To see the other types of publications on this topic, follow the link: Super-resolution ; dSTORM ; fluorescence microscopy.

Dissertations / Theses on the topic 'Super-resolution ; dSTORM ; fluorescence microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Super-resolution ; dSTORM ; fluorescence microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Sanders, James Henry. "Direct stochastic optical reconstruction microscopy (dSTORM) imaging of cellular structures." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/direct-stochastic-optical-reconstruction-microscopy-dstorm-imaging-of-cellular-structures(915e2c88-c81a-4b24-ac53-6ab7ffcbf4d8).html.

Full text
Abstract:
The diffraction limit restricts conventional light microscopes to approximately 250 nm laterally and 500 nm axially, these limits being first proposed by Abbe in 1873. Despite this, optical microscopes have found many applications in biological research and single cells that are 10 - 100 um in size. Furthermore by coupling the non-invasive nature of a light microscope with highly sensitive fluorescent probes, fluorescence microscopy has also become a standard imaging technique. Recent advances in fluorescence microscopy now provide a number of methods to circumvent the Abbe diffraction limit, with many techniques becoming prevalent over the last 10 years including direct Stochastic Optical Reconstruction Microscopy (dSTORM). A dSTORM system has been constructed and calibrated using a commercially available inverted florescence microscope and total internal reflection florescence (TIRF) imaging. dSTORM relies on the ability to switch sparse subsets of fluorophores and temporally separate them. Provided the spatial separation is sufficient between any member of a subset, the average error with which the emission can be localized is much less than size of the emission profile itself. The underlying mechanism for this switching is detailed based on the principle of photoinduced electron transfer (PET). The switching characteristics of the common florescent dye Alexa Fluor 568 are investigated and shown to be controlled by a number of factors including the excitation intensity and concentration of the primary thiol cysteamine beta-MEA. A number of parameters are defined, including the dye switching rate, for a given set of physical parameters. U2OS cells are labelled for the microtubule protein Tubulin using immunofluorescent labelling strategies. A direct comparison is made between diffraction limited TIRF images and dSTORM reconstructed images, with an average width for microtubules determined to (58.2 ± 8.1) nm. Further measurements are made by labelling the Rab5 effector Early Endosome Antigen 1 (EEA1). From this the aspect ratio for early endosomes is determined to be 1.68 ± 0.7 with an average radius of (45.8 ± 18.8) nm. The point spatial distribution of EEA1 is investigated by using the linearised form of Ripley's K-function H(r) and the null hypothesis of complete spatial randomness tested. EEA1 is shown to cluster at radius of 58.7 nm on individual endosomes, thought to be due to the well defined binding domains present on early endosomes for EEA1. Further evidence suggests that clustering is also exhibited at another maximum of approximately 500 nm when looking at an ensemble of EEA1 and early endosomes.
APA, Harvard, Vancouver, ISO, and other styles
2

Glushonkov, Oleksandr. "Imagerie de fluorescence à haute résolution : étude de la localisation nucléolaire de la protéine de la nucléocapside du VIH." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ028/document.

Full text
Abstract:
Au cours de ce travail de thèse expérimental, nous nous sommes intéressés à l’étude de la localisation nucléaire et nucléolaire de la protéine de la nucléocapside (NC) du VIH-1. Des études antérieures menées au laboratoire avaient mis en évidence une très forte accumulation de la NC dans les nucléoles. Ce compartiment nucléaire est connu pour être ciblé par de nombreux virus afin de promouvoir leur réplication. Des expériences de microscopie électronique avaient révélé la structure complexe du nucléole et montré qu’il est composé de trois sous-compartiments : les centres fibrillaires, le compartiment fibrillaire dense et le compartiment granulaire dans lesquels se déroule la synthèse des ribosomes. Afin de caractériser la localisation de la NC dans ces trois sous-compartiments, nous avons développé une approche de microscopie optique à haute résolution permettant d’obtenir des images à deux couleurs avec une résolution spatiale améliorée. Pour cela, nous avons mis au point un protocole qui permet d’utiliser simultanément une protéine fluorescente photocommutable et un fluorophore organique introduit par immunomarquage. Après avoir minimisé les aberrations optiques et corrigé les dérives mécaniques inhérentes au montage, nous avons visualisé simultanément la localisation de la NC surexprimée dans des cellules HeLa avec des marqueurs spécifiques des trois sous-compartiments nucléolaires (immunomarquage). La microscopie de fluorescence à haute résolution a permis de résoudre pour la première fois les différents compartiments et de montrer que la NC se localise préférentiellement dans le compartiment granulaire. Finalement, des expériences préliminaires avec des cellules vivantes ont permis de mettre en évidence que la NC est transportée de manière active dans le noyau et qu’elle pourrait interagir directement avec des protéines nucléolaires<br>During this experimental thesis work, we investigated the nuclear and nucleolar localization of the nucleocapsid protein (NC) of HIV-1. Previous studies performed in our laboratory evidenced a strong accumulation of NC in a subnuclear structure called nucleolus. Playing role in multiple cellular processes, nucleolus is often targeted by viruses to promote their replication. Electron microscopy revealed three nucleolar components (fibrillar centers, dense fibrillar component and granular component) associated to specific steps of the ribosome biogenesis. To characterize the distribution of the NC in these three sub-compartments and therefore shed light on the nucleolar localization of NC during the replication cycle, we developed a high-resolution optical microscopy approach. After having minimized the optical aberrations and corrected the mechanical drifts inherent to the imaging setup, the NC-mEos2 fusion protein overexpressed in HeLa cells was visualized simultaneously with immunolabeled nucleolar markers. The use of high-resolution fluorescence microscopy enabled us to resolve for the first time the three nucleolar compartments and to demonstrate the preferential localization of NC in the granular compartment of nucleolus. Finally, preliminary experiments performed with living cells showed that NC is actively transported in the nucleus and therefore may interact directly with nucleolar proteins
APA, Harvard, Vancouver, ISO, and other styles
3

Valadés, Cruz César Augusto. "Polarized super-resolution fluorescence microscopy." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277565.

Full text
Abstract:
While super-resolution microscopy has brought a significant improvement in nano-scale imaging of molecular assemblies in biological media, its extension to imaging molecular orientation using fluorescence anisotropy has not yet been fully explored. Providing orientational order information at the nano-scale would be of considerable interest for the understanding of biological functions since they are intrinsically related to structural fundamental processes such as in protein clustering in cell membranes, supra-molecular polymerization or aggregation. In this thesis, we propose a super-resolution polarization-resolved microscopy technique able to image molecular orientation behaviors in static and dynamic environments, in order to report structural information at the single molecule level and at nanometric spatial scale. Using direct Stochastic Optical Reconstruction Microscopy (dSTORM) in combination with polarized detection, fluorescence anisotropy images are reconstructed at a spatial resolution of a few tens of nanometers. We analyze numerically the principle of the method in combination with models for orientational order mechanisms, and provide conditions for which this information can be retrieved with high precision in biological samples based on fibrillar structures. Finally, we propose an alternative technique based on stochastic fluctuations of single molecules: polarized super-resolution optical fluctuation imaging (polar-SOFI), and compare this approach with the previous one in terms of information gained and spatial resolution. We illustrate both techniques on molecular order imaging in actin stress fibers and tubulin fibers in fixed cells, DNA fibers and insulin amyloid fibrils.<br>La microscopía de súper resolución ha aportado una mejora significativa en la imagen, a escala nanométrica, de ensambles moleculares en medios biológicos. Sin embargo, su extensión, mediante la utilización de la anisotropía de fluorescencia para la obtención de imágenes de orientación molecular, aún no ha sido explorada a fondo. El proporcionar información sobre la orientación molecular a escala nanométrica es de gran interés para la comprensión de las funciones biológicas. Esta información está intrínsecamente relacionada con la estructura de los ensamblajes de proteínas en las membranas celulares, la polimerización y la agregación supra molecular, entre otros. En esta tesis, proponemos una técnica de microscopía de luz polarizada de súper resolución, la cual permite visualizar el comportamiento de la orientación molecular en ambientes dinámicos y estáticos. El objetivo final es el de poder reportar información estructural a nivel de molécula única y escala espacial nanométrica. Utilizando microscopía de reconstrucción óptica estocástica (dSTORM) en combinación con detección polarizada, las imágenes de anisotropía de fluorescencia son reconstruidas con una resolución espacial de varias decenas de nanómetros. Además, el principio del método ha sido validado numéricamente en combinación con modelos de mecanismos de orientación molecular y delimitando las condiciones en que esta información se puede obtener con una precisión alta en muestras biológicas, principalmente en estructuras fibrilares. Así también, se propone una técnica alternativa basada en la emisión de fluctuaciones estocásticas de moléculas individuales: imagen de polarización con súper resolución de fluctuaciones (polar-SOFI). Además comparamos esta técnica con la anterior, en términos de la información obtenida y la resolución espacial. Finalmente, ilustramos ambas técnicas para la obtención de imágenes del orden molecular de fibras de estrés de actina y tubulina en células fijas, fibras de ADN y fibrillas de insulina amiloide.<br>Alors que la microscopie super-résolue a apporté une amélioration considérable en imagerie des assemblages moléculaires dans les milieux biologiques à l'échelle nanométrique, son extension à l'imagerie de l'orientation moléculaire, utilisant l'anisotropie de fluorescence, n'a pas encore été complètement explorée. Apporter une information sur l'orientation moléculaire à l'échelle nanométrique aurait un intérêt considérable pour la compréhension des functions biologiques, puisque celles-ci sont fortement reliée à la structure des assemblages de prot éines dans les membranes cellulaires, la polymérisation ou l'aggrégation supramol éculaire par exemple. Dans cette thèse, nous proposons une technique de microscopie super-résolution résolue en polarisation, capable d'imager les comportements d'orientation moléculaire dans des environnements statiques et dynamiques, dans le but de rapporter une information structurale à l'échelle de la molécule unique et à des échelles spatiales nanométriques. En utilisant la microscopie par reconstruction stochastique (dSTORM) en combinaison avec une détection polarisée, des images d'anisotropie de fluorescence sont reconstruites avec une résolution spatiale de quelques dizaines de nanomètres. Nous analysons numériquement le principe de la méthode en combinaison avec des modèles des mécanismes d'orientation moléculaire, et donnons les conditions auxquelles cette information peut être obtenue avec une grande précision dans des échantillons biologiques basés sur des structures fibrillaires. Enfin, nous proposons une technique alternative basée sur l'émission de molécules uniques en fluctuations stochastiques: l'imagerie super-résolue polarisée par fluctuations (polar-SOFI), et comparons cette approche avec la précédente en terme d'information gagnée et de résolution spatiale. Nous illustrons les deux techniques pour l'imagerie de l'ordre moléculaire dans des fibres de stress d'actin et de tubuline dans des cellules fixées, des fibres d'ADN et des fibrilles d'amyloid à base d'insuline.
APA, Harvard, Vancouver, ISO, and other styles
4

Valadés, Cruz César Augusto. "Polarized super-resolution fluorescence microscopy." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4333.

Full text
Abstract:
Alors que la microscopie super-résolue a apporté une amélioration considérable en imagerie des assemblages moléculaires dans les milieux biologiques à l'échelle nanométrique, son extension à l'imagerie de l'orientation moléculaire, utilisant l'anisotropie de fluorescence, n'a pas encore été complètement explorée. Apporter une information sur l'orientation moléculaire à l'échelle nanométrique aurait un intérêt considérable pour la compréhension des fonctions biologiques. Dans cette thèse, nous proposons une technique de microscopie super-résolution résolue en polarisation, capable d'imager les comportements d'orientation moléculaire dans des environnements statiques et dynamiques, dans le but de rapporter une information structurale à l'échelle de la molécule unique et à des échelles spatiales nanométriques. En utilisant la microscopie par reconstruction stochastique (dSTORM) en combinaison avec une détection polarisée, des images d'anisotropie de fluorescence sont reconstruites avec une résolution spatiale de quelques dizaines de nanomètres. Nous analysons numériquement le principe de la méthode en combinaison avec des modèles des mécanismes d'orientation moléculaire. Enfin, nous proposons une technique alternative basée sur l'émission de molécules uniques en fluctuations stochastiques: l'imagerie super-résolue polarisée par fluctuations (polar-SOFI), et comparons cette approche avec la précédente. Nous illustrons les deux techniques pour l'imagerie de l'ordre moléculaire dans des fibres de stress d'actine et de tubuline dans des cellules fixées, des fibres d'ADN et des fibrilles d'amyloïde à base d'insuline<br>While super-resolution microscopy has brought a significant improvement in nanoscale imaging of molecular assemblies in biological media, its extension to imaging molecular orientation using fluorescence anisotropy has not yet been fully explored. Providing orientational order information at the nanoscale would be of considerable interest for the understanding of biological functions since they are intrinsically related to structural fundamental processes such as in protein clustering in cell membranes, supra-molecular polymerization or aggregation. In this thesis, we propose a super-resolution polarization-resolved microscopy technique able to image molecular orientation behaviors in static and dynamic environments, in order to report structural information at the single molecule level and at nanometric spatial scale. Using direct Stochastic Optical Reconstruction Microscopy (dSTORM) in combination with polarized detection, fluorescence anisotropy images are reconstructed at a spatial resolution of a few tens of nanometers. We analyze numerically the principle of the method in combination with models for orientational order mechanisms, and provide conditions for which this information can be retrieved with high precision in biological samples based on fibrillar structures. Finally, we propose an alternative technique based on stochastic fluctuations of single molecules: polarized super-resolution optical fluctuation imaging (polar-SOFI), and compare this approach with the previous one. We illustrate both techniques on molecular order imaging in actin stress fibers and tubulin fibers in fixed cells, DNA fibers and insulin amyloid fibrils
APA, Harvard, Vancouver, ISO, and other styles
5

Mandula, Ondrej. "Super-resolution methods for fluorescence microscopy." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8909.

Full text
Abstract:
Fluorescence microscopy is an important tool for biological research. However, the resolution of a standard fluorescence microscope is limited by diffraction, which makes it difficult to observe small details of a specimen’s structure. We have developed two fluorescence microscopy methods that achieve resolution beyond the classical diffraction limit. The first method represents an extension of localisation microscopy. We used nonnegative matrix factorisation (NMF) to model a noisy dataset of highly overlapping fluorophores with intermittent intensities. We can recover images of individual sources from the optimised model, despite their high mutual overlap in the original dataset. This allows us to consider blinking quantum dots as bright and stable fluorophores for localisation microscopy. Moreover, NMF allows recovery of sources each having a unique shape. Such a situation can arise, for example, when the sources are located in different focal planes, and NMF can potentially be used for three dimensional superresolution imaging. We discuss the practical aspects of applying NMF to real datasets, and show super-resolution images of biological samples labelled with quantum dots. It should be noted that this technique can be performed on any wide-field epifluorescence microscope equipped with a camera, which makes this super-resolution method very accessible to a wide scientific community. The second optical microscopy method we discuss in this thesis is a member of the growing family of structured illumination techniques. Our main goal is to apply structured illumination to thick fluorescent samples generating a large out-of-focus background. The out-of-focus fluorescence background degrades the illumination pattern, and the reconstructed images suffer from the influence of noise. We present a combination of structured illumination microscopy and line scanning. This technique reduces the out-of-focus fluorescence background, which improves the quality of the illumination pattern and therefore facilitates reconstruction. We present super-resolution, optically sectioned images of a thick fluorescent sample, revealing details of the specimen’s inner structure. In addition, in this thesis we also discuss a theoretical resolution limit for noisy and pixelated data. We correct a previously published expression for the so-called fundamental resolution measure (FREM) and derive FREM for two fluorophores with intermittent intensity. We show that the intensity intermittency of the sources (observed for quantum dots, for example) can increase the “resolution” defined in terms of FREM.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Zhaokun. "Magneto-optical tweezers with super-resolution fluorescence microscopy." Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/18771/.

Full text
Abstract:
This thesis describes the design, construction and application of a novel magneto-optical tweezers with super-resolution fluorescence microscopy for manipulation, force/torque measurement and imaging of single biomolecules. The optical tweezers component offers force or position clamping in three dimensions. The 3D-printed magnetic tweezers is designated for rotation in the vertical plane. The separation of rotation from force transduction results in the capability of precise torque measurement. The filamentous biomolecules to be used in the device will lie in a transverse direction in the imaging plane to allow fluorescence imaging with techniques including Blinking assisted Localisation Microscopy (BaLM) and total internal reflection fluorescence microscopy (TIRF). Also included are features such as acousto-optic deflection and multiplexing of laser traps, interferometry based tracking with quadrant photodiode and piezoelectric actuated nanostage for active feedback. These tweezers have been developed to enable direct observation of molecular topological transformation and protein binding event localisation with mechanical perturbation, which traditional tweezers could not achieve.
APA, Harvard, Vancouver, ISO, and other styles
7

Persson, Roger. "Breaking the diffraction limit using conical diffraction in super resolution fluorescence microscopy : Breaking the diffraction limit using conical diffraction in super resolution fluorescence microscopy." Thesis, KTH, Tillämpad fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Needham, Lisa-Maria. "Next-generation fluorophores for single-molecule and super-resolution fluorescence microscopy." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283232.

Full text
Abstract:
The development of single-molecule and super-resolution fluorescence techniques has revolutionised biological imaging. Nano-scale cellular structures and heterogeneous dynamic processes are now able to be visualised with unprecedented resolution in both time and space. The achievable localisation precision and therefore the resolution is fundamentally limited by the number of photons a single-fluorophore can emit. The ideal super-resolution dye would emit a large number of photons over a short period of time. On the contrary, an optimal single-molecule tracking probe would be highly photostable and undergo no transient dark-state transitions. Single-molecule instrument development is beginning to reach technological saturation and as the frontiers of bioimaging expand, exorbitant demands are placed on the gamut of available probes that often cannot be met. Thus, the next key challenge in the field is the development of the better fluorophores that underlie these techniques; this includes both the synthesis of new chemical derivatives and alternative novel strategies to augment existing technologies. The results of this thesis are divided into two distinct parts; Project One details the development of new synthetic fluorescent probes for the study of amyloid protein aggregates implicated in neurodegenerative diseases. This includes a study of the photophysical and binding properties of a novel fluorophore library based on the amyloid dye Thioflavin-T. Following on from this, is the presentation of novel bifunctional dyes capable of simultaneously identifying hydrogen peroxide and amyloid aggregates by combining existing tools for the independent detection of these species. The sensing capabilities of these dyes are explored at the bulk and single-molecule levels. Project Two describes a new photo-modulatable fluorescent-protein fusion construct that can undergo Förster resonance energy transfer (FRET) to an organic dye molecule. This FRET cassette is comprised of a photoconvertible fluorescent protein donor, mEos3.2 and acceptor fluorophore, JF646. This strategy imparts a strong photostabilising effect on the fluorescent protein and a resistance to photobleaching. The functionality of this approach is demonstrated with in vitro single-molecule fluorescence studies and its biological applicability shown by tracking single proteins in the nuclei of live embryonic stem cells. Furthermore, initial characterisations of the excited state dynamics in effect are presented through the systematic modification of parameters.
APA, Harvard, Vancouver, ISO, and other styles
9

Bento, Carvalho Almada Pedro Manuel. "Developing highly multiplexed technology for high-throughput super-resolution fluorescence microscopy." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10041569/.

Full text
Abstract:
High-Throughput imaging can reconstruct complex signalling networks, reveal unknown interactions and capture rare cellular events. Simultaneously, the development of Single Molecule Localization Super Resolution Microscopy has enabled molecular-level structural information to be obtained in a single cell. But the increase in resolution comes at a trade-off for the amount of molecular species that can be imaged and the time it takes to acquire data, all of which limit the applicability of super-resolution to high-throughput work-flows. The present work details a framework to address this. It combines three independent approaches: a microscope hardware design approach to increase the amount of data that can be obtained in a Super-Resolution experiment; an optofluidics platform that can be wholly synchronized with most microscopes; and a sequential labelling framework to increase the number of species that can be imaged in Super-Resolution in a single cell. The hardware design is validated by performing Single Molecule Localization of cytoskeleton components and its throughput is shown to be up to an order of magnitude larger than a corresponding commercial system. We demonstrate a complete optofluidics platform to integrate microfluidics with a microscope, enabling live imaging, drug application, fixation, and staining in single cells synchronized with imaging protocols. Finally, we show an efficient sequential labelling protocol that is compatible with the optofluidics platform, enabling several molecular species to be imaged in the same cells. Overall, our approach increases the speed and amount of data that can be acquired in a single of Super-Resolution experiment, as well as, by performing on-line fixation, considerably improves our capacity for High-Throughput experiments in Super-Resolution imaging.
APA, Harvard, Vancouver, ISO, and other styles
10

Zwettler, Fabian Ulrich [Verfasser], and Markus [Gutachter] Sauer. "Expansion Microscopy combined with Super-Resolution Fluorescence Microscopy / Fabian Ulrich Zwettler ; Gutachter: Markus Sauer." Würzburg : Universität Würzburg, 2021. http://d-nb.info/122529584X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Andronov, Leonid. "Development of advanced methods for super-resolution microscopy data analysis and segmentation." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ001.

Full text
Abstract:
Parmi les méthodes de super-résolution, la microscopie par localisation de molécules uniques se distingue principalement par sa meilleure résolution réalisable en pratique mais aussi pour l’accès direct aux propriétés des molécules individuelles. Les données principales de la microscopie par localisation sont les coordonnées des fluorochromes, un type de données peu répandu en microscopie conventionnelle. Le développement de méthodes spéciales pour le traitement de ces données est donc nécessaire. J’ai développé les logiciels SharpViSu et ClusterViSu qui permettent d’effectuer les étapes de traitements les plus importantes, notamment une correction des dérives et des aberrations chromatiques, une sélection des événements de localisations, une reconstruction des données dans des images 2D ou dans des volumes 3D par le moyen de différentes techniques de visualisation, une estimation de la résolution à l’aide de la corrélation des anneaux de Fourier, et une segmentation à l’aide de fonctions K et L de Ripley. En plus, j’ai développé une méthode de segmentation de données de localisation en 2D et en 3D basée sur les diagrammes de Voronoï qui permet un clustering de manière automatique grâce à modélisation de bruit par les simulations Monte-Carlo. En utilisant les méthodes avancées de traitement de données, j’ai mis en évidence un clustering de la protéine CENP-A dans les régions centromériques des noyaux cellulaires et des transitions structurales de ces clusters au moment de la déposition de la CENP-A au début de la phase G1 du cycle cellulaire<br>Among the super-resolution methods single-molecule localization microscopy (SMLM) is remarkable not only for best practically achievable resolution but also for the direct access to properties of individual molecules. The primary data of SMLM are the coordinates of individual fluorophores, which is a relatively rare data type in fluorescence microscopy. Therefore, specially adapted methods for processing of these data have to be developed. I developed the software SharpViSu and ClusterViSu that allow for most important data processing steps, namely for correction of drift and chromatic aberrations, selection of localization events, reconstruction of data in 2D images or 3D volumes using different visualization techniques, estimation of resolution with Fourier ring correlation, and segmentation using K- and L-Ripley functions. Additionally, I developed a method for segmentation of 2D and 3D localization data based on Voronoi diagrams, which allows for automatic and unambiguous cluster analysis thanks to noise modeling with Monte-Carlo simulations. Using advanced data processing methods, I demonstrated clustering of CENP-A in the centromeric regions of the cell nucleus and structural transitions of these clusters upon the CENP-A deposition in early G1 phase of the cell cycle
APA, Harvard, Vancouver, ISO, and other styles
12

Cabriel, Clément. "Three-dimensional and multicolour approaches in super-resolution fluorescence microscopy for biology." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS220.

Full text
Abstract:
Pour analyser la structure et la dynamique des échantillons, la biologie cellulaire repose sur l'utilisation d'outils d'imagerie. En particulier, la microscopie de fluorescence offre une grande spécificité et une toxicité réduite. L'émergence récente des méthodes de super-résolution a permis d'outrepasser la limite de diffraction et ouvert de nouvelles perspectives d'études. Les stratégies de molécule unique sont particulièrement adaptées à l'imagerie nanométrique tridimensionnelle, et permettent de nombreux couplages avec des modalités complémentaires ; toutefois, leur manque de reproductibilité entrave leur généralisation.Nous proposons ici de nouvelles méthodes dans le but de remédier à ces problèmes en facilitant leur application en biologie cellulaire, en chimie et en science des matériaux. Tout d'abord, nous présentons des protocoles et échantillons dédiés aux acquisitions de calibration et de mesure de performances. Nous décrivons également plusieurs exemples d'utilisation de super-localisation tridimensionnelle dans le cadre d'études d'adhésion cellulaire et de résistance bactérienne.Ensuite, nous nous concentrons au développement d'une nouvelle méthode de microscopie de localisation de molécules uniques tri-dimensionnelle permettant l'élimination de biais de détection. Ceci est permis par le couplage entre deux stratégies complémentaires: la mise en forme de fonction d'étalement de point, et la détection de la fluorescence d'angle super-critique. L'intercorrélation et la recombinaison des informations latérales et axiales permet l'obtention d'une résolution quasi-isotrope, avec des précisions jusqu'à 15 nanomètres sur une plage de capture d'un micron. Nous mettons en évidence l'insensibilité de la méthode aux biais d'imagerie comme la dérive axiale, l'aberration chromatique et l'inclinaison de l'échantillon, et nous l'illustrons à travers des applications à la neurobiologie et au marquage de bactéries.Pour finir, nous présentons deux nouvelles approches pour le découplage d'acquisitions multi-espèces simultanées. Toutes deux basées entièrement sur le post-traitement des données acquises, elles exploitent respectivement la mesure des tailles des taches et le comportement dynamique du clignotement. Après une preuve de principe, nous évaluons l'impact des différents paramètres susceptibles d'influencer les résultats. Nous concluons en proposant des pistes d'amélioration des performances de découplage, et en suggérant de possibles couplages avec des méthodes complémentaires en imagerie de molécules uniques<br>Cell biology relies on imaging tools to provide structural and dynamic information about samples. Among them, fluorescence microscopy offers a compromise between high specificity and low toxicity. Recently, super-resolution methods overcame the diffraction barrier to unlock new fields of investigation. Single molecule approaches prove especially useful for three-dimensional nanoscale imaging, and allow couplings between different detection modalities. Still, their use is hindered by the complexity of the methods as well as the lack of reproducibility between experiments.We propose new methods to render super-localisation microscopy more easily applicable to relevant studies in cell biology, chemistry and material science. First, we introduce dedicated protocols and samples to eliminate sources of error in calibration and performance measurement acquisitions. We also provide examples of uses of three-dimensional super-localisation for state-of-the-art studies in the frameworks of cell adhesion and bacterial resistance to drugs.Then, we focus on the development of a novel optical method that provides unbiased results in three-dimensional single molecule localisation microscopy. This is achieved through the combination of two complementary axial detection strategies: point spread function shaping on the one hand, and supercritical angle fluorescence detection on the other hand. By cross-correlating and merging the lateral and axial positions provided by the different sources, we achieve quasi-isotropic localisation precisions down to 15 nanometres over a 1-micrometre capture range. We demonstrate the insensibility of the method to imaging non-idealities such as axial drift, chromatic aberration and sample tilt, and we propose applications in neurobiology and bacteria labelling.Finally, we introduce two new post-processing approaches for the demixing of simultaneous multi-species acquisitions. They are based respectively on the measurement of the spot sizes, and on the assessment of the dynamic blinking behaviour of molecules. After demonstrating a proof of principle, we assess the impact of the different parameters likely to influence the results. Eventually, we discuss leads to improve the demixing performances, and we discuss the coupling possibilities with complementary single molecule localisation techniques
APA, Harvard, Vancouver, ISO, and other styles
13

Vogelsang, Jan. "Advancing single-molecule fluorescence spectroscopy and super-resolution microscopy with organic fluorophores." Diss., kostenfrei, 2009. http://edoc.ub.uni-muenchen.de/11480/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, Wenqin. "Structures and Dynamics in Live Bacteria Revealed by Super-Resolution Fluorescence Microscopy." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10404.

Full text
Abstract:
Light microscopy, in particular fluorescence microscopy, is a widely used imaging method in biological research due to its noninvasive nature and molecular specificity. The resolution of conventional fluorescence microscopy is limited to a few hundred nanometers by the diffraction of light, leaving many biological structures too small to be optically resolved. Stochastic Optical Reconstruction Microscopy (STORM) technique overcomes this limit by localizing single photoswitchable fluorophores separated in time. We further extended the then two-dimensional capability to three-dimensional (3D) STORM by determining both axial and lateral positions of individual fluorophores with nanometer accuracy using optical astigmatism. Iterative, stochastic activation of photo-switchable probes enables high-precision 3D localization of each probe and thus the construction of a 3D image without scanning the sample. We achieved an image resolution of 20 - 30 nm in the lateral dimensions and 50 - 60 nm in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures. Enabled by the super-resolution imaging capability, we used 3D STORM in conjunction with biochemical assays to study structures and dynamics in live bacteria. Bacterial chromosomes are confined in submicron-sized nucleoids. Chromosome organization is facilitated by nucleoid-associated proteins (NAPs), but the structure of the chromosome and the molecular mechanisms underlying its organization are poorly understood, in part due to the lack of appropriate tools for visualizing the chromosome in vivo. Using STORM, we found that four NAPs, HU, Fis, IHF, and StpA, were largely scattered throughout the E. coli nucleoid. In contrast, H-NS, a global transcriptional silencer, formed two compact clusters per chromosome driven by oligomerization of DNA-bound H-NS, through their N-terminal domain interactions. H-NS sequestered the regulated operons into these clusters and juxtaposed numerous DNA segments broadly distributed throughout the chromosome. Deleting H-NS led to substantial chromosome reorganization. These observations demonstrate that H-NS plays a key role in global chromosome organization in E. coli. Finally, we describe the use of the same sub-diffraction localization for single-particle tracking to study MreB paralogs (actin-like proteins in bacteria) in B. subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.<br>Physics
APA, Harvard, Vancouver, ISO, and other styles
15

Ahmed, Haitham Ahmed Shaban. "Quantitative molecular orientation imaging of biological structures by polarized super-resolution fluorescence microscopy." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4323.

Full text
Abstract:
Dans cette thèse, nous avons construit et optimisé des méthodes de microscopie de fluorescence super-résolue stochastique, polarisée et quantitative qui nous permettent d'imager l'orientation moléculaire dans des environnements dynamiques et statiques a l’échelle de la molécule unique et avec une résolution nanoscopique. En utilisant un montage de microscopie super-résolue à lecture stochastique en combinaison avec une détection polarisée, nous avons pu reconstruire des images d'anisotropie de fluorescence avec une résolution spatiale de 40 nm. En particulier, nous avons pu imager l'ordre orientationnel d'assemblages biomoléculaires et cellulaires. Pour l'imagerie cellulaire, nous avons pu étudier la capacité d'étiquettes de marquer fluorophoresde reporter quantifier l'orientation moléculaire dans l'actine et les microtubules dans des cellules fixées. Nous avons également mis à profit la meilleure résolution et la détection polarisée pour étudier l'ordre moléculaire d’agrégats d’amyloïdes a l’échelle nanoscopique. Enfin, nous avons étudié l'interaction de la protéine de réparation RAD51 avec l'ADN par microscopie de fluorescence polarisée super-résolue pour quantifier l'ordre orientationnel de l'ADN et de la protéine RAD51 afin de comprendre la recombinaison homologue du mécanisme de réparation de l'ADN<br>.In this thesis we built and optimized quantitative polarized stochastic super-resolution fluorescence microscopy techniques that enabled us to image molecular orientation behaviors in static and dynamic environments at single molecule level and with nano-scale resolution. Using a scheme of stochastic read-out super resolution microscopy in combination with polarized detection, we can reconstruct fluorescence anisotropy images at a spatial resolution of 40 nm. In particular, we have been able to use the techniques to quantify the molecular orientationalorder in cellular and bio-molecular assemblies. For cellular imaging, we could quantify the ability of fluorophore labels to report molecular orientation of actin and microtubules in fixed cells. Furthermore, we used the improvements of resolution and polarization detection to study molecular order of amyloid aggregates at a nanoscopic scale. Also, we studied repair protein RAD51` s interaction with DNA by using dual color polarized fluorescence microscopy, to quantify the orientational order of DNA and RAD51 to understand the homologous recombination of DNA repair mechanism
APA, Harvard, Vancouver, ISO, and other styles
16

Thomann, Dominik Michael. "Algorithms for detection and tracking of objects with super-resolution in 3D fluorescence microscopy /." [S.l.] : [s.n.], 2003. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pyle, Joseph R. "YOYO and POPO Dye Photophysics for Super-Resolution Optical Nanoscopy." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1560261722202949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sivankutty, Siddharth. "Imaging beyond the diffraction limit STED and SAF microscopy." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112108.

Full text
Abstract:
La compréhension des processus cellulaires au niveau membranaire est un domaine d’étude important en recherche biomédicale. Contourner la limite de diffraction en microscopie de fluorescence est maintenant devenu possible en exploitant les transitions moléculaires du fluorophore. Ce travail présente le développement instrumental de deux techniques complémentaires permettant d’atteindre une résolution nanométrique, grâce à l'émission stimulée (STimulated Emission Depletion - STED) d’une part, et la microscopie de fluorescence aux angles supercritiques (Supercritical Angle Fluorescence, SAF) d’autre part. La microscopie STED est une méthode permettant de surpasser la barrière de diffraction et d’atteindre des résolutions latérales de l'ordre de 40 nm dans des échantillons biologiques. Ce dispositif de microscopie exploite les transitions moléculaires des marqueurs fluorescents pour surmonter la limite de résolution due à la diffraction. L'amélioration de la résolution est obtenue par déplétion de l'état excité du fluorophores dans les régions périphériques de l'espace du volume focal. Cependant, malgré l'amélioration importante de la résolution latérale avec la technique STED, cette dernière présente une réelle complexité de mise en œuvre qui a par conséquence un impact important sur le cout des instruments STED commerciaux. Dans ce contexte, la réalisation instrumentale et la performance en imagerie d'un dispositif STED sont présentées dans ce manuscrit. Bien que les microscopes STED classiques offrent une meilleure résolution latérale, la résolution axiale est toujours limitée par la diffraction. L’amélioration de la résolution dans cette direction implique une certaine complexité instrumentale. Dans ce cadre, nous démontrons une nouvelle approche utilisant l’imagerie SAF permettant d'obtenir un sectionnement axial de l'ordre de 150 nm. L’approche se base sur la propriété d'une molécule à émettre dans les angles supercritiques uniquement lorsqu’elle se rapproche de l'interface verre-eau. Le sectionnement axial est obtenu dans une configuration simple en détectant uniquement les composantes de l’émission supercritique. La combinaison de ces techniques d'imagerie donne un outil puissant pour étudier les phénomènes moléculaires sur les membranes biologiques<br>Understanding cellular processes on membranes has been a key area of biomedical research. Circumventing the diffraction limit in fluorescence microscopy has now become possible by exploiting the molecular transitions of the fluorophore. In this context, this work presents the instrumental development of two complementary techniques for realizing nanometric all-optical resolution and axial sectioning, namely STimulated Emission Depletion (STED) and Supercritical Angle Fluorescence (SAF) microscopy. STED microscopy is an elegant method that has allowed us to break the diffraction barrier with light microscopes and has achieved resolutions of the order of 40 nm (transverse) in biological samples. In this technique, we exploit the molecular transitions of the fluorescent marker to overcome the resolution limit due to diffraction. Resolution enhancement is achieved by efficient depletion of the excited state of the marker in the peripheral spatial regions of the focal volume by using depletion beams in addition to the excitation beam. Despite the major resolution improvement demonstrated, the technique is not well spread out, mainly due to its apparent complexity; and the cost and limited tunability of the commercial system. In this context, the instrumental realization and the imaging performance of a cost-effective home-built STED microscope is presented in this manuscript. While conventional STED microscopes offer improved lateral resolution, an isotropic gain in resolution usually comes at the cost of complex instrumentation. In this regard, we demonstrate SAF microscopy as a powerful tool that achieves an axial sectioning of the order of 150 nm. This is done by exploiting the property of a molecule to emit into the supercritical anglesonly when near the glass-water interface. Axial sectioning is obtained in a simple configuration by detecting solely the supercritical components of radiation. A combination of these imaging techniques offer a powerful tool to study molecular phenomena on the biological membranes
APA, Harvard, Vancouver, ISO, and other styles
19

Ashdown, George. "Molecular scale dynamics of T cell immunological synapse components by advanced and super-resolution fluorescence microscopy." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/molecular-scale-dynamics-of-t-cell-immunological-synapse-components-by-advanced-and-superresolution-fluorescence-microscopy(e5bddcfa-c411-44db-9901-f433c3fa9490).html.

Full text
Abstract:
Cortical actin forms a central role in the reorganisation and heterogeneity of plasma membrane (PM) components of T cells. During T cell activation, actin remodelling aids formation of the stable interface between cells known as the immunological synapse; this interface is a dynamic event where actin plays a key role in forming and translocating protein microclusters for sustained signalling. Cortical actin creates a dense meshwork at the synapse periphery, possibly acting as a barrier against molecular trafficking to the synapse interface. Additionally, actin flows in a retrograde manner towards the relatively actin-poor synapse centre, driving transmembrane proteins inwards. Here, fixed cell single molecule localisation microscopy was used to characterise the actin cortex upon T cell synapse formation. Live-cell structured illumination microscopy (SIM) was quantified using spatiotemporal image correlation spectroscopy (STICS), this demonstrated flow speed and directionality was dependent on balanced actin turnover and membrane order. Building on these results, two-channel SIM imaging was carried out, correlating actin flow with plasma membrane (PM) dynamics, as these systems are known to interact via transmembrane and linker proteins. The PM was shown to correlate with actin flow speeds and direction in an -actinin dependent manner. Sustained signalling during synapse formation requires protein delivery to the interface, relying on vesicle trafficking via different components of the cytoskeleton. As membrane order modulates protein clustering within the PM, it was investigated using the polarity-sensitive dye di-4-ANEPPDHQ whether this was also true of vesicles. Results here demonstrated vesicle lipid order negatively correlated with microtubule structures. Finally, vesicle cargo was shown to correlate with different vesicle populations, based on their membrane order, demonstrating vesicle order may mirror the heterogeneous nature of the PM. These results demonstrate the complex biophysical processes that control the T cell immunological synapse are an amalgamation of cytoskeletal organisation, vesicle dynamics and membrane polarity.
APA, Harvard, Vancouver, ISO, and other styles
20

Unnersjö-Jess, David. "High-resolution imaging of kidney tissue samples." Licentiate thesis, KTH, Cellulär biofysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207577.

Full text
Abstract:
The kidney is one of the most important and complex organs in the human body, filtering hundreds of litres of blood daily. Kidney disease is one of the fastest growing causes of death in the modern world, and this motivates extensive research for better understanding the function of the kidney in health and disease. Some of the most important cellular structures for blood filtration in the kidney are of very small dimensions (on the sub-200 nm scale), and thus electron microscopy has been the only method of choice to visualize these minute structures. In one study, we show for the first time that by combining optical clearing with STED microscopy, protein localizations in the slit diaphragm of the kidney, a structure around 75 nanometers in width, can now be resolved using light microscopy. In a second study, a novel sample preparation method, expansion microscopy, is utilized to physically expand kidney tissue samples. Expansion improves the effective resolution by a factor of 5, making it possible to resolve podocyte foot processes and the slit diaphragm using confocal microscopy. We also show that by combining expansion microscopy and STED microscopy, the effective resolution can be improved further. In a third study, influences on the development of the kidney were studied. There is substantial knowledge regarding what genes (growth factors, receptors etc.) are important for the normal morphogenesis of the kidney. Less is known regarding the physiology behind how paracrine factors are secreted and delivered in the developing kidney. By depleting calcium transients in explanted rat kidneys, we show that calcium is important for the branching morphogenesis of the ureteric tree. Further, the study shows that the calcium-dependent initiator of exocytosis, synaptotagmin, is expressed in the metanephric mesenchyme of the developing kidney, indicating that it could have a role in the secretion of paracrine growth factors, such as GDNF, to drive the branching.<br><p>QC 20170523</p>
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Ruixing. "STED-fluorescence correlation spectroscopy for dynamic observations in cell biology : from theoretical to practical approaches." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0163/document.

Full text
Abstract:
Les techniques de super-résolution offrent un nouvel aperçu de la description de l'organisation moléculaire dynamique de la membrane plasmique. Parmi ces techniques, la microscopie par déplétion d'émission stimulée (stimulated emission depletion, STED) dépasse la limite de diffraction optique et atteint une résolution de quelques dizaines de nanomètres. Il est une technique polyvalente qui peut être combinée avec d'autres techniques telles que la spectroscopie par corrélation de fluorescence (fluorescence correlation spectroscopy, FCS), fournissant des résolutions spatiales et temporelles élevées pour explorer les processus dynamiques qui se produisent dans les cellules vivantes. Ce projet de doctorat vise à mettre en œuvre un microscope STED, puis à combiner ce module STED avec la technique FCS pour les applications biologiques. Des études théoriques du STED et de la technique combinant STED et FCS ont permis dans les aspects spatio-temporels. Une solution analytique pour la fonction d'autocorrélation FCS a été dérivée dans l'état de déplétion STED incomplet. et un nouveau modèle d'ajustement FCS a été proposé. La méthode de variation du volume d’observation FCS (spot variation FCS, svFCS) a démontré sa capacité à identifier la présence de nanodomaines limitant la diffusion latérale des molécules dans la membrane plasmique. L’approche STED-FCS permet d’étendre l’application de la svFCS à l'échelle nanométrique afin d’évaluer la persistance plus ou moins importante de tels nanodomaines. Dans ce contexte, des simulations préliminaires de Monte Carlo ont été réalisées figurant des molécules diffusant en présence d'auto-assemblage/désassemblage dynamique des nanodomaines<br>Super-resolution techniques offer new insight into the description of the dynamic molecular organization at the plasma membrane. Among these techniques, the stimulated emission depletion (STED) microscopy breaks the optical diffraction limit and reaches the resolution of tens of nanometer. It is a versatile setup that can be combined with other techniques such as fluorescence correlation spectroscopy (FCS), providing both high spatial and temporal resolutions to explore dynamic processes occurring in live cells. This PhD project aims at implementing a STED microscope, and then at combining this STED module with FCS technique for biological applications. Detailed theoretical studies on STED and the combined STED-FCS technique in spatio-temporal aspects were performed. An analytical solution for FCS autocorrelation function was derived in the condition of incomplete STED depletion and a new FCS fitting model was proposed to overcome this problem. The spot variation FCS (svFCS) method has demonstrated its capability to identify the presence of nanodomains constraining the lateral diffusion of molecules at the plasma membrane. The STED-FCS can extend the svFCS approach to the nanoscale evaluating the long-lasting existence of such nanodomains. Within this frame, preliminary Monte Carlo simulations were conducted mimicking molecules diffusing in the presence of dynamic self-assembling/disassembling nanodomains
APA, Harvard, Vancouver, ISO, and other styles
22

Gröger, Philip. "Establishing super-resolution imaging of biosilica-embedded proteins in diatoms." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227150.

Full text
Abstract:
Kieselalgen – auch Diatomeen genannt – verfügen über die einzigartige Fähigkeit, nanostrukturierte, hierarchisch aufgebaute Zellwände aus Siliziumdioxid – auch als Biosilica bekannt – mit beispielloser Genauigkeit und Reproduzierbarkeit zu bilden. Ein tieferes Verständnis für diesen Prozess, der als “Biomineralisation“ bekannt ist, ist nicht nur auf dem Gebiet der Grundlagenforschung zu Kieselalgen sehr bedeutsam, sondern auch für die Nutzung dieser Nanostrukturierung in den Materialwissenschaften oder der Nanobiotechnologie. Nach dem derzeitigem Stand der Wissenschaft wird diese Strukturierung durch die Selbstorganisation von Proteinmustern, an denen sich das Siliziumdioxid bildet, erreicht. Um die Funktion und das Zusammenspiel einzelner Proteine, die an diesem Biomineralisationsprozess beteiligt sind, entschlüsseln zu können, ist es essentiell ihre strukturelle Organisation aufzuklären und diese mit den morphologischen Zellwandmerkmalen zu korrelieren. Die Größenordnung dieser Merkmale ist im Bereich von Nanometern angesiedelt. Mit Hilfe der Elektronenmikroskopie können diese Biosilicastrukturen aufgelöst werden, jedoch ist keine proteinspezifische Information verfügbar. Ziel dieser Arbeit war es daher, eine Technik zu etablieren, die in der Lage ist, einzelne Biosilica-assozierte Proteine mit Nanometer-Präzision zu lokalisieren. Um dieses Ziel zu erreichen, wurde Einzelmoleküllokalisationsmikroskopie (single-molecule localization microscopy, kurz: SMLM) beispielhaft in der Kieselalge Thalassiosira pseudonana etabliert. Die Position verschiedener Biosilica-assoziierte Proteine innerhalb des Biosilicas und nach dessen chemischer Auflösung wurde mit einer hohen räumlichen Auflösung bestimmt. Um quantitative Ergebnisse zu erhalten, wurde ein Analyse-Workflow entwickelt, der grafische Benutzeroberflächen und Skripte für die Visualisierung, das Clustering und die Kolokalisation von SMLM Daten beinhaltet. Um optimale Markierungen für SMLM an Biosilica-eingebetteten Proteinen zu finden, wurde ein umfassendes Screening von photo-schaltbaren fluoreszierenden Proteinen durchgeführt. Diese wurden als Fusionsproteine mit Silaffin3, einem Protein, welches eng mit der Biosilica-Zellwand assoziiert ist, exprimiert. Es konnte gezeigt werden, dass nur drei von sechs Kandidaten funktional sind, wenn sie in Biosilica eingebettet sind. Silaffin3 konnte indirekt mittels SMLM mit einer Lokalisationsgenauigkeit von 25 nm detektiert werden. Dies erlaubte es, seine strukturelle Organisation aufzulösen und Silaffin3 als eine Hauptkomponente in der Basalkammer der Fultoportulae zu identifizieren<br>Diatoms feature the unique ability to form nanopatterned hierarchical silica cell walls with unprecedented accuracy and reproducibility. Gathering a deeper understanding of this process that is known as “biomineralization” is vitally important not only in the field of diatom research. In fact, the nanopatterning can also be exploited in the fields of material sciences or nanobiotechnology. According to the current understanding, the self-assembly of protein patterns along which biosilica is formed is key to this nanopatterning. Thus, in order to unravel the function of individual proteins that are involved in this biomineralization process, their structural organization has to be deciphered and correlated to morphological cell wall features that are in the order of tens of nanometer. Electron microscopy is able to resolve these features but does not provide protein-specific information. Therefore, a technique has to be established that is able to localize individual biosilica-associated proteins with nanometer precision. To achieve this objective, single-molecule localization microscopy (SMLM) for the diatom Thalassiosira pseudonana has been pioneered and exploited to localize different biosilica associated proteins inside silica and after silica removal. To obtain quantitative data, an analysis workflow was developed including graphical user interfaces and scripts for SMLM visualization, clustering, and co-localization. In order to find optimal labels for SMLM to target biosilica-embedded proteins, a comprehensive screening of photo-controllable fluorescent proteins has been carried out. Only three of six candidates were functional when embedded inside biosilica and fused to Silaffin3 – a protein that is tightly associated with the biosilica cell wall. Silaffin3 could be localized using SMLM with a localization precision of 25 nm. This allowed to resolve its structural organization and therefore identified Silaffin3 as a major component in the basal chamber of the fultoportulae. Additionally, co-localization studies on cingulins – a protein family hypothesized to be involved in silica formation – have been performed to decipher their pattern-function relationship. Towards this end, novel imaging strategies, co-localization calculations and pattern quantifications have been established. With the help of these results, the spatial arrangement of cingulins W2 and Y2 could be compared with unprecedented resolution. In summary, this work has laid ground for quantitative SMLM studies of proteins in diatoms in general and contributed insights into the spatial organization of proteins involved in biomineralization in the diatom T. pseudonana
APA, Harvard, Vancouver, ISO, and other styles
23

Zdankowski, Piotr. "Adaptive optics stimulated emission depletion microscope for thick sample imaging." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/90e27151-f51c-4c12-b9dd-2bc78beb2321.

Full text
Abstract:
Over the past few decades, fluorescence microscopy has proven to become the most widely used imaging technique in the field of life sciences. Unfortunately, all classical optical microscopy techniques have one thing in common: their resolution is limited by the diffraction. Thankfully, due to the very strong interest, development of fluorescent microscopy techniques is very intense, with novel solutions surfacing repeatedly. The major breakthrough came with the appearance of super-resolution microscopy techniques, enabling imaging well below the diffraction barrier and opening the new era of nanoscopy. Among the fluorescent super-resolution techniques, Stimulated Emission Depletion (STED) microscopy has been particularly interesting, as it is a purely optical technique which does not require post image processing. STED microscopy has proven to resolve structures down to the molecular resolution. However, super-resolution microscopy is not a cure to all the problems and it also has its limits. What has shown to be particularly challenging, was the super-resolution imaging of thick samples. With increased thickness of biological structures, the aberrations increase and signal-to-noise (SNR) decreases. This becomes even more evident in the super-resolution imaging, as the nanoscopic techniques are especially sensitive to aberrations and low SNR. The aim of this work is to propose and develop a 3D STED microscope that can successfully image thick biological samples with nanoscopic resolution. In order to achieve that, adaptive optics (AO) has been employed for correcting the aberrations, using the indirect wavefront sensing approach. This thesis presents a custom built 3D STED microscope with the AO correction and the resulting images of thick samples with resolution beyond diffraction barrier. The developed STED microscope achieved the resolution of 60nm in lateral and 160nm in axial direction. What is more, it enabled super-resolution imaging of thick, aberrating samples. HeLa, RPE-1 cells and dopaminergic neuron differentiated from human IPS cells were imaged using the microscope. The results shown in this thesis present 3D STED imaging of thick biological samples and, what is particularly worth to highlight, 3D STED imaging at the 80μm depth, where the excitation and depletion beams have to propagate through the thick layer of tissue. 3D STED images at such depth has not been reported up to date.
APA, Harvard, Vancouver, ISO, and other styles
24

Girard, Jules. "Microscopies de fluorescense et de diffraction super-résolues par éclairement multiple." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30031.

Full text
Abstract:
Ce travail de thèse concerne l'amélioration du pouvoir de résolution de la microscopie optique en champ lointain. Nous avons développé des techniques qui tirent profit de la relation liant le champ électromagnétique émis par un objet à l’éclairement utilisé. En utilisant plusieurs images obtenues pour différents éclairements, et à l’aide d’un algorithme d'inversion approprié, il est possible d'accéder à des fréquences spatiales de l'objet habituellement filtrées par le microscope.Ce concept est d’abord appliqué à une technique de microscopie cohérente : la tomographique optique de diffraction. Elle permet d’obtenir numériquement une carte quantitative de la permittivité diélectrique de l'objet, avec une résolution supérieure à celle d'un microscope classique, à partir de plusieurs hologrammes de l'échantillon. Dans ce cadre, nous montrons que le phénomène de diffusion multiple permet d’atteindre des résolutions encore plus spectaculaires s’il est pris en compte. Nous étudions ensuite la microscopie de fluorescence par éclairement structuré, que nous proposons d’améliorer de deux manières différentes. Dans la première, nous utilisons un algorithme d’inversion capable de retrouver simultanément la densité de fluorescence et les éclairements utilisés. Grâce à celui-ci, nous pouvons remplacer l’illumination périodique et contrôlée généralement utilisée, par des speckles aléatoires formés avec un montage remarquablement simple. Nous montrons expérimentalement l'efficacité de cette approche. Dans un second temps, nous proposons de remplacer la lamelle de verre sur laquelle est repose l’échantillon par un réseau diélectrique nanométrique. Celui-ci crée à sa surface une grille de lumière de période inférieure à la limite de diffraction, ce qui permet d’améliorer d’avantage la résolution finale de l’image reconstruite. Nous détaillons la conception, la fabrication et la caractérisation expérimentale de ce substrat nanostructuré<br>This PhD work focuses on the resolution improvement of far-field optical microscopy. We have studied and developed different techniques that take advantage of the relationship between the sample, the illumination and the diffracted (or emitted) field, in order to increase final band-pass of the image beyond that imposed by the diffraction phenomenon. In In these approaches, several images of the same sample are recorded under different illuminations. An inversion algorithm in then used to reconstruct a super-resolved map of the sample from the set of measurements.This concept is first applied to coherent microscopy. In tomographic diffraction microscopy, many holograms of the same unstained sample are obtained under various incidences, then used to numerically reconstruct a quantitative map of permittivity of the sample. The resolution is usually better than that of classical wide-field microscopy. We show theoretically and experimentally that, far from being a drawback, the presence of multiple scattering within the sample can, if properly accounted for, lead a to an even better resolution.We then study structured illumination fluorescence microscopy. We present two different ways for improving this method. The first one takes advantage of an inversion algorithm, which is able to retrieve the fluorescence density without knowing the illumination patterns. This algorithm permits one to replace the periodic light pattern classically used in structured illumination microscopy by unknown random speckle patterns. The implementation of the technique is thus considerably simplified while the resolution improvement remains. In the second approach, we propose to replace the coverslip on which the sample usually lays, by a sub-lambda grating. The latter is used to form, in near field, a light grid with sub-diffraction period that is able to probe the finest details of the sample. The design, fabrication and optical characterization of this key structure are detailed
APA, Harvard, Vancouver, ISO, and other styles
25

Denoyelle, Quentin. "Theoretical and Numerical Analysis of Super-Resolution Without Grid." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED030/document.

Full text
Abstract:
Cette thèse porte sur l'utilisation du BLASSO, un problème d'optimisation convexe en dimension infinie généralisant le LASSO aux mesures, pour la super-résolution de sources ponctuelles. Nous montrons d'abord que la stabilité du support des solutions, pour N sources se regroupant, est contrôlée par un objet appelé pré-certificat aux 2N-1 dérivées nulles. Quand ce pré-certificat est non dégénéré, dans un régime de petit bruit dont la taille est contrôlée par la distance minimale séparant les sources, le BLASSO reconstruit exactement le support de la mesure initiale. Nous proposons ensuite l'algorithme Sliding Frank-Wolfe, une variante de l'algorithme de Frank-Wolfe avec déplacement continu des amplitudes et des positions, qui résout le BLASSO. Sous de faibles hypothèses, cet algorithme converge en un nombre fini d'itérations. Nous utilisons cet algorithme pour un problème 3D de microscopie par fluorescence en comparant trois modèles construits à partir des techniques PALM/STORM<br>This thesis studies the noisy sparse spikes super-resolution problem for positive measures using the BLASSO, an infinite dimensional convex optimization problem generalizing the LASSO to measures. First, we show that the support stability of the BLASSO for N clustered spikes is governed by an object called the (2N-1)-vanishing derivatives pre-certificate. When it is non-degenerate, solving the BLASSO leads to exact support recovery of the initial measure, in a low noise regime whose size is controlled by the minimal separation distance of the spikes. In a second part, we propose the Sliding Frank-Wolfe algorithm, based on the Frank-Wolfe algorithm with an added step moving continuously the amplitudes and positions of the spikes, that solves the BLASSO. We show that, under mild assumptions, it converges in a finite number of iterations. We apply this algorithm to the 3D fluorescent microscopy problem by comparing three models based on the PALM/STORM technics
APA, Harvard, Vancouver, ISO, and other styles
26

Okuda, Maho. "Mécanisme d’action d’une classe d’antibiotiques depuis leur entrée jusqu’à leur cible chez la bactérie : visualisation en temps réel." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112239/document.

Full text
Abstract:
Des techniques variées de visualisation de molécules d’intérêt sur cellules vivantes ou fixées ont permis de suivre leur synthèse, localisation, dégradation et autres activités. Dans cette étude, nous avons développé deux outils de fluorescence pour étudier la synthèse des protéines sur bactéries vivantes. Le premier décrit l’utilisation du système Spinach pour l’imagerie du ribosome. Cette approche diffère des méthodes conventionnelles qui utilisent des protéines fluorescentes puisque l’ARN ribosomal 16S contient un aptamère qui rend fluorescent un composé fluorogène. Une étude comparative de la performance de différents aptamères Spinach a été réalisée. Un deuxième outil se focalise sur l’accumulation d’un antibiotique de la famille des aminoglycosides (ligand du ribosome) conjugué à un fluorophore. Ce nouveau conjugué, qui a conservé son activité bactéricide permet pour la première fois de visualiser l’accumulation de l’antibiotique sur bactérie vivante. Cela permet une analyse au niveau de la cellule unique d’une population bactérienne exposée à l’antibiotique. Nous avons également obtenu des données sur la localisation de l’antibiotique une fois qu’il a pénétré dans la bactérie à une résolution inégalée par microscopie super-résolutive. Nous espérons que ces deux méthodes vont maintenant permettre une meilleure compréhension de la synthèse des protéines et fournir une vue nouvelle de la pénétration des antibiotiques dans les bactéries pour y produire leur action bactéricide<br>Various visualizing techniques have previously enabled monitoring the fate of molecules of interest: their expression, localization, degradation and other activities in live or fixed cells. In this study, we have developed two fluorescent tools to study protein synthesis in live bacterial cell. The first one describes the application of Spinach system to ribosomes imaging. This is different from conventional methods (that use fluorescent proteins) in that 16S rRNA contains an inserted RNA aptamer that elicits fluorescence of a fluorogenic compound. A comparative study of the performance of different Spinach aptamers was performed here. A second system focuses on the uptake of a fluorescently labeled ligand of the ribosome, an antibiotic of the class of aminoglycosides. This novel conjugate, which kept its bactericidal activity allows for the first time imaging of aminoglycoside uptake on live bacteria. This opened the door to a single cell analysis of bacterial cell populations. We also obtained data about the localization of the antibiotic once inside the bacteria to an unprecedented resolution using super resolution microscopy. We hope that both of these methods will contribute to a better understanding of protein synthesis as well as provide a novel view on the way antibiotics penetrate into cells and perform their bactericidal action
APA, Harvard, Vancouver, ISO, and other styles
27

Carr, Alexander Roy. "Development of three-dimensional super-resolution imaging using a double-helix point spread function." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/279030.

Full text
Abstract:
Single-molecule localisation microscopy (SMLM), has allowed for optical microscopy to probe biological systems beyond the diffraction limit. The intrinsic 3D nature of biology has motivated the development of 3D-SMLM with novel techniques, including the double-helix point spread function (DHPSF). A bespoke microscope platform employing the DHPSF transformation was built, achieving ~10 nm lateral and ~20 nm axial localisation precision over a ~4 μm axial depth. Until recently, the DHPSF has been limited by spherical aberration present when imaging away from coverslip surfaces to the study of small volumes close to the coverslip. By matching the refractive index of the objective lens immersion liquid to that of the imaging media, this aberration can be minimised, facilitating large-volume imaging away from unphysiological flat surfaces. The work presented in this thesis illustrates the capabilities of the DHPSF for 3D-SMLM and single-particle tracking (SPT) in previously inaccessible areas of biological samples (e.g. in the nucleus and on the apical cell surface). Application of the DHPSF for SPT in eukaryotic cells are presented; tracking the motion of T-cell membrane proteins on the apical surface and components of the chromosome remodelling complex in the nucleus of embryonic stem cells. For these applications, meansquared displacement and jump distance diffusion analysis methodologies were extended into 3D and benchmarked against simulated datasets. A variety imaging applications that are facilitated by the extended depth of focus of the DHPSF are presented, focusing on quantification of T-cell membrane protein reorganisation upon immunological activation. Finally, the clustering distribution of the T-cell receptor is investigated by Ripley’s K analysis enabled by duel labelling of its position and the outer membrane in primary T cells.
APA, Harvard, Vancouver, ISO, and other styles
28

Jimenez, Sabinina Vilma [Verfasser], and Ed [Akademischer Betreuer] Hurt. "Analysis of the Architecture of the Nuclear Pore Complex by 3D super-resolution fluorescence microscopy / Vilma Jimenez Sabinina ; Betreuer: Ed Hurt." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1201346363/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Goryaynov, Alexander G. "Molecular Size and Charge Effects on Nucleocytoplasmic Transport Studied By Single-Molecule Microscopy." Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1357278635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nicovich, Philip R. "Widefield fluorescence correlation spectroscopy." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33849.

Full text
Abstract:
Fluorescence correlation spectroscopy has become a standard technique for modern biophysics and single molecule spectroscopy research. Here is presented a novel widefield extension of the established single-point technique. Flow in microfluidic devices was used as a model system for microscopic motion and through widefield fluorescence correlation spectroscopy flow profiles were mapped in three dimensions. The technique presented is shown to be more tolerant to low signal strength, allowing image data with signal-to-noise values as low as 1.4 to produce accurate flow maps as well as utilizing dye-labeled single antibodies as flow tracers. With proper instrumentation flows along the axial direction can also be measured. Widefield fluorescence correlation spectroscopy has also been utilized to produce super-resolution confocal microscopic images relying on the single-molecule microsecond blinking dynamics of fluorescent silver clusters. A method for fluorescence modulation signal extraction as well as synthesis of several novel noble metal fluorophores is also presented.
APA, Harvard, Vancouver, ISO, and other styles
31

Salas, Desireé. "Development of experimental and analysis methods to calibrate and validate super-resolution microscopy technologies." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONT3511.

Full text
Abstract:
Les méthodes de microscopie de super-résolution (SRM) telles que la microscopie PALM (photoactivated localization microscopy), STORM (stochastic optical reconstruction microscopy), BALM (binding-activated localization microscopy) et le DNA-PAINT, représentent un nouvel ensemble de techniques de microscopie optique qui permettent de surpasser la limite de diffraction ( &gt; 200 nm dans le spectre visible). Ces méthodes sont basées sur la localisation de la fluorescence de molécules uniques, et peuvent atteindre des résolutions de l'ordre du nanomètres (~20 nm latéralement et 50 nm axialement). Les techniques SRM ont un large spectre d'applications dans les domaines de la biologie et de la biophysique, rendant possible l'accès à l'information tant dynamique que structurale de structures connues ou non, in vivo et in vitro. Beaucoup d'efforts ont été fournis durant la dernière décennie afin d'élargir le potentiel de ces méthodes en développant des méthodes de localisation à la fois plus précise et plus rapide, d'améliorer la photophysique des fluorophores, de développer des algorithmes pour obtenir une information quantitative et augmenter la précision de localisation, etc. Cependant, très peu de méthodes ont été développées pour examiner l'hétérogénéité des images et extraire les informations statistiquement pertinent à partir de plusieurs milliers d'images individuelles super-résolues. Dans mon travail de thèse, je me suis spécifiquement attaquée à ces limitations en: (1) construisant des objets de dimensions nanométriques et de structures bien définies, avec la possibilité d'être adaptés aux besoins. Ces objets sont basés sur les origamis d'ADN. (2) développant des approches de marquage afin d'acquérir des images homogènes de ces objets. (3) implémentant des outils statistiques dans le but d'améliorer l'analyse et la validation d'images. Ces outils se basent sur des méthodes de reconstruction de molécules uniques communément appliquées aux reconstructions d'images de microscopie électronique. J'ai spécifiquement appliqué ces développements à la reconstruction de formes 3D de deux origamis d'ADN modèles (en une et trois dimensions). Je montre comment ces méthodes permettent la dissection de l'hétérogénéité de l'échantillon, et la combinaison d'images similaires afin d'améliorer le rapport signal sur bruit. La combinaison de différentes classes moyennes ont permis la reconstruction des formes tridimensionnelles des origamis d'ADN. Particulièrement, car cette méthode utilise la projection 2D de différentes vues d'une même structure, elle permet la récupération de résolutions isotropes en trois dimensions. Des fonctions spécifiques ont été adaptées à partir de méthodologies existantes afin de quantifier la fiabilité des reconstructions et de leur résolution. A l'avenir, ces développements seront utiles pour la reconstruction 3D de tous types d'objets biologiques pouvant être observés à haute résolution par des méthodologies dérivées de PALM, STORM ou PAINT<br>Super resolution microscopy (SRM) methods such as photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), binding-activated localization microscopy (BALM) and DNA-PAINT represent a new collection of light microscopy techniques that allow to overpass the diffraction limit barrier ( &gt; 200 nm in the visible spectrum). These methods are based on the localization of bursts of fluorescence from single fluorophores, and can reach nanometer resolutions (~20 nm in lateral and 50 nm in axial direction, respectively). SRM techniques have a broad spectrum of applications in the field of biology and biophysics, allowing access to structural and dynamical information of known and unknown biological structures in vivo and in vitro. Many efforts have been made over the last decade to increase the potential of these methods by developing more precise and faster localization techniques, to improve fluorophore photophysics, to develop algorithms to obtain quantitative information and increase localization precision, etc. However, very few methods have been developed to dissect image heterogeneity and to extract statistically relevant information from thousands of individual super-resolved images. In my thesis, I specifically tackled these limitations by: (1) constructing objects with nanometer dimensions and well-defined structures with the possibility of be tailored to any need. These objects are based on DNA origami. (2) developing labeling approaches to homogeneously image these objects. These approaches are based on adaptations of BALM and DNA-PAINT microscopies. (3) implemented statistical tools to improve image analysis and validation. These tools are based on single-particle reconstruction methods commonly applied to image reconstruction in electron microscopy.I specifically applied these developments to reconstruct the 3D shape of two model DNA origami (in one and three dimensions). I show how this method permits the dissection of sample heterogeneity, and the combination of similar images in order to improve the signal-to-noise ratio. The combination of different average classes permitted the reconstruction of the three dimensional shape of DNA origami. Notably, because this method uses the 2D projections of different views of the same structure, it permits the recovery of isotropic resolutions in three dimensions. Specific functions were adapted from previous methodologies to quantify the reliability of the reconstructions and their resolution.In future, these developments will be helpful for the 3D reconstruction of any biological object that can be imaged at super resolution by PALM, STORM or PAINT-derived methodologies
APA, Harvard, Vancouver, ISO, and other styles
32

Chahid, Makhlad. "Echantillonnage compressif appliqué à la microscopie de fluorescence et à la microscopie de super résolution." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0426/document.

Full text
Abstract:
Mes travaux de thèse portent sur l’application de la théorie de l’échantillonnagecompressif (Compressed Sensing ou Compressive Sampling, CS) à la microscopie defluorescence, domaine en constante évolution et outil privilégié de la recherche fondamentaleen biologie. La récente théorie du CS a démontré que pour des signauxparticuliers, dits parcimonieux, il est possible de réduire la fréquence d’échantillonnagede l’information à une valeur bien plus faible que ne le prédit la théorie classiquede l’échantillonnage. La théorie du CS stipule qu’il est possible de reconstruireun signal, sans perte d’information, à partir de mesures aléatoires fortement incomplèteset/ou corrompues de ce signal à la seule condition que celui-ci présente unestructure parcimonieuse.Nous avons développé une approche expérimentale inédite de la théorie du CSà la microscopie de fluorescence, domaine où les signaux sont naturellement parcimonieux.La méthode est basée sur l’association d’une illumination dynamiquestructurée à champs large et d’une détection rapide à point unique. Cette modalitépermet d’inclure l’étape de compression pendant l’acquisition. En outre, nous avonsmontré que l’introduction de dimensions supplémentaires (2D+couleur) augmentela redondance du signal, qui peut être pleinement exploitée par le CS afin d’atteindredes taux de compression très importants.Dans la continuité de ces travaux, nous nous sommes intéressés à une autre applicationdu CS à la microscopie de super résolution, par localisation de moléculesindividuelles (PALM/STORM). Ces nouvelles techniques de microscopie de fluorescenceont permis de s’affranchir de la limite de diffraction pour atteindre des résolutionsnanométriques. Nous avons exploré la possibilité d’exploiter le CS pour réduiredrastiquement les temps d’acquisition et de traitement.Mots clefs : échantillonnage compressif, microscopie de fluorescence, parcimonie,microscopie de super résolution, redondance, traitement du signal, localisation demolécules uniques, bio-imagerie<br>My PhD work deals with the application of Compressed Sensing (or CompressiveSampling, CS) in fluorescence microscopy as a powerful toolkit for fundamental biologicalresearch. The recent mathematical theory of CS has demonstrated that, for aparticular type of signal, called sparse, it is possible to reduce the sampling frequencyto rates well below that which the sampling theorem classically requires. Its centralresult states it is possible to losslessly reconstruct a signal from highly incompleteand/or inaccurate measurements if the original signal possesses a sparse representation.We developed a unique experimental approach of a CS implementation in fluorescencemicroscopy, where most signals are naturally sparse. Our CS microscopecombines dynamic structured wide-field illumination with fast and sensitive singlepointfluorescence detection. In this scheme, the compression is directly integratedin the measurement process. Additionally, we showed that introducing extra dimensions(2D+color) results in extreme redundancy that is fully exploited by CS to greatlyincrease compression ratios.The second purpose of this thesis is another appealing application of CS forsuper-resolution microscopy using single molecule localization techniques (e.g.PALM/STORM). This new powerful tool has allowed to break the diffraction barrierdown to nanometric resolutions. We explored the possibility of using CS to drasticallyreduce acquisition and processing times
APA, Harvard, Vancouver, ISO, and other styles
33

Jouchet, Pierre. "Microscopie super-résolue tridimensionnelle par modulation du signal de fluorescence de molécules uniques." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP005.

Full text
Abstract:
L’imagerie tridimensionnelle par localisation de molécules uniques (SMLM) permet d’obtenir des résolutions de quelques dizaines de nanomètres mais présentent encore certaines limitations liées notamment à une précision axiale non uniforme et une profondeur d’observation souvent limitée au premier micron de l’échantillon. Nous proposons ici une nouvelle approche de localisation de molécules uniques, appelée ModLoc, qui repose sur la modulation et la démodulation du signal de fluorescence des molécules uniques via l’utilisation d’une excitation structurée et modulée temporellement. Dans un premier temps, nous exposons les fondamentaux de l’imagerie SMLM et les limites actuelles de ce domaine. Les subtilités de ce nouveau principe de localisation sont ensuite détaillées et montrent un gain de précision théorique d’un facteur 3. Des études du caractère temporel aléatoire de l’émission des sondes fluorescentes en imagerie SMLM révèlent la nécessité d’intégrer des solutions optiques rapides (proche du kHz). La validation expérimentale du gain en précision accessible est démontrée grâce à la mise en place de deux dispositifs optiques. Nous choisissons d’appliquer ce principe afin d’améliorer la précision de localisation axiale des molécules fluorescentes. Les résultats obtenus mettent en évidence une précision de localisation uniforme de 7.5 nm et jusqu’à 7 microns en profondeur sur des échantillons de calibrations et des échantillons biologiques. La robustesse de la méthode pour l’imagerie SMLM en profondeur est également démontrée grâce notamment à des acquisitions effectuées à 30 µm de profondeur dans des milieux aberrants. Différentes pistes d’amélioration du dispositif actuel ainsi que l’extension de cette approche de localisation modulée à l’observation d’autres grandeurs telle que le temps de vie et l’orientation des molécules fluorescentes sont proposées<br>Three-dimensional imaging by localization of single molecules (SMLM) makes it possible to obtain resolutions of a few tens of nanometers, but still has certain limitations related in particular to non-uniform axial precision and a depth of observation often limited to the first micron of the sample. We propose here a new approach to single molecule localization, called ModLoc, which is based on the modulation and demodulation of the fluorescence signal of single molecules through the use of structured and time-modulated excitation. First, we present the fundamentals of SMLM imaging and the current limitations of this field. The subtleties of this new localization principle are then detailed and show a theoretical gain in precision by a factor of 3. Temporal emission studies of fluorescent probes in SMLM imaging reveal the need to integrate fast optical solutions (close to kHz). Experimental validation of the precision gain is demonstrated by the implementation of two optical devices. We choose to apply this principle in order to improve the accuracy of axial localization of fluorescent molecules. The results obtained show a uniform localization precision of 7.5 nm and up to 7 microns in depth on calibration samples and biological samples. The robustness of the method for in-depth MMS imaging is also demonstrated thanks in particular to acquisitions carried out at a depth of 30 µm in aberrant media. Various ways of improving the current device as well as the extension of this modulated localization approach to the observation of other quantities such as the life time and orientation of fluorescent molecules are proposed
APA, Harvard, Vancouver, ISO, and other styles
34

Mau, Adrien. "Développements pour l'imagerie quantitative et à haut contenu en microscopie de fluorescence classique et super-résolue." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASP016.

Full text
Abstract:
La microscopie de fluorescence et la microscopie de localisation de molécules uniques (SMLM) permettent d’imager spécifiquement les entités subcellulaires et sont donc des outils indispensables en Biologie. Cependant ces techniques d’imagerie sont intimement liées aux propriétés de l’illumination, qui possède des limites en termes d’uniformité et de contrôle de l’éclairement.Nous proposons une nouvelle méthode d’illumination nommée ASTER (Adaptable Scanning for Tunable Excitation Regions), capable de délivrer une illumination modulable et uniforme, et compatible avec les méthodes de sectionnement optique classiques. Nous l’appliquons en premier lieu à la microscopie de fluorescence où nous montrons sa compatibilité avec l’imagerie d’échantillons vivants. Ensuite, dans le contexte de l’imagerie SMLM nous démontrons l’obtention de résolutions uniformes, mais également l’impact sur d’autres paramètres et possibilités d’acquisitions. Ainsi ASTER permet de réduire le fond ambiant, d’imager des champs larges de 200x200µm² ou de réaliser une image SMLM sur l’ordre de quelques minutes.Nous présentons ensuite le bénéfice du couplage d’ASTER avec l’imagerie 3D, et une méthode d’imagerie multi-couleur SMLM. Cette méthode quantifiée analytiquement permet d’obtenir des cross talk de l’ordre de 2%, nous montrons sont application à l’imagerie à deux et trois couleurs, ainsi qu’à l’imagerie 3D. Différentes pistes d’amélioration d’ASTER et de l’imagerie multi couleur sont ensuite proposées<br>Fluorescence and Single Molecule Localization Microscopy (SMLM) allows for thespecific labeling and imaging of biological samples, and are an essential tool for biologists.However, images are generally non-quantitative and limited in feld of view, as well as in imagingtimes. These limits are fundamentally linked to the illumination scheme, which should be optimized both in term of uniformity, but also in control of the irradiance. We propose a novelillumination scheme named ASTER, which allow for a versatile and uniform illumination and is compatible with classical optical sectioning schemes. We first apply ASTER to fluorescence microscopy and particularly the imaging of live dynamic samples. Then we show the ability toobtain uniform resolution in SMLM, as well as the potential of ASTER's versatility. One mayreduce the uorescent background, image wide200 x 200 µm² fields, or realize a SMLM image under a minute. Finally, we present theimplementation of a multicolor SMLM experiment, allowing for the simultaneous imaging ofdifferent structures with cross-talks around 2%.This method is quanti ed and optimized, andthen applied to two and three color imaging, aswell as 3D imaging. Different perspectives for ASTER and multicolor imaging are then proposed
APA, Harvard, Vancouver, ISO, and other styles
35

Impellizzeri, Stefania. "Engineering of Nanoparticles for Luminescence Switching." Scholarly Repository, 2012. http://scholarlyrepository.miami.edu/oa_dissertations/708.

Full text
Abstract:
Fluorescence microscopy offers the opportunity to image biological samples noninvasively in real time and has become an essential analytical tool in the biomedical laboratory. Nonetheless, the phenomenon of diffraction imposes stringent limitations on the resolving power of conventional microscopes, preventing the spatial resolution of fluorescent species co-localized within areas of nanoscaled dimensions. Time, however, can be exploited to distinguish fluorophores within the same subdiffraction area, if their fluorescence can be switched independently, and reconstruct sequentially their spatial distribution. In this context, photolytic reactions and photochromic transformations can be invoked to switch fluorescence under optical control. Fluorescent units, such as inorganic semiconductor nanoparticles and organic dyes, and photoactive components can be operated within a common supramolecular matrix or integrated within the same molecular construct to produce photoswitchable fluorescent assemblies. In the resulting systems, electronic communication between the components can be designed in order to photoactivate or photodeactivate fluorescence respectively. Both mechanisms can be exploited to overcome diffraction, and ultimately permit the reconstruction of images with resolution down to the nanometer level, in combination with appropriate illumination protocols.
APA, Harvard, Vancouver, ISO, and other styles
36

Palayret, Matthieu Grégoire Simon. "Applying single-molecule localisation microscopy to achieve virtual optical sectioning and study T-cell activation." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/252696.

Full text
Abstract:
Single-molecule localisation microscopy (SMLM) allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. As a single-molecule technique, it has also introduced a new quantitative approach to fluorescence microscopy. In the Part A of this thesis, the design and building of three SMLM instruments, the implementation of a custom-developed image analysis package and the characterisation of the photo-physical properties of the photo-activable fluorescent protein used in this thesis (mEos), are discussed. Then, a new post-processing method for SMLM analysis is characterised: axial optical sectioning of SMLM images is demonstrated by thresholding fitted localisations using their fitted width and amplitude to reject fluorophores that emit from above or below a virtual ?light-sheet?, a thin volume centred on the focal plane of the microscope. This method provides qualitative and quantitative improvements to SMLM. In the Part B of this thesis, SMLM is applied to study T cell activation. Although the T cell receptor plays a key role in immunity, its stoichiometry in the membrane of resting T cells is still a matter of debate. Here, single-molecule counting methods are implemented to compare the stoichiometry of TCRs fused with mEos2 in resting T cells to monomeric and dimeric controls. However, because of the stochasticity of mEos2 photo-physics, results are inconclusive and new counting techniques based on structural imaging are discussed. In addition to TCR triggering, T cells require the co-stimulatory triggering of the CD28 transmembrane receptor to become fully activated. However, some immobilised anti-CD28 antibodies, referred to as super-agonists (SA), can directly activate T cells without triggering the TCR. In this thesis, single-molecule tracking techniques are used to investigate the molecular mechanism of CD28 super-agonism in live T cells. The results indicate that the diffusion of CD28 is slowed by SA binding. This effect is further discussed in light of the kinetic-segregation model proposed for TCR triggering. Quantitative SMLM as implemented and further developed in this work offers new tools to investigate the molecular mechanisms initiating T cell activation, ultimately facilitating the discovery of novel approaches to target these pathways for therapeutic purposes.
APA, Harvard, Vancouver, ISO, and other styles
37

Berardozzi, Romain. "Etude photophysique des protéines fluorescentes photoconvertibles utilisées en microscopie de super-résolution." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV015/document.

Full text
Abstract:
La microscopie de super-résolution PALM (microscopie de localisation après photo-activation) est un outil performant pour l'étude des cellules à l'échelle nanométrique. Dans ses applications avancées, la microscopie PALM permet l'étude quantitative et dynamique des objets et événements biologiques. Ces applications sont cependant limitées par le comportement photophysique complexe des protéines fluorescentes photoconvertibles vert à rouge (PCFPs) utilisées comme marqueurs. En particulier, les transitions répétées et stochastiques des PCFPs entre un état sombre et un état fluorescent (scintillement) ainsi que l'incomplétude de photoconversion compliquent l'extraction d'informations quantitatives.Nos travaux combinant cristallographie aux rayons X des protéines et microscopie de localisation ont permis de mettre en évidence le rôle central d'un acide aminé conservé au sein des PCFPs, l'arginine 66, dans le contrôle du scintillement et du photoblanchiment de la forme rouge de deux PCFPs populaires: mEos2 et Dendra2.D'autre part, des résultats préliminaires suggèrent que dans leur formes vertes et dans les conditions d'illumination classiques PALM, les PCFPs entrent dans un état sombre de long temps de vie ce qui ralentit la photoconversion.Nos résultats ouvrent la porte à la conception raisonnée de nouvelles PCFPs optimisées pour les applications quantitatives et dynamiques du PALM<br>Super-resolution PALM microscopy (photoactivated localization microscopy) is a powerful tool to investigate the cells with nanoscopic accuracy. Advanced PALM microscopy allows to quantitatively and dynamically study biological objects and events. These applications are nevertheless limited by the complex photophysical behavior of the green-to-red photoconvertible fluorescent proteins (PCFPs) used as markers. In particular, PCFPs red forms repeated and stochastic transitions between a fluorescent and a dark state (blinking) as well as photoconversion uncompleteness complicate the extraction of quantitative information.Our study, by combining X-ray crystallography and localization microscopy, evidences that a single aminoacid well conserved among PCFPs, the arginine 66, controls the blinking and photobleaching behavior of two popular PCFPs: mEos2 and Dendra2.Preliminary results suggest that in their green forms and under PALM classical illumination conditions, PCFPs switch to a long-lived dark state resulting in a photoconversion slowing down.Our results open the door to future rational engineering of enhanced PCFPs for quantitative and dynamic PALM
APA, Harvard, Vancouver, ISO, and other styles
38

Labouesse, Simon. "Imagerie à éclairements structurés inconnus." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0335.

Full text
Abstract:
La microscopie à éclairements structurés (SIM) permet théoriquement de doubler la résolution d’un microscope optique standard. Pour atteindre cette limite théorique, le SIM requière un contrôle très précis des illuminations, ce qui le rend coûteux et difficile à calibrer. Cette thèse cherche à simplifier drastiquement le principe du SIM en proposant une approche « aveugle » qui reconstruit une image de l’échantillon à partir d’éclairements aléatoires, i.e., très facile à générer. Cette stratégie permet en théorie l’imagerie super-résolue tout en réduisant fortement le coût de l’instrument. Nous avons étudié du point de vu théorique et algorithmique les performances et les limitations d’un estimateur joint de l’objet et des illuminations (estimateur Blind-SIM joint). Notamment, une reformulation mathématique du problème d’estimation jointe a été proposée qui permet d’analyser l'origine de la super-résolution mais également de proposer des nouvelles stratégies de mises en œuvre très rapides. Une étude empirique a mis en lumière l’impact de la parcimonie et du contenue fréquentielles des illuminations sur le niveau de super-résolution obtenu. L’estimateur joint étant asymptotiquement inconsistant, nous nous sommes également intéressé à définir un « critère de contraste » pour ce problème permettant d’estimer uniquement l’objet d’intérêt. Une étude mathématique de la capacité de super-résolution de ce type d'estimateur a été conduite. Enfin, on a observé un effet de super-résolution en condition réelles sur de nombreux objets, 2 ou 3D, fixe ou mobile, biologique ou non tel que des billes, des podosomes, de l’actine<br>Structured illumination microscopy (SIM) allow theoretically to double the super-resolution of a standard optical microscope. However, to reach this theoretical limit, SIM require a precise knowledge of the illuminations, making it costly and difficult to calibrate. The aim of this thesis is to simplify the use of SIM by using a blind approach who allow the use of random illuminations to reconstruct a super-resolved image of the object. This strategy theoretically allow the super-resolution, while maintaining a low cost instrumentation. During those three years of thesis, we have studied theoretically and algorithmically the performances and the limitations of a joint estimator of the objet and the illuminations (joint Blind-SIM estimator). A mathematically equivalent reformulation of the joint problem was proposed allowing us to study the super-resolution origin and to propose a fast and parallelizable new approach. An empirical study has highlighted the impact of parsimony and of the frequency content of the illuminations on the reached super-resolution level. Because the joint estimator is asymptotically not consistent, we also studied a contrast criterion for our problem (typically a marginal likelihood), here only the object of interest is estimated. We have mathematically studied the super-resolution capacity of this kind of estimators. Finally, real data using random illuminations where acquired and we have observed a super-resolution effect using our algorithms on multiples real objects of different kind, 2 or 3D, fix or mobile, biological or not, like beads, podosomes, actines
APA, Harvard, Vancouver, ISO, and other styles
39

Curry, Nathan. "Development and application of correlative STED and AFM to investigate neuronal cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274579.

Full text
Abstract:
Over the past three decades in cellular neuroscience there has been a shift towards the view of the 'tripartite synapse', where, astrocytes -- as well as the pre-synapse and post-synapse -- are involved in synaptic signalling. The migration of astrocytes to form branched networks in the brain is, therefore, of great interest in understanding brain development and neuronal function. Migration is a complex interplay between cytoskeletal reorganisation and cell mechanical stiffness. In order to improve understanding of this process, correlative measurements of cytoskeletal organisation and mechanical stiffness are required. To investigate astrocyte migration a technique combining atomic force microscopy (AFM) with stimulated emission depletion (STED) microscopy was developed. First a custom STED microscope was developed. To facilitate the design of this system the theoretical performance of a range of STED techniques (cw-STED, time-gated STED, pulsed STED and RESOLFT) were compared, identifying that pulsed STED theoretically has the highest photon efficiency. A pulsed STED microscope, which uses adaptive optics, was then designed, developed and characterised. The microscope was found to achieve resolutions below 50 nm. The STED microscope was combined with a commercial AFM to study live cells. Using the recently developed SiR-actin and SiR-tubulin dyes and AFM probes optimised for live cell mechanical property studies, images of the actin and tubulin cytoskeleton were correlated with AFM topography and mechanical stiffness measurements. It was found that, in astrocytes, actin contributes significantly both to astrocyte stiffness and topography. Investigations of migrating cells showed differences in actin organisation and mechanical stiffness between the basis and leading edge of migration. A further study was performed, investigating the effects of the gap-junction protein connexin30, which is expressed during the early stages of brain development, on migration. This protein was found to inhibit the actin reorganisation and mechanical stiffness changes observed in basal conditions. Overall the combination of mechanosensitive AFM measurements with advanced microscopy, such as super-resolution, on live cells is a promising approach which will enable a range of investigations, for instance when studying cell structural remodeling during brain development or tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
40

Huisman, Maximiliaan. "Vision Beyond Optics: Standardization, Evaluation and Innovation for Fluorescence Microscopy in Life Sciences." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1017.

Full text
Abstract:
Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation. A universal standard makes it easier to assess, compare and analyze imaging data – from the level of a single laboratory to the broader life sciences community. We propose a data-standard for fluorescence microscopy that can increase the confidence in experimental results, facilitate the exchange of data, and maximize compatibility with current and future data analysis techniques. Cutting-edge imaging technologies often rely on sophisticated hardware and multi-layered algorithms for reconstruction and analysis. Consequently, the trustworthiness of new methods can be difficult to assess. To evaluate the reliability and limitations of complex methods, quantitative analyses – such as the one present here for the 3D SPEED method – are paramount. The limited resolution of optical microscopes prevents direct observation of macro- molecules like DNA and RNA. We present a multi-color, achromatic, cryogenic fluorescence microscope that has the potential to produce multi-color images with sub-nanometer precision. This innovation would move fluorescence imaging beyond the limitations of optics and into the world of molecular resolution.
APA, Harvard, Vancouver, ISO, and other styles
41

Taylor, Edward John Robert. "Synthesis and characterisation of peptide-based probes for quantitative multicolour STORM imaging." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284553.

Full text
Abstract:
Current single molecule localisation microscopy methods allow for multicolour imaging of macromolecules in cells, and for a degree quantification on molecule numbers in one colour. However, that has not yet been an attempt to develop tools capable of quantitative imaging with multiple colours in cells. This work addressed this challenge by designing linker peptides with chemospecific groups to allow attachment of activator and emitter dyes for STORM imaging, and a targeting module. The design ensured a stoichiometric ratio of targeting module to activator and emitter dyes. Peptides with HaloTag ligands attached were labelled with various activator and emitter pairs and used to label HaloTag fusions of S. pombe and mouse embryonic stem cells. These peptides were found to bind non-specifically to various areas of both cell types, and did not localise to HaloTag protein, whereas controls did. Another peptide was also labelled with activator-emitter pairs and attached to expressed anti-GFP and ant-mCherry nanobodies via native chemical ligation. The labelled anti-GFP nanobody was to demonstrate ensemble and single molecule imaging in S. pombe, as well as characterisation on single molecule surfaces in comparison to a conventional randomly labelled antibody. The stoichiometrically labelled nanobody had a more consistent number of photons detected per localisation, number of localisation per molecule and number of blinks per molecule, which implied that it could be more useful than randomly labelled nanobodies for counting experiments. It was also shown to be capable of specific laser activation for STORM imaging with both an Alexa405Cy5 and Cy3Cy5 pairs. These anti-GFP and anti-mCherry nanobodies and peptide linker are new tools for both counting and multicolour imaging in super-resolution, which could be widely applied to constructs that are already tagged with GFP or mCherry.
APA, Harvard, Vancouver, ISO, and other styles
42

Danné, Noémie. "Etude de la structure nanométrique et de la viscosité locale de l’espace extracellulaire du cerveau par microscopie de fluorescence de nanotubes de carbone uniques." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0199/document.

Full text
Abstract:
Le cerveau est composé de neurones et de cellules gliales qui jouent un rôle de soutien et de protection du réseau cellulaire. L’espace extra-cellulaire (ECS) correspond à l’espace qui existe entre ces cellules. Les modifications de sa structure peuvent dépendre de plusieurs paramètres comme l’âge, l’apprentissage ou les maladies neuro-dégénératives. Le volume de l’ECS correspond à environ 20$%$ du volume total du cerveau et les neurotransmetteurs et autres molécules circulent dans cet espace pour assurer une communication neuronale optimale. Cependant, les dimensions et la viscosité locale de cet espace restent encore mal-connues. L’ECS est composé entre autres de protéoglycans, de glycoaminoglycans (acide hyaluronique…) et de fluide cérébrospinal. Nous avons proposé dans cette thèse une stratégie pour mesurer les dimensions et les propriétés rhéologiques de l’espace extra-cellulaire de tranches de cerveaux de rats maintenue en vie à l’aide du suivi de nanotubes de carbone individuels luminescents. Pour ces applications, nous avons étudier la biocompatibilité et le rapport signal sur bruit de nos échantillons de nanotubes afin de les détecter en profondeur dans les tranches de cerveaux et de pouvoir mesurer leurs propriétés de diffusion<br>The brain is mainly composed of neurons which ensure neuronal communication and glialcells which play a role in supporting and protecting the neural network. The extracellular space corresponds to the space that exists between all these cells and represents around 20 %of the whole brain volume. In this space, neurotransmitters and other molecules circulate into ensure optimal neuronal functioning and communication. Its complex organization whichis important to ensure proper functioning of the brain changes during aging, learning or neurodegenerative diseases. However, its local dimensions and viscosity are still poorly known.To understand these key parameters, in this thesis, we developed a strategy based on the tracking of single luminescent carbon nanotubes. We applied this strategy to measure the structural and viscous properties of the extracellular space of living rodent brains slices at the nanoscale. The organization of the manuscript is as follows. After an introduction of the photoluminescence properties of carbon nanotubes, we present the study that allowed us to select the optimal nanotube encapsulation protocol to achieve our biological applications. We also present a quantitative study describing the temperature increase of the sample when laser irradiations at different wavelengths are used to detect single nanotubes in a brain slice.Thanks to a fine analysis of the singular diffusion properties of carbon nanotubes in complex environments, we then present the strategy set up to reconstruct super-resolved maps (i.e. with resolution below the diffraction limit) of the brain extracellular space morphology.We also show that two local properties of this space can be extracted : a structural complexity parameter (tortuosity) and the fluid’s in situ viscosity seen by the nanotubes. This led us to propose a methodology allowing to model the viscosity in situ that would be seen, not by the nanotubes,but by any molecule of arbitrary sizes to simulate those intrinsically present or administered in the brain for pharmacological treatments. Finally, we present a strategy to make luminescent ultra-short carbon nanotubes that are not intrinsically luminescent and whose use could be a complementary approach to measure the local viscosity of the extracellular space of the brain
APA, Harvard, Vancouver, ISO, and other styles
43

Jacq, Maxime. "Etude de la morphogénèse et de la division chez Streptococcus pneumoniae." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV008/document.

Full text
Abstract:
La division bactérienne résulte de la constriction de la membrane, menée par la protéine du cytosquelette FtsZ, et de l’expansion et du remodelage de la paroi, réalisés par des synthétases et des hydrolases de la paroi. La coordination de ces processus au sein d’un macrocomplexe protéique, le divisome, est nécessaire au maintien de la forme et de l’intégrité bactérienne. J’ai étudié deux aspects importants de ce mécanisme de coordination chez le pathogène humain Streptococcus pneumoniae. J’ai déterminé in vivo la nanostructure de la protéine FtsZ en développant l’utilisation du PALM (PhotoActivated Localization Microscopy)chez le pneumocoque. Cette technique, basée sur la détection de molécules uniques et permettant une résolution de 20-40 nm, a révélé des aspects inattendus (dimensions, amas, sous-structures) de l’architecture de l’anneau de FtsZ au cours du cycle cellulaire. En parallèle, j’ai étudié le rôle de l’hydrolase Pmp23 par génétique, biochimie et microscopie à fluorescence. Mon travail a montré que Pmp23 est requise pour la stabilité des macrostructures du divisome du pneumocoque, révélant une nouvelle connexion entre le métabolisme de la paroi et la division cellulaire<br>Bacterial division results from the combination of membrane constriction, driven by the cytoskeletal protein FtsZ, with cell wall expansion and remodeling, performed by cell wall synthases and hydrolases. Coordination of these processes within a large protein complex known as the divisome ensures cell integrity and maintenance of cell shape. I have investigated two important aspects of this coordination mechanism in the human pathogen Streptococcus pneumoniae. I determined the in vivo nanostructure of the divisome scaffolding protein FtsZ by developing the use of PhotoActivated Localization Microscopy (PALM) in the pneumococcus. PALM, which is based on the detection of single fluorescent labels and allows 20-40 nm resolution, has revealed unexpected features (dimensions, clusters, new substructures) of the FtsZ-ring architecture along the cell cycle. In parallel, I studied the role of the cell wall hydrolase Pmp23 using genetics, biochemistry and fluorescence microscopy. My work has shown that Pmp23 is required for the stability of divisome macrostructures in the pneumococcal cell, revealing a new connection between cell wall metabolism and cell division
APA, Harvard, Vancouver, ISO, and other styles
44

Kechkar, Mohamed Adel. "Méthodes de reconstruction et de quantification pour la microscopie de super-résolution par localisation de molécules individuelles." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22130/document.

Full text
Abstract:
Le domaine de la microscopie de fluorescence a connu une réelle révolution ces dernières années, permettant d'atteindre des résolutions nanométriques, bien en dessous de la limite de diffraction prédite par Abbe il y a plus d’un siècle. Les techniques basées sur la localisation de molécules individuelles telles que le PALM (Photo-Activation Light Microscopy) ou le (d)STORM (direct Stochastic Optical Reconstruction Microscopy) permettent la reconstruction d’images d’échantillons biologiques en 2 et 3 dimensions, avec des résolutions quasi-moléculaires. Néanmoins, même si ces techniques nécessitent une instrumentation relativement simple, elles requièrent des traitements informatiques conséquents, limitant leur utilisation en routine. En effet, plusieurs dizaines de milliers d’images brutes contenant plus d’un million de molécules doivent être acquises et analysées pour reconstruire une seule image. La plupart des outils disponibles nécessitent une analyse post-acquisition, alourdissant considérablement le processus d’acquisition. Par ailleurs la quantification de l’organisation, de la dynamique mais aussi de la stœchiométrie des complexes moléculaires à des échelles nanométriques peut constituer une clé déterminante pour élucider l’origine de certaines maladies. Ces nouvelles techniques offrent de telles capacités, mais les méthodes d’analyse pour y parvenir restent à développer. Afin d’accompagner cette nouvelle vague de microscopie de localisation et de la rendre utilisable en routine par des expérimentateurs non experts, il est primordial de développer des méthodes de localisation et d’analyse efficaces, simples d’emploi et quantitatives. Dans le cadre de ce travail de thèse, nous avons développé dans un premier temps une nouvelle technique de localisation et reconstruction en temps réel basée sur la décomposition en ondelettes et l‘utilisation des cartes GPU pour la microscopie de super-résolution en 2 et 3 dimensions. Dans un second temps, nous avons mis au point une méthode quantitative basée sur la visualisation et la photophysique des fluorophores organiques pour la mesure de la stœchiométrie des récepteurs AMPA dans les synapses à l’échelle nanométrique<br>The field of fluorescence microscopy has witnessed a real revolution these last few years, allowing nanometric spatial resolutions, well below the diffraction limit predicted by Abe more than a century ago. Single molecule-based super-resolution techniques such as PALM (Photo-Activation Light Microscopy) or (d)STORM (direct Stochastic Optical Reconstruction Microscopy) allow the image reconstruction of biological samples in 2 and 3 dimensions, with close to molecular resolution. However, while they require a quite straightforward instrumentation, they need heavy computation, limiting their use in routine. In practice, few tens of thousands of raw images with more than one million molecules must be acquired and analyzed to reconstruct a single super-resolution image. Most of the available tools require post-acquisition processing, making the acquisition protocol much heavier. In addition, the quantification of the organization, dynamics but also the stoichiometry of biomolecular complexes at nanometer scales can be a key determinant to elucidate the origin of certain diseases. Novel localization microscopy techniques offer such capabilities, but dedicated analysis methods still have to be developed. In order to democratize this new generation of localization microscopy techniques and make them usable in routine by non-experts, it is essential to develop simple and easy to use localization and quantitative analysis methods. During this PhD thesis, we first developed a new technique for real-time localization and reconstruction based on wavelet decomposition and the use of GPU cards for super-resolution microscopy in 2 and 3 dimensions. Second, we have proposed a quantitative method based on the visualization and the photophysics of organic fluorophores for measuring the stoichiometry of AMPA receptors in synapses at the molecular scale
APA, Harvard, Vancouver, ISO, and other styles
45

Ring, Josh. "Novel fabrication and testing of light confinement devices." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/novel-fabrication-and-testing-of-light-confinement-devices(51572720-0c49-482e-8523-e44ca877117f).html.

Full text
Abstract:
The goal of this project is to study novel nanoscale excitation volumes, sensitive enoughto study individual chromophores and go on to study new and exciting self assemblyapproaches to this problem. Small excitation volumes may be engineered using light con-finement inside apertures in metal films. These apertures enhance fluorescence emissionrates, quantum yields, decrease fluorescence quenching, enable higher signal-to-noiseratios and allow higher concentration single chromophore fluorescence, to be studied byrestricting this excitation volume. Excitation volumes are reported on using the chro-mophore's fluorescence by utilising fluorescence correlation spectroscopy, which monitorsfluctuations in fluorescence intensity. From the correlation in time, we can find the res-idence time, the number of chromophores, the volume in which they are diffusing andtherefore the fluorescence emission efficiency. Fluorescence properties are a probe ofthe local environment, a particularly powerful tool due to the high brightness (quantumyield) fluorescent dyes and sensitive photo-detection equipment both of which are readilyavailable, (such as avalanche photodiodes and photomultiplier tubes). Novel materialscombining the properties of conducting and non-conducting materials at scales muchsmaller than the incident wavelength are known as meta-materials. These allow combi-nations of properties not usually possible in natural materials at optical frequencies. Theproperties reported so far include; negative refraction, negative phase velocity, fluorescenceemission enhancement, lensing and therefore light confinement has also been proposed tobe possible. Instead of expensive and slow lithography methods many of these materialsmay be fabricated with self assembly techniques, which are truly nanoscopic and otherwiseinaccessible with even the most sophisticated equipment. It was found that nanoscaled volumes from ZMW and HMMs based on NW arrays wereall inefficient at enhancing fluorescence. The primary cause was the reduced fluorescencelifetime reducing the fluorescence efficiency, which runs contrary to some commentatorsin the literature. NW based lensing was found to possible in the blue region of the opticalspectrum in a HMM, without the background fluorescence normally associated with a PAAtemplate. This was achieved using a pseudo-ordered array of relatively large nanowireswith a period just smaller than lambda / 2 which minimised losses. Nanowires in the traditionalregime lambda / 10 produced significant scattering and lead to diffraction, such that they werewholly unsuitable for an optical lensing application.
APA, Harvard, Vancouver, ISO, and other styles
46

Stein, Simon Christoph. "Advanced Data Processing in Super-resolution Microscopy." Doctoral thesis, 2017. http://hdl.handle.net/11858/00-1735-0000-0023-3EE1-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Meixeiro, Ana Carolina Espada Antunes e. Natal. "Study of Perovskite Quantum Dots for Super-resolution Microscopy Applications." Master's thesis, 2019. http://hdl.handle.net/10362/104481.

Full text
Abstract:
Quantum Dots (QDs) are known for their remarkable optical properties, such as, high photoluminescent quantum yields (PLQY), large absorption spectra, narrow emission spectra, excellent photostability and the possibility to shift the fluorescence emission in a wide spectrum of colours through QD synthesis conditions [1–4]. When compared with conventional fluorophores, QDs show many advantages, like resistance to photobleaching, enhanced photostability and brightness [5]. In this work Iodine Perovskite Quantum Dots (CsP bI3) were used, since this type of QDs show great photophysical properties and nearinfrared (NIR) emission. Nevertheless, their structural stability and shelf life needed improvement, so a doping system based on cadmium was developed, and alterations in the synthesis were studied to fulfil the needs without causing any kind of drawback. An extensive optical, chemical and morphological characterisation was carried out to fully understand the influence of the developed particle engineering. It was proven that the doping system and synthesis modifications increase the stability of the nanocrystal, without pitfalls. Finally, different Super Resolution Microscopy techniques were used to investigate the performance of the PQDs, the possibility of using them as fluorescent dyes and a possible resolution enhancement.
APA, Harvard, Vancouver, ISO, and other styles
48

Henriques, Ricardo. "Beyond Rayleigh's limit : achieving real-time super-resolution fluorescence microscopy." Doctoral thesis, 2011. http://hdl.handle.net/10451/4444.

Full text
Abstract:
Tese de doutoramento, Ciências Biomédicas (Ciências Morfológicas), Universidade de Lisboa, Faculdade de Medicina, 2011<br>The present work aimed to develop new tools and applications in super-resolution fluorescence microscopy to unlock high-resolution structural information on DNA, RNA and proteins. These molecules, central to the dogma in biology, exist as single-molecules at scales of few nanometres beyond the resolving power of classical fluorescence microscopy. In this context we have explored single-molecule localization microscopy (SMLM) techniques that hold to date the record in resolving power for optical microscopy. These have both the capacity to identify and localize individual molecules at scales experimentally demonstrated up to sub-nanometre level. In this family of methods, photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) variants hold the potential to fully resolve complete cellular structures at the nanoscale by precisely localizing thousands to millions of individual fluorophores within a labelled cell. Tackling these novel methods is highly challenging due to their still embryonic state. My Ph.D. aimed to improve these novel methods in three different areas. First, the hardware configuration, by creating a simple setup method that converts a standard wide-field fluorescence or total-internal reflection fluorescence (TIRF) microscope into a super-resolution system able to achieve 3D nanoscopy. Second, the super-resolution image acquisition and analysis, by developing “QuickPALM” and tools such as the “Laser control for QuickPALM”, which integrated with other opensource libraries such as ImageJ or μManager provide a complete set of software tools to achieve super-resolution hardware control and real-time analysis of the acquired data. Third, the discovery of new photo-switchable probes for super-resolution, achieved by exploitation of the transient interaction of “classical” fluorophores with high-efficiency quenchers. These developments have been applied on the study of biological processes at the nanometer level througout my Ph.D. To this matter, the results section of the present thesis demonstrates one of the most prominent implementations, in which we have studied the spatial interaction of key proteins of the NF-κB pathway upon receptor stimulation by TNF-α or IL-1. Altogether, the work I developed during my Ph.D. has provided important and original scientific contributions for the advancement of single molecule localization microscopy. Shortly after QuickPALM was published and made available to the scientific community it became one of the most used analytical tools at the core of particle detection and reconstruction for the class of SMLM techniques. Moreover, my results provide a novel view into cellular structure at the molecular level and provide a novel framework to study the interplay of key molecular participants in biology.<br>O presente trabalho teve por objectivo o desenvolvimento de novas ferramentas e aplicações em microscopia de super-resolução por fluorescência, desbloqueando informações estruturais de alta resolução em moléculas como DNA, RNA e proteínas. Estas moléculas, parte do dogma central da biologia, existem como objectos individuais em escalas de poucos nanometros, para além do poder de resolução da microscopia de fluorescência clássica. Neste contexto, explorámos neste trabalho técnicas de single-molecule localization microscopy (SMLM), que mantêm até hoje o recorde em poder de resolução para microscopia óptica. Estas técnicas, têm a capacidade de experimentalmente identificar e localizar moléculas individuais na escala de sub-nanometros. Nesta família de métodos, photo-activated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) e suas variantes, têm o potencial para resolver estruturas celulares completas com uma precisão nanométrica através da localização de milhares de milhões de fluoróforos individuais no interior de células marcadas. A implementação e utilização destes novos métodos representam um enorme desafio já que estes ainda se encontram no seu “estádio embrionário”. O meu doutoramento teve como objectivo melhorar estes novos métodos em três áreas diferentes. A primeira área sendo a configuração de hardware, nomeadamente através do desenvolvimento de um método que permite converter um microscópio wide-field de fluorescência ou de total internal reflection fluorescence (TIRF) em um sistema de super-resolução capaz de alcançar nanoscopia 3D. A segunda área focou-se em melhorar os métodos de aquisição e análise de imagem em super-resolução, através do desenvolvimento de “QuickPALM” e ferramentas como o “controle do laser para QuickPALM”. Estes quando integrados com outras bibliotecas de software open-source, como o ImageJ ou μManager, constituem um conjunto completo de ferramentas de software necessário para controlar o microscópio de super-resolução e analisar em tempo real os dados adquiridos. A terceira área relacionada com o desenvolvimento de novas sondas photo-switchable para super-resolução, baseou-se na exploração de interacções transitórias de fluoróforos "clássicos" com supressores de fluorescência de alta eficiência. Estes desenvolvimentos têm sido aplicados para o estudo de processos biológicos ao nível nanométrico ao longo do meu doutoramento. A secção de resultados da presente tese demonstra uma das implementações mais proeminente, em que temos estudado a interacção espacial de proteínas chave na via de sinalização NF-κB activada após estimulação de receptores como TNF-α e IL-1. No global, o trabalho que desenvolvi durante o meu doutoramento constitui uma contribuição científica original e extremamente relevante para o avanço da microscopia de localização molecular. Pouco tempo após a publicação e disponibilização do QuickPALM à comunidade científica, este tornou-se uma das ferramentas mais utilizadas na detecção de partículas e de reconstrução de imagens para a classe de técnicas de SMLM. Adicionalmente, os meus resultados fornecem uma visão nova no estudo de estruturas celulares a nível molecular e das interacções entre os participantes-chave na biologia molecular.<br>Fundação para a Ciência e a tecnologia (FCT,SFRH/BD/63680/2009)
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Weixing. "Single Molecule Cryo-Fluorescence Microscopy." Doctoral thesis, 2016. http://hdl.handle.net/11858/00-1735-0000-002B-7C92-A.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

AbuZineh, Karmen. "Super-resolution fluorescence imaging of membrane nanoscale architectures of hematopoietic stem cell homing and migration molecules." Diss., 2017. http://hdl.handle.net/10754/626333.

Full text
Abstract:
Recent development of super-resolution (SR) fluorescence microscopy techniques has provided a new tool for direct visualization of subcellular structures and their dynamics in cells. The homing of Hematopoietic stem/progenitor cells (HSPCs) to bone marrow is a multistep process that is initiated by tethering of HSPCs to endothelium and mediated by spatiotemporally organised ligand-receptor interactions of selectins expressed on endothelial cells to their ligands expressed on HSPCs which occurs against the shear stress exerted by blood flow. Although molecules and biological processes involved in this multi-step cellular interaction have been studied extensively, molecular mechanisms of the homing, in particular the nanoscale spatiotemporal behaviour of ligand-receptor interactions and their role in the cellular interaction, remain elusive. Using our new method of microfluidics-based super-resolution fluorescence imaging platform we can now characterize the correlation between both nanoscale ligand-receptor interactions and tethering/rolling of cells under external shear stress. We found that cell rolling on E-selectin caused significant reorganization of the nanoscale clustering behavior of CD44 and CD43, from a patchy clusters of ~ 200 nm in size to an elongated network-like structures where for PSGL-1 the clustering size did not change significantly as it was 85 nm and after cell rolling the PSGL-1 aggregated to one side or even exhibited an increase in the footprint. Furthermore, I have established the use of 3D SR images that indicated that the patchy clusters of CD44 localize to protruding structures of the cell surface. On the other hand, a significant amount of the network-like elongated CD44 clusters observed after the rolling were located in the close proximity to the E-selectin surface. The effect of the nanoscale reorganization of the clusters on the HSPC rolling over selectins is still an open question at this stage. Nevertheless, my results further demonstrate that this mechanical force-induced reorganisation is accompanied by a large structural reorganisation of actin cytoskeleton. Our microfluidics-based SR imaging also demonstrate an essential role of the nanoscale clustering of CD44 on stable rolling behaviours of cells. Our new experimental platform enhances understanding of the relationship between nanoscopic ligand-receptor interactions and macroscopic cellular interactions, providing a foundation for characterizing complicated HSPC homing
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!