP) Modells, eines individuenbasierten Simulationsmodells für den Sumatra-Tiger (Panthera tigris sumatrae). Dieses stellt einen geeigneten theoretischen und anwendungsbezogenen Rahmen für den Schutz dieser Tiger-Unterart in Zentralsumatra bereit. Das PPP-Modell wurde entwickelt, um Einblicke in die Tiger-Beute-Habitat-Beziehungen zu gewinnen, sowie um den Effekt anthropogener Einflüsse auf den Fortbestand von Tigerpopulationen abzuschätzen. Dabei werden die drei Hauptprobleme für das Überleben des Sumatra-Tigers analysiert: die Wilderei, der Rückgang von Beutetieren und der Verlust von geeigneten Habitaten. Die Beschreibung des PPP-Modells gibt zunächst einen umfassenden Überblick zum aktuellen Wissensstand auf dem Gebiet des Tigerschutzes und integriert die wichtigsten Faktoren bereits existierender Modellansätze. Diese konnten durch die Einbeziehung einer detaillierten Beschreibung von individuellen Merkmalen und Verhalten verbessert werden. Das PPPModell stellt somit das Individuum in einen direkten Zusammenhang mit dessen Umwelt. Die Beziehung zwischen individuellem Verhalten, intrinsischen Merkmalen und externen Faktoren werden räumlich-explizit in einem bottom-up Ansatz simuliert. Damit kann sowohl die Populationsdynamik des Tigers als auch die seiner Beutetiere unter verschiedenen Annahmen beobachtet werden. Die Verknüpfung des PPP-Modells mit Geographischen Informationssystemen (GIS) bietet die Möglichkeit, die Reaktionsmechanismen der Individuen basierend auf der gegenwärtigen Landnutzungssituation zu simulieren und somit realitätsnahe räumliche Daten zu generieren. Die relative Bedeutung der Modell-Parameter auf die Simulationsergebnisse kann durch Sensitivitätsanalysen ermittelt werden. Hier wurden zwei verschiedene Ansätze verwendet: die Morris-Methode und die herkömmliche One-factor-at-a-time Methode. Der Vergleich beider methodischen Ansätze zeigte somit beispielhaft die Eignung unterschiedlicher Sensitivitätsanalysen für individuenbasierte Modelle auf. Die Morris-Methode zeigte, dass das Gesamtergebnis des PPP-Modells eine hohe Sensitivität gegenüber der Veränderung der Zeit aufweist, die ein Tigerweibchen braucht, um ihre Jungen aufzuziehen. Die Analyse zeigt auch, dass die Anzahl an abwandernden Tigern sensitiv gegenüber der IndividuellenWahrnehmungsdistanz von Beute ist. Der Vergleich mit einem ähnlichen Räuber-Beute-Modell lässt vermuten, dass diese Wahrnehmungsdistanz eines Individuums generell als ein entscheidender Faktor für Räuber-Beute-Beziehungen in räumlich-expliziten Individuenmodellen an- gesehen werden kann. Die Parametrisierung der IndividuellenWahrnehmungsdistanz des Tigers wurde so gewahlt, dass die damit ermittelten Simulationsergebnisse den Beutekonsum des Tigers, wie in der Literatur beschrieben, weitgehen widerspiegeln. Sie ist somit für die weitere Anwendung im PPP-Modell ausreichend gut beschrieben. Simulationsszenarien, welche verschiedene Habitatqualitäten sowie Landnutzungsmuster berücksichtigen, zeigen auch deren Bedeutung für die Mortalität und Migration der Beutetiere. Eine gute Habitatqualität hat eine geringe Mortalität der Beutetiere zur Folge, welche dann wiederum für den Tiger in ausreichender Zahl zur Verfügung stehen. Treten geringe Habitatqualitäten angrenzend an ein Habitat mit hoher Qualität auf, führte dies zu einer hohen Anzahl an abwandernden Beutetieren, womit sich die Ressourcen für den Tiger verringern. Die Landschaftsmerkmale sollten also bei der Vorhersage des Populationsfortbestandes des Sumatra-Tigers berücksichtigt werden. Die optimale Bewegung von zwei verschiedenen Beutetieren ergab eine hohe Beutedichte in einem Habitat mit hoher Qualität und stellte konzentriert Beute in einem Tigerhabitat bereit. Allerdings resultierte dies auch in einer geringeren Prädationsrate des Tigers, verglichen mit zufälligen oder artenspezifischen Bewegungen. Das PPP-Modell wurde angewandt, um die Auswirkungen von Wilderei, Beutetierrückgang sowie die Kombination beider Faktoren auf die Aussterbewahrscheinlichkeit einer Tigerpopulation zu bewerten. Die Ergebnisse zeigen, dass die genannten Faktoren eine 100-prozentige Aussterbewahrscheinlichkeit innerhalb von 20 Jahren zur Folge haben, wenn die Dichte und Häufigkeit dieser Bedrohungen hoch sind. Die Dauer dieser Bedrohungen im System verursachte allerdings eine 100-prozentige Aussterbewahrscheinlichkeit nur für die Wilderei von Tigern. Betrachtet man unabhängig von Dichte und Häufigkeit einzig die Dauer der Bedrohung, führt lediglich die Wilderei zum 100%-igen Aussterben. Diese Ergebnisse können maßgeblich dazu beitragen, zukünftig Schutzprogramme gegen die Wilderei zu optimieren, um das Aussterben des Sumatra-Tigers zu verhindern. DesWeiteren wurde der Einfluss von unterschiedlichen Landnutzungsmustern auf die Aussterbewahrscheinlichkeit und -zeit einer Sumatra-Tigerpopulation aufgezeigt. Die Integration von räumlichen GIS-Daten in das Modell ermöglichte einen Einblick in die Beziehungen zwischen Tiger, Beutetieren und Habitat. Die Ergebnisse zeigen, dass die Habitatqualität um Schutzgebiete herum eine wichtige Rolle für den Fortbestand der Population spielt. Die vorliegende Arbeit empfiehlt Agroforstsysteme als eine geeignete Landnutzungsform in der Nähe von Schutzgebieten, welche sowohl positive Effekte für den Tigerschutz bietet als auch mit den gegenwärtigen Landnutzungsmustern in Sumatra vereinbar erscheint.:Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Contents 12 1 Introduction 15 1.1 Cornerstones of Sumatran Tiger Conservation . . . . . . . . 16 1.2 Scientific Challenges to Tiger Conservation . . . . . . . . . 22 1.3 Roles of Modelling in Tiger Conservation . . . . . . . . . . 26 1.4 Individual-Based Models for Tiger Conservation . . . . . . . 30 1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Thesis Structures . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Literature Review 34 2.1 Fragmentation and Population Dynamics . . . . . . . . . . . 35 2.2 Population Extinction and its measures . . . . . . . . . . . 37 2.3 Modelling the Effect of Fragmentation on Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4 Individual-Based Modelling of Population Persistence . . . . 51 2.5 Sensitivity Analysis in Individual-based Model . . . . . . . . 53 3 Methods ..........................................................................55 3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Land-use Map Development . . . . . . . . . . . . . . . . . . 68 3.4 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Results 73 4.1 Structure and Sensitivity Analysis of Individual-based Predator- Prey Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Where to Go and How to Hide? Measuring the Relative Effect of Movement Decisions, Habitat Quality, and Landscape Configuration on theMortality andMigration of Tigers’ Prey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3 The Extinction Potential of a Sumatran Tiger Population after the Removal of Poaching . . . . . . . . . . . . . . . . . 117 4.4 The Influence of Agroforest and Other Land-use Types on the Persistence of a Sumatran tiger (Panthera tigris suma- trae) Population: An Individual-Based Model Approach . . 135 5 General Discussion 159 5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.2 Discussion of the results . . . . . . . . . . . . . . . . . . . . 161 6 Conclusions and Perspectives 170 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2 Perspectives for Future Research . . . . . . . . . . . . . . . 171 Bibliography 174 Appendices 191
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sumatran tiger"

1

Tibbitts, Alison. Sumatran tigers. Mankato, Minn: Capstone Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saleh, Chairul. Aku harimau Sumatera. Jakarta: WWF Indonesia, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kehutanan, Indonesia Departemen. Strategi dan rencana aksi konservasi harimau Sumatera (panthera tigris Sumatrae), 2007-2017. [Jakarta]: Departemen Kehutanan, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ng, Julia. Tiger trade revisited in Sumatra, Indonesia. Petaling Jaya, Malaysia: Traffic Southeast Asia, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burchett, Jan. Poacher panic. North Mankato, Minn: Stone Arch Books, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bakels, Jet. Het verbond met de tijger: Visies op mensenetende dieren in Kerinci, Sumatra. Leiden, The Netherlands: Research School of Asian, African, and Amerindian Studies, Universiteit Leiden, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Corn. Sumatran Tiger Calendar 2021. Independently Published, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tibbitts, Alison. Sumatran Tigers: Animals, Animals, Animals. Children's Press (CT), 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bennett, Peter Charles. Talking to My Sumatran Tiger. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sumatran Tiger: Fun Facts and Cool Pictures. Independently Published, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sumatran tiger"

1

Mets, J. T. "Occupational hazard of rubber tapping." In Why I Became an Occupational Physician and Other Occupational Health Stories, 57. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198862543.003.0048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tilson, Ronald, and Philip J. Nyhus. "The Biology and Politics of Sumatran Tigers." In Tigers of the World, 377–94. Elsevier, 2010. http://dx.doi.org/10.1016/b978-0-8155-1570-8.00030-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tilson, Ronald, Philip J. Nyhus, Sriyanto, and Arief Rubianto. "Poaching and Poisoning of Tigers in Sumatra for the Domestic Market." In Tigers of the World, 101–12. Elsevier, 2010. http://dx.doi.org/10.1016/b978-0-8155-1570-8.00006-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sumatran tiger"

1

Kusmarani, F. M., L. Sjahfirdi, and S. Sunarto. "Application of digital ethogram in Sumatran tiger (Panthera tigris sondaica) behavioral observation at Ragunan Zoological Park." In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gea, Ali, Badaruddin Badaruddin, and Ma’rifatin Zahrah. "Local Wisdom and Sumatran Tiger in Leuser-Ulu Masen Landscape: A Study in Mane Sub-district of Aceh Province." In Proceedings of The 2nd International Conference On Advance And Scientific Innovation, ICASI 2019, 18 July, Banda Aceh, Indonesia. EAI, 2019. http://dx.doi.org/10.4108/eai.18-7-2019.2288638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiranaputri, Genoveva, Luthfiralda Sjahfirdi, and Ligaya ITA Tumbelaka. "Vaginal Smear and Neutrophil Count as an Alternative Method for Estrous Phase in Female Tiger (Panthera tigris sumatrae, Pocock, 1929)." In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210621.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Iriyani, Silfi, A. Humam Hamid, Agus Setyarso, Hairul Basri, and Dedi Kiswayadi. "Current Status of Forest Management Unit Effectiveness Versus Decreasing the population of Sumatran Tigers in the Ulu Masen Protected Area, Aceh." In Joint Symposium on Tropical Studies (JSTS-19). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210408.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mailani, Elvi, Umri Efendi, and Suyit Ratno. "Three Tier Test in Analyzing the Misconceptions of Mathematics learning." In Proceedings of the 3rd International Conference of Science Education in Industrial Revolution 4.0, ICONSEIR 2021, December 21st, 2021, Medan, North Sumatra, Indonesia. EAI, 2022. http://dx.doi.org/10.4108/eai.21-12-2021.2317282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Renowati, Renowati, Enlita Enlita, and Fitra Wahyuni. "The Effect of Aloe vera Gel on Widal Titer of Rats Ingested Salmonella typhi Bacteria." In Proceedings of the 1st EAI International Conference on Medical And Health Research, ICoMHER November 13-14th 2018, Padang, West Sumatera, Indonesia. EAI, 2019. http://dx.doi.org/10.4108/eai.13-11-2018.2283658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography