Academic literature on the topic 'Sup45p'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sup45p.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sup45p"

1

Paushkin, S. V., V. V. Kushnirov, V. N. Smirnov, and M. D. Ter-Avanesyan. "Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation." Molecular and Cellular Biology 17, no. 5 (May 1997): 2798–805. http://dx.doi.org/10.1128/mcb.17.5.2798.

Full text
Abstract:
The SUP45 and SUP35 genes of Saccharomyces cerevisiae encode polypeptide chain release factors eRF1 and eRF3, respectively. It has been suggested that the Sup35 protein (Sup35p) is subject to a heritable conformational switch, similar to mammalian prions, thus giving rise to the non-Mendelian [PSI+] nonsense suppressor determinant. In a [PSI+] state, Sup35p forms high-molecular-weight aggregates which may inhibit Sup35p activity, leading to the [PSI+] phenotype. Sup35p is composed of the N-terminal domain (N) required for [PSI+] maintenance, the presumably nonfunctional middle region (M), and the C-terminal domain (C) essential for translation termination. In this study, we observed that the N domain, alone or as a part of larger fragments, can form aggregates in [PSI+] cells. Two sites for Sup45p binding were found within Sup35p: one is formed by the N and M domains, and the other is located within the C domain. Similarly to Sup35p, in [PSI+] cells Sup45p was found in aggregates. The aggregation of Sup45p is caused by its binding to Sup35p and was not observed when the aggregated Sup35p fragments did not contain sites for Sup45p binding. The incorporation of Sup45p into the aggregates should inhibit its activity. The N domain of Sup35p, responsible for its aggregation in [PSI+] cells, may thus act as a repressor of another polypeptide chain release factor, Sup45p. This phenomenon represents a novel mechanism of regulation of gene expression at the posttranslational level.
APA, Harvard, Vancouver, ISO, and other styles
2

All-Robyn, J. A., D. Kelley-Geraghty, E. Griffin, N. Brown, and S. W. Liebman. "Isolation of omnipotent suppressors in an [eta+] yeast strain." Genetics 124, no. 3 (March 1, 1990): 505–14. http://dx.doi.org/10.1093/genetics/124.3.505.

Full text
Abstract:
Abstract Omnipotent suppressors decrease translational fidelity and cause misreading of nonsense codons. In the presence of the non-Mendelian factor [eta+], some alleles of previously isolated omnipotent suppressors are lethal. Thus the current search was conducted in an [eta+] strain in an effort to identify new suppressor loci. A new omnipotent suppressor, SUP39, and alleles of sup35, sup45, SUP44 and SUP46 were identified. Efficiencies of the dominant suppressors were dramatically reduced in strains that were cured of non-Mendelian factors by growth on guanidine hydrochloride. Wild-type alleles of SUP44 and SUP46 were cloned and these clones were used to facilitate the genetic analyses. SUP44 was shown to be on chromosome VII linked to cyh2, and SUP46 was clearly identified as distinct from the linked sup45.
APA, Harvard, Vancouver, ISO, and other styles
3

Wakem, L. P., and F. Sherman. "Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae." Genetics 124, no. 3 (March 1, 1990): 515–22. http://dx.doi.org/10.1093/genetics/124.3.515.

Full text
Abstract:
Abstract Approximately 290 omnipotent suppressors, which enhance translational misreading, were isolated in strains of the yeast Saccharomyces cerevisiae containing the psi+ extrachromosomal determinant. The suppressors could be assigned to 8 classes by their pattern of suppression of five nutritional markers. The suppressors were further distinguished by differences in growth on paromomycin medium, hypertonic medium, low temperatures (10 degrees), nonfermentable carbon sources, alpha-aminoadipic acid medium, and by their dominance and recessiveness. Genetic analysis of 12 representative suppressors resulted in the assignment of these suppressors to 6 different loci, including the three previously described loci SUP35 (chromosome IV), SUP45 (chromosome II) and SUP46 (chromosome II), as well as three new loci SUP42 (chromosome IV), SUP43 (chromosome XV) and SUP44 (chromosome VII). Suppressors belonging to the same locus had a wide range of different phenotypes. Differences between alleles of the same locus and similarities between alleles of different loci suggest that the omnipotent suppressors encode proteins that effect different functions and that altered forms of each of the proteins can effect the same function.
APA, Harvard, Vancouver, ISO, and other styles
4

Petrova, Alexandra, Denis Kiktev, Olga Askinazi, Svetlana Chabelskaya, Svetlana Moskalenko, Olga Zemlyanko, and Galina Zhouravleva. "The translation termination factor eRF1 (Sup45p) ofSaccharomyces cerevisiaeis required for pseudohyphal growth and invasion." FEMS Yeast Research 15, no. 4 (June 2015): fov033. http://dx.doi.org/10.1093/femsyr/fov033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Urbero, B., L. Eurwilaichitr, I. Stansfield, J. P. Tassan, X. Le Goff, M. Kress, and M. F. Tuite. "Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues." Biochimie 79, no. 1 (January 1997): 27–36. http://dx.doi.org/10.1016/s0300-9084(97)87622-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ter-Avanesyan, M. D., A. R. Dagkesamanskaya, V. V. Kushnirov, and V. N. Smirnov. "The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae." Genetics 137, no. 3 (July 1, 1994): 671–76. http://dx.doi.org/10.1093/genetics/137.3.671.

Full text
Abstract:
Abstract The SUP35 gene of yeast Saccharomyces cerevisiae encodes a 76.5-kD ribosome-associated protein (Sup35p), the C-terminal part of which exhibits a high degree of similarity to EF-1 alpha elongation factor, while its N-terminal region is unique. Mutations in or overexpression of the SUP35 gene can generate an omnipotent suppressor effect. In the present study the SUP35 wild-type gene was replaced with deletion alleles generated in vitro that encode Sup35p lacking all or a part of the unique N-terminal region. These 5'-deletion alleles lead, in a haploid strain, simultaneously to an antisuppressor effect and to loss of the non-Mendelian determinant [psi+]. The antisuppressor effect is dominant while the elimination of the [psi+] determinant is a recessive trait. A set of the plasmid-borne deletion alleles of the SUP35 gene was tested for the ability to maintain [psi+]. It was shown that the first 114 amino acids of Sup35p are sufficient to maintain the [psi+] determinant. We propose that the Sup35p serves as a trans-acting factor required for the maintenance of [psi+].
APA, Harvard, Vancouver, ISO, and other styles
7

Polevoda, Bogdan, Lisa Span, and Fred Sherman. "The Yeast Translation Release Factors Mrf1p and Sup45p (eRF1) Are Methylated, Respectively, by the Methyltransferases Mtq1p and Mtq2p." Journal of Biological Chemistry 281, no. 5 (December 1, 2005): 2562–71. http://dx.doi.org/10.1074/jbc.m507651200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doel, S. M., S. J. McCready, C. R. Nierras, and B. S. Cox. "The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene." Genetics 137, no. 3 (July 1, 1994): 659–70. http://dx.doi.org/10.1093/genetics/137.3.659.

Full text
Abstract:
Abstract The PNM2- mutation of Saccharomyces cerevisiae eliminates the extrachromosomal element psi. PNM2 is closely linked to the omnipotent suppressor gene SUP35 (also previously identified as SUP2, SUF12, SAL3 and GST1). We cloned PNM2- and showed that PNM2 and SUP35 are the same gene. We sequenced the PNM2- mutant allele and found a single G-->A transition within the N-terminal domain of the protein. We tested the effects of various constructs of SUP35 and PNM2- on psi inheritance and on allosuppressor and antisuppressor functions of the gene. We found that the C-terminal domain of SUP35 protein (SUP35p) could be independently expressed; expression produced dominant antisuppression. Disruption of the N-terminal domain of PNM2- destroyed the ability to eliminate psi. These results imply that the domains of SUP35p act in an antagonistic manner: the N-terminal domain decreases chain-termination fidelity, while the C-terminal domain imposes fidelity. Two transcripts were observed for SUP35, a major band at 2.4 kb and a minor band at 1.3 kb; the minor band corresponds to 3' sequences only. We propose a model for the function of SUP35, in which comparative levels of N- and C-terminal domains of SUP35p at the ribosome modulate translation fidelity.
APA, Harvard, Vancouver, ISO, and other styles
9

Volkov, Kirill V., Anna Yu Aksenova, Malle J. Soom, Kirill V. Osipov, Anton V. Svitin, Cornelia Kurischko, Irina S. Shkundina, Michael D. Ter-Avanesyan, Sergey G. Inge-Vechtomov, and Ludmila N. Mironova. "Novel Non-Mendelian Determinant Involved in the Control of Translation Accuracy in Saccharomyces cerevisiae." Genetics 160, no. 1 (January 1, 2002): 25–36. http://dx.doi.org/10.1093/genetics/160.1.25.

Full text
Abstract:
Abstract Two cytoplasmically inherited determinants related by their manifestation to the control of translation accuracy were previously described in yeast. Cells carrying one of them, [PSI+], display a nonsense suppressor phenotype and contain a prion form of the Sup35 protein. Another element, [PIN+], determines the probability of de novo generation of [PSI+] and results from a prion form of several proteins, which can be functionally unrelated to Sup35p. Here we describe a novel nonchromosomal determinant related to the SUP35 gene. This determinant, designated [ISP+], was identified as an antisuppressor of certain sup35 mutations. We observed its loss upon growth on guanidine hydrochloride and subsequent spontaneous reappearance with high frequency. The reversible curability of [ISP+] resembles the behavior of yeast prions. However, in contrast to known prions, [ISP+] does not depend on the chaperone protein Hsp104. Though manifestation of both [ISP+] and [PSI+] is related to the SUP35 gene, the maintenance of [ISP+] does not depend on the prionogenic N-terminal domain of Sup35p and Sup35p is not aggregated in [ISP+] cells, thus ruling out the possibility that [ISP+] is a specific form of [PSI+]. We hypothesize that [ISP+] is a novel prion involved in the control of translation accuracy in yeast.
APA, Harvard, Vancouver, ISO, and other styles
10

Derkatch, Irina L., Michael E. Bradley, Ping Zhou, Yury O. Chernoff, and Susan W. Liebman. "Genetic and Environmental Factors Affecting the de novo Appearance of the [PSI + ] Prion in Saccharomyces cerevisiae." Genetics 147, no. 2 (October 1, 1997): 507–19. http://dx.doi.org/10.1093/genetics/147.2.507.

Full text
Abstract:
It has previously been shown that yeast prion [PSI + ] is cured by GuHCl, although reports on reversibility of curing were contradictory. Here we show that GuHCl treatment of both [PSI + ] and [psi – ] yeast strains results in two classes of [psi – ] derivatives: Pin+, in which [PSI + ] can be reinduced by Sup35p overproduction, and Pin–, in which overexpression of the complete SUP35 gene does not lead to the [PSI + ] appearance. However, in both Pin+ and Pin– derivatives [PSI + ] is reinduced by overproduction of a short Sup35p N-terminal fragment, thus, in principle, [PSI + ] curing remains reversible in both cases. Neither suppression nor growth inhibition caused by SUP35 overexpression in Pin+ [psi – ] derivatives are observed in Pin– [psi – ] derivatives. Genetic analyses show that the Pin+ phenotype is determined by a non-Mendelian factor, which, unlike the [PSI + ] prion, is independent of the Sup35p N-terminal domain. A Pin– [psi – ] derivative was also generated by transient inactivation of the heat shock protein, Hsp104, while [PSI + ] curing by Hsp104 overproduction resulted exclusively in Pin+ [psi – ] derivatives. We hypothesize that in addition to the [PSI + ] prion-determining domain in the Sup35p N-terminus, there is another self-propagating conformational determinant in the C-proximal part of Sup35p and that this second prion is responsible for the Pin+ phenotype.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sup45p"

1

Eurwilaichitr, Lily. "Structure-function studies of yeast SUP45p (eRF1) protein." Thesis, University of Kent, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Graves, Fiona M. "Probing the function of the eRF1(Sup45p) protein in Saccharomyces cerevisiae." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cosnier, Bruno. "Etude fonctionnelle des protéines Sup35 et Imp3 chez la levure Saccharomyces cerevisiae." Paris 11, 2008. http://www.theses.fr/2008PA112307.

Full text
Abstract:
Le domaine C-terminal très conservé de la protéine Sup35, impliquée dans la terminaison de la traduction, possède un site potentiel de phosphorylation par la PKA au niveau de la Thréonine341. Nous avons recherché si ce résidu était phosphorylé in vivo et s’il était impliqué dans la régulation fonctionnelle de la protéine. Dans les conditions testées, aucune phosphorylation de Sup35p n’a pu être mise en évidence in vivo mais nous avons montré que le résidu T341 était critique pour la fonctionnalité de la protéine et pourrait être impliqué dans des interactions fonctionnelles entre les domaines N et C terminaux. Le domaine N de Sup35p est responsable du phénotype prion [PSI+]. Jusqu’à présent, les seules mutations caractérisées influençant les propriétés prion de cette protéine ont été localisées dans ce domaine N-terminal. Nous avons identifié une mutation dans le domaine C-terminal qui modifie les capacités d’agrégation de la protéine. Cette observation apporte de nouveaux éléments pour la compréhension du mécanisme de conversion de Sup35p vers un état agrégé. IMP3 est un gène essentiel codant une protéine impliquée dans la biogenèse des ribosomes. Nous avons construit une souche capable d’exprimer de façon endogène un allèle mutant hypomorphe du gène IMP3. Cette souche présente d’importants défauts de biogenèse de la petite sous unité 40S du ribosome. Nous avons montré que la fidélité de la traduction est affectée dans cette souche : l’efficacité de décalage du cadre lecture en +1 est augmentée. Nos expériences montrent que cette protéine pourrait être également impliquée dans la réparation de l’ADN et le contrôle de la taille des télomères
All Sup35 homologs share a potential phosphorylation site at threonine 341, suggesting a functional role for this residue. We investigated whether this residue is actually phosphorylated in yeast and if it is involved in the termination activity of the protein. In the conditions we tested, no phosphorylation of the Sup35 protein in vivo was detected. However our results point to a new critical residue involved in the translation termination activity of Sup35p and in functional interaction between the N- and C-domains of the protein. The N-terminal domain of Sup35p is required for prion propagation, driving the switch from the soluble, functional [psi-] state to the insoluble [PSI+] prion state. To date, all the critical elements for prion induction and propagation have been mapped to the N domain of the protein. Here we report for the first time a mutation in the C-terminal domain of Sup35p which alters the aggregation properties of Sup35p. This observation has important consequence for understanding the mechanism of prion conversion. The essential IMP3 gene encodes a component of the SSU processome, a large ribonucleoprotein required for processing of small subunit rRNA precursors. We constructed and analysed a mutant of the IMP3 gene able to sustain cell growth. A strain expressing this hypomorphic allele displayed ribosome biogenesis defects characteristic of a depletion in Imp3p. We demonstrated the +1 frameshifting was increased in the mutant strain. Our further characterization revealed involvement of the Imp3 protein in DNA repair and telomere length control, two pathways that are not directly related to ribosome biogenesis
APA, Harvard, Vancouver, ISO, and other styles
4

Gong, He. "Studies of genetic factors modulating polyglutamine toxicity in the yeast model." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42796.

Full text
Abstract:
Polyglutamine-expanded fragments, derived from the human huntingtin protein, are aggregation-prone and toxic in yeast cells, bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline-rich region targets polyglutamine aggregates to the large perinuclear deposit (aggresome). Aggresome targeting ameliorates polyglutamine cytotoxicity in the presence of the prion form of Rnq1 protein, however, aggresome-forming construct remains toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). Disomy by chromosome II partly ameliorates polyglutamine toxicity in the strains containing Sup35 prion. The chromosome II gene, coding for another release factor, and interaction partner of Sup35, named Sup45 (eRF1), is responsible for amelioration of toxicity. Plasmid-mediated overproduction of Sup45, or expression of the Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into prion aggregates, also ameliorate polyglutamine toxicity. Protein analysis indicates that polyglutamines alter aggregation patterns of the Sup35 prion and promote aggregation of Sup45, while excess Sup45 counteracts these effects. In the absence of Sup35 prion, disomy by chromosome II is still able to decrease polyglutamine toxicity. However, SUP45 is no longer the gene responsible for such an effect. Taken together with the finding that the presence of both the Rnq1 prion and the Sup35 prion has an additive effect on polyQ toxicity, one gene or few genes on chromosome II are able to ameliorate polyQ toxicity through a SUP45-independent pathway. The identification of such a gene is currently ongoing. Monosomy by chromosome VIII in diploid heterozygous by AQT (Anti-polyQ Toxicity mutants that are disomic by chromosome II) counteracted the effect of AQT. Similarly, deletion of the arg4 gene in chromosome VIII in AQT haploid was able to eliminate the AQT effect. Moreover, analysis of genes involved in the arginine and polyamine synthesis indicated that loss of genes in later stages of arginine biosynthesis causes increase of polyglutamine toxicity. Deletion of genes arg1, arg4, arg8 (arginine pathway) and spe1 (polyamine pathway) all suppressed the Sup35 prion phenotype expression in the nonsense suppression system. Further analysis regarding the mechanisms behind those effects is needed. Our data uncover the mechanisms by which genetic and epigenetic factors may influence polyglutamine toxicity, and demonstrate that one and the same type of polyglutamine deposits could be cytoprotective or cytotoxic, depending on the prion composition of a eukaryotic cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Eaglestone, Simon Spencer. "Studies of Sup35p : a yeast prion protein." Thesis, University of Kent, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parham, Steve Neil. "Saccharomyces cerevisiae Sup35p and its prion-like behaviour." Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lawrence, Clare Louise. "Factors affecting the aggregation of yeast prion protein Sup35p." Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krammer, Carmen. "Aggregation propensities of the yeast Sup35p and mouse prion protein domains in the cytosol of mammalian cells." kostenfrei, 2008. http://mediatum2.ub.tum.de/node?id=669173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moskalenko, Svetlana. "Analyse de mutants faux sens et non sens dans le gène essential SUP45 chez saccharomyces cerevisiae." Rennes 1, 2003. http://www.theses.fr/2003REN10168.

Full text
Abstract:
Chez S. Cerevisiae, les gènes SUP45 et SUP35 codant respectivement eRF1 et eRF3 sont essentiels. Nous avons isolé 16 mutants viables ayant une mutation faux sens ou non sens dans le gène SUP45. Toutes les mutations faux sens sont localisées dans la région de la protéine eRF1 qui reconnaît le codon STOP, elles n'altèrent ni le faux de la protéine, ni son interaction avec eRF3. Toutes les mutations non sens conduisent à un phénotype de suppression omnipotente et à la viabilité (testée dans 3 souches différentes). Pour tous ces mutants, la quantité d’eRF1 est réduite par rapport à la souche sauvage et elle est corrélée à la perte d'efficacité de la terminaison de la traduction. De plus, la quantité de certaines tRNA qui ont la capacité potentielle de lire des codons de terminaison était plus élevée chez ces mutants, ce qui pourrait expliquer le phénomène de translecture.
APA, Harvard, Vancouver, ISO, and other styles
10

Luckgei, Nina. "Structural and dynamic features of Sup35 prion fibrils by solid-state NMR spectroscopy." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10185.

Full text
Abstract:
Les protéines prions sont associées à une classe de maladies neurodégénératives, dont l'encéphalopathie spongiforme transmissible (EST) est la mieux connue. La protéine prion Sup35p représente un tel modèle car elle est non associée à une maladie. Sup35p se compose de trois domaines : un domaine N-terminal qui est responsable de la formation de prion, d'un domaine de milieu (M) qui affiche un degré élevé de flexibilité, et un domaine C-terminal fonctionnel et globulaire. Le fragment Sup35pNM est souvent utilisé comme modèle pour documenter l'assemblage et les propriétés infectieuses de Sup35p. Les études de Sup35p et Sup35pNM par RMN du solide ont révélé d'étonnantes différences structurelles entre les deux cœurs amyloïdes de Sup35p et Sup35pNM. Nos résultats sur Sup35p apportent un nouvel éclairage sur le monde étonnamment diversifié des prions où la variabilité conformationnelle joue un rôle énorme et perturbant. Ils reflètent l'image émergente que les prions sont des unités structurelles complexes. En effet, même s'il affiche une structure très définie, un domaine donné peut adopter des conformations différentes selon les circonstances (en isolation, dans le contexte d'un fragment ou la protéine entière) ou de l'environnement (conditions de tampon, présence de chaperonnes). Nos résultats donnent une explication au niveau moléculaire pour la contractante propension à l'assemblage et l'infectiosité de Sup35pNM et Sup35p, et soulignent l'importance primordiale d'une caractérisation structurale au niveau moléculaire des agrégats utilisés dans des études fonctionnelles
Prion proteins are associated with a class of neurodegenerative diseases, including transmissible spongiform encephalopathy (TSE) which is the best known. The prion protein Sup35p displays a model system because it is not associated with disease. Sup35p consists of three domains: an N-terminal domain which is responsible for the prion formation, a middle domain (M) that displays a high degree of flexibility, and a functional C-terminal domain. Sup35pNM the fragment is often used as a model to document for the assembly and infectious properties of Sup35p. Solid-state NMR studies of Sup35p and Sup35pNM fibrils showed amazing structural differences between the two amyloid cores. Our results shed new light on the surprisingly diverse world of prions where conformational variability plays a huge role. They reflect the emerging picture that prions are complex structural units. Even if it displays a very defined structure, a given field may adopt different conformations depending on the circumstances (in isolation, in the context of the whole protein or fragment) or the environment (buffer conditions, presence of chaperones). Our results provide an explanation at the molecular level for the contrasting propensity assembly and infectivity Sup35pNM and Sup35p, and emphasize the central importance of a structural characterization at the molecular level
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sup45p"

1

Supŏp yŏn'gu. Sŏul T'ŭkpyŏlsi: Sinjosa, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

SUPP handbook. Kuching, Sarawak, Malaysia: SUPP Central Secretariat, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rattanaphan, Thǣmsin. Tai laʻō̜ng thulī phrabāt kap Laddā supsip. Krung Thēp: Samnakphim Rūamdūai Chūaikan, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yi, Sŏng-ok. Hanʼguk tosi kaebal: Kaebal supŏp ŭi kaesŏn panghyang. Sŏul Tʻŭkpyŏlsi: Tongmyŏngsa, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chosŏnŏ munchʻeronjŏk sudan kwa supŏp ŭi yŏksajŏk palchŏn. Sŏul-si: Hanʾguk Munhwasa, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Teng, David Lung Chi. The challenges: SUPP in focus. Sibu, Sarawak, Malaysia: Think Management Consultants and Services, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

SUPP Handbook. [Kuching, Sarawak]: SUPP Central Publicity Secretariat, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foreign Exchange Manual Supp5 Weisweiller. Prentice-Hall, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

DeBlij. Supp Slides Physical. John Wiley & Sons Inc, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al, Prescott Et. Charities Administration Supp. ICSA Publishing Ltd (Institute of Chartered Secretaries & Administrators), 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sup45p"

1

Ter-Avanesyan, Michael D., Svetlana A. Didichenko, Vitaly V. Kushnirov, and Adilya R. Dagkesamanskaya. "SUP35 and SUP45 Genes Code for Ribosome-Bound Proteins Involved in the Control of Translational Fidelity in Yeast." In Protein Synthesis and Targeting in Yeast, 81–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84921-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tuite, Mick F., Akhmaloka, Mandy Firoozan, Julio A. B. Duarte, and Chris M. Grant. "Control of Translational Accuracy in Yeast: The Role of the Sal4 (Sup45) Protein." In Post-Transcriptional Control of Gene Expression, 611–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75139-4_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Inge-Vechtomov, S. G., E. A. Ilmov, L. N. Mironova, V. L. Tikchomirova, K. V. Volkov, and S. P. Zadorsky. "Yeast Approach to Protein “Prionization”: SUP35-[PSI] System." In Prions and Brain Diseases in Animals and Humans, 99–109. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1896-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Yongae, Yuna Kim, Jae Joon Park, Jung Hyun Hwang, and Tae Joon Park. "Production and Amyloid Fibril Formation of Recombinant Yeast Prion(Sup35)-Like Protein Fragment." In Key Engineering Materials, 67–71. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-958-x.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wickner, Reed B., Daniel C. Masison, Herman Edskes, and Marie-Lise Maddelein. "Prions of Yeast: Genetic Evidence that the Non-Mendelian Elements, [PSI] and [URE3] Are Altered Self-Replicating Forms of Sup35p and Ure2p, Respectively." In Prions and Brain Diseases in Animals and Humans, 111–21. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1896-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kunz, Bernard A. "Mutational Specificity Analysis: Assay for Mutations in the Yeast SUP4-o Gene." In Methods in Molecular Biology, 201–12. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0799-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"SUP35." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1898. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_16359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Descending Tracts and Motor Nuclei." In Atlas of Functional Neuroanatomy. CRC Press, 2000. http://dx.doi.org/10.1201/9781420048209.supl45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Basal Ganglia - Circuitry." In Atlas of Functional Neuroanatomy. CRC Press, 2000. http://dx.doi.org/10.1201/9781420048209.supl50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Thalamus - Motor Circuits." In Atlas of Functional Neuroanatomy. CRC Press, 2000. http://dx.doi.org/10.1201/9781420048209.supl51.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sup45p"

1

Li, Hui, Xianyuan Wu, Lijie Wang, Hui Xie, Youxin Song, and Youtao Song. "Low Sup35p expression induced by NaCl stress leads to false-positive [PSI+] phenotype in [psi−] yeast cells." In International Conference on Medical Engineering and Bioinformatics. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/meb140021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Accelerating arrays of linear-supp." In 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2014. http://dx.doi.org/10.1109/wacv.2014.6836127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Zhenghong, Liangyao Yu, Jian Song, Shengnan Fang, and Lanie Abi. "Speed Based Power Control of Integrated Powertrain With Two-Speed Transmission for PEV." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98275.

Full text
Abstract:
Abstract Multi-speed transmissions with 2–3 speed are considered to be an effective and compact equipment for pure electric vehicles’ (PEV) dynamic and economical improvement. However, the characteristics of fewer gears and larger speed ratio gap not only request uninterrupted shifting quality but also smooth pedalpower pattern to derive demand power of motor from drivers’ input. Due to these features of multi-speed transmissions for PEV, using one fixed pedal-power pattern in conventional ways will cause output torque shock after shifting or force drivers to passively adjust the pedal for constant acceleration. A speed-based unified pedal-power pattern (SUPP) is proposed to interpret the demand power of motor according to the vehicle speed instead of motor speed. The SUPP contains three components including a base, a feedforward and a feedback part to satisfied the different dynamic request under different gears and different speed. Furthermore, the SUPP is integrated with the innovative clutch-to-clutch shifting algorithm which achieves uninterrupted shifting on PEV, and realizes in optimal trajectory of motor operating points during and after shifting. A case study of SUPP is conducted with a two-speed transmission for PEV through both simulation and experiments. The simulation and experimental results prove that the SUPP is able to obtain uninterrupted wheel torque during and after shifting with constant drivers’ intention, and prevent drivers from unnecessary adaptation.
APA, Harvard, Vancouver, ISO, and other styles
4

Syau, Yu-Ru, and E. Stanley Lee. "A note on supp-preincave fuzzy sets." In NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2008. http://dx.doi.org/10.1109/nafips.2008.4531234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yi, Wang, and Wan Fuyong. "Breast Cancer Diagnosis via Supp ort Vector Machines." In 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Valentine, G. J., G. T. Kennedy, and W. Sibbett. "All-Solid. State, Compact, Self-Mode Locked Cr/sup4+/:YAG Laser." In Proceedings of European Meeting on Lasers and Electro-Optics. IEEE, 1996. http://dx.doi.org/10.1109/cleoe.1996.562595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Narumi, Tetsu, Makoto Taiji, Mitsuru Ikei, Yousuke Ohno, Noriaki Okimoto, Takahiro Koishi, Atsushi Suenaga, et al. "Gordon Bell finalists II---A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3." In the 2006 ACM/IEEE conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1188455.1188506.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sup45p"

1

Hersey, Anne. ChEMBL Deposited Data Set - Supp Data (set4). EMBL-EBI, September 2013. http://dx.doi.org/10.6019/chembl2364262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hersey, Anne. ChEMBL Deposited Data Set - Supp Data (set3). EMBL-EBI, September 2013. http://dx.doi.org/10.6019/chembl2364335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hersey, Anne. ChEMBL Deposited Data Set - Supp Data to CHEMBL1157144. EMBL-EBI, January 2013. http://dx.doi.org/10.6019/chembl2094195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hersey, Anne. ChEMBL Deposited Data Set - Supp Data set 2 to CHEMBL1157144. EMBL-EBI, July 2013. http://dx.doi.org/10.6019/chembl2218064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krishnan, Ramayya. On Integrating Artificial Intelligence and Decision Analysis Technologies: Determ Supp Req for a Combat Force. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada344399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography