Academic literature on the topic 'Supercapacitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Supercapacitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Supercapacitors"
Nagarajarao, Sumedha Harike, Apurva Nandagudi, Ramarao Viswanatha, Basavanakote Mahadevappa Basavaraja, Mysore Sridhar Santosh, Beekanahalli Mokshanatha Praveen, and Anup Pandith. "Recent Developments in Supercapacitor Electrodes: A Mini Review." ChemEngineering 6, no. 1 (January 5, 2022): 5. http://dx.doi.org/10.3390/chemengineering6010005.
Full textSatpathy, Sambit, Neeraj Kumar Misra, Vishal Goyal, Sanchali Das, Vishnu Sharma, and Shabir Ali. "An AI-Based Newly Developed Analytical Formulation for Discharging Behavior of Supercapacitors with the Integration of a Review of Supercapacitor Challenges and Advancement Using Quantum Dots." Symmetry 15, no. 4 (April 1, 2023): 844. http://dx.doi.org/10.3390/sym15040844.
Full textZheng, Mei Na, Yan Song Li, and Jun Liu. "Thermal Analysis on Symmetric Rectangular Stackable Supercapacitors." Advanced Materials Research 1092-1093 (March 2015): 539–42. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.539.
Full textMartynyuk, Valeriy, Oleksander Eromenko, Juliy Boiko, and Tomasz Kałaczyński. "Diagnostics of supercapacitors." MATEC Web of Conferences 182 (2018): 01009. http://dx.doi.org/10.1051/matecconf/201818201009.
Full textPour, Ghobad Behzadi, Hassan Ashourifar, Leila Fekri Aval, and Shahram Solaymani. "CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers." Symmetry 15, no. 6 (June 1, 2023): 1179. http://dx.doi.org/10.3390/sym15061179.
Full textMa, Ning, Dongfang Yang, Saleem Riaz, Licheng Wang, and Kai Wang. "Aging Mechanism and Models of Supercapacitors: A Review." Technologies 11, no. 2 (March 3, 2023): 38. http://dx.doi.org/10.3390/technologies11020038.
Full textXia, Jingjie, Ronghao Wang, Chengfei Qian, Kaiwen Sun, He Liu, Cong Guo, Jingfa Li, Feng Yu, and Weizhai Bao. "Supercapacitors of Nanocrystalline Covalent Organic Frameworks—A Review." Crystals 12, no. 10 (September 24, 2022): 1350. http://dx.doi.org/10.3390/cryst12101350.
Full textRen, Jiahui, Wenli Lin, Xinbo Liu, Shuiyuan He, Zhonghao Dongye, and Lijun Diao. "Full Current-Type Control-Based Hybrid Energy Storage System." Energies 15, no. 8 (April 15, 2022): 2910. http://dx.doi.org/10.3390/en15082910.
Full textPampana, Venkatesh, Daniel Lavin, Markus Duchon, and Ankit Srivastava. "Supercap-Python: An Open-Source Python Based Super Capacitor Modelling Package." International Journal of Electronics and Electrical Engineering 9, no. 4 (December 2021): 93–99. http://dx.doi.org/10.18178/ijeee.9.4.93-99.
Full textAbdul Razak, Muhammad Nizam, Zulkarnain Ahmad Noorden, Farid Nasir Ani, Zulkurnain Abdul Malek, Jasrul Jamani Jamian, and Nouruddeen Bashir. "Electrochemical properties of kenaf-derived activated carbon electrodes under different activation time durations for supercapacitor application." Indonesian Journal of Electrical Engineering and Computer Science 19, no. 2 (August 1, 2020): 1105. http://dx.doi.org/10.11591/ijeecs.v19.i2.pp1105-1112.
Full textDissertations / Theses on the topic "Supercapacitors"
Andres, Britta. "Paper-based Supercapacitors." Licentiate thesis, Mittuniversitetet, Avdelningen för naturvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-22410.
Full textHick, Ralph. "Hierarchical graphene supercapacitors." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/hierarchical-graphene-supercapacitors(c3583283-c6a7-439f-9459-217c3ff2c44f).html.
Full textBlack, Victoria J. "High temperature supercapacitors." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12490.
Full textGIGOT, ARNAUD NICOLAS. "Graphene-based Supercapacitors." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2702186.
Full textBeidaghi, Majid. "Design, Fabrication, and Evaluation of On-chip Micro-supercapacitors." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/660.
Full textAvireddy, Hemesh. "Enhancing electrochemical performances of supercapacitors." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667599.
Full textLa tesis se centra en el desarrollo del conocimiento orientado y conducido a la mejora de las propiedades electroquímicas de los supercapacitores, ya que sufren bajos valores de densidad de energía. Este inconveniente limita a los supercapacitores en las aplicaciones donde son necesarios tanto alta potencia como densidad de energía. Entonces, en este escenario, se identificaron dos problemas principales importantes: (a) las limitaciones de rendimiento del supercapacitor debido a la condición de carga rápida, y (b) el bajo voltaje de celda de los pseudocapacitores en electrolitos acuosos en comparación con los electrolitos orgánicos. Para superar la limitación de rendimiento en el primer problema, se muestra una alternativa original a través del electrospinning para diseñar nanofibras de carbono porosas con incrustaciones de óxido metálico con una arquitectura de electrodo 3D que contribuyen a reducir la resistencia del electrodo y al mismo tiempo aumentan los valores asociados de capacidad. La investigación indica un papel esencial en la concentración del precursor de óxido metálico hacia el comportamiento electroquímico de los electrodos. Esta correlación podría ser útil para diseñar mejores electrodos para supercapacitadores, funcionando con mejores capacidades de densidad de energía y potencia. En lo que respecta al problema relacionado con los bajos voltajes celulares en el pseudocapacitor acuoso, en lugar de utilizar materiales basados en carbono más estándar, se toma una metodología en términos de exploración y mejora basada en las propiedades del material del electrodo. Así, se introducen nuevos materiales de la familia de MXenes, para lograr voltajes de celda más altos. Bajo este marco, se propone un nuevo MXene 2-D basado en carburo de vanadio y molibdeno y se han investigado sus características electroquímicas. De acuerdo con sus características, su acoplamiento con carburo de titanio 2-D MXene exhibe un voltaje más alto en una celda pseudocapacitiva todo en MXene. Además de esto, el problema del bajo voltaje de la celda también se resuelve aplicando otro enfoque basado en la modificación del electrólito. El enfoque propuesto se basa en el uso de soluciones salinas superconcentradas a base de agua que son electrolitos prometedores en la ampliación del voltaje celular de los pseudocapacitores acuosos. Del mismo modo, también se propone que el acoplamiento del carburo de titanio 2-D MXene con las estructuras del túnel de óxido de manganeso utilizando este electrolito súper concentrado o agua en sal permite lograr una celda de pseudocapacitador acuoso de alto voltaje. En conjunto, la estrategia presentada a través de esta tesis en términos de preparación de electrodos, selección de materiales, ensamblaje celular y su evaluación de las propiedades electroquímicas es una herramienta para diseñar supercapacitores con mejores capacidades de energía y potencia.
Zhou, Chongfu. "Carbon Nanotube Based Electrochemical Supercapacitors." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19747.
Full textWade, Timothy Lawrence. "High power carbon based supercapacitors /." Connect to thesis, 2006. http://repository.unimelb.edu.au/10187/439.
Full textChae, Jung Hoon. "Supercapacitors with neutral aqueous electrolytes." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/30936/.
Full textWang, Chaojun. "Graphene composites for fiber supercapacitors." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22363.
Full textBooks on the topic "Supercapacitors"
Béguin, François, and Elżbieta Frąckowiak, eds. Supercapacitors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.
Full textConway, B. E. Electrochemical Supercapacitors. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3058-6.
Full textZhang, Lei, David P. Wilkinson, Zhongwei Chen, and Jiujun Zhang, eds. Lithium-Ion Supercapacitors. First edition. | Boca Raton : CRC Press/Taylor & Francis, [2018] |: CRC Press, 2018. http://dx.doi.org/10.1201/9780429492006.
Full textYee Liew, Soon, Wim Thielemans, Stefan Freunberger, and Stefan Spirk. Polysaccharide Based Supercapacitors. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50754-5.
Full textThomas, Sabu, Amadou Belal Gueye, and Ram K. Gupta, eds. Nanostructured Materials for Supercapacitors. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3.
Full textGeorge, Soney C., Sam John, and Sreelakshmi Rajeevan. Polymer Nanocomposites in Supercapacitors. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003174646.
Full textXiong, Guoping, Arpan Kundu, and Timothy S. Fisher. Thermal Effects in Supercapacitors. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20242-6.
Full textParavannoor, Anjali, and Baiju K.V. Supercapacitors and Their Applications. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003258384.
Full textJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. Bismuth-Ferrite-Based Electrochemical Supercapacitors. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9.
Full textBuydos, John F. Batteries, supercapacitors, and fuel cells. Washington, D.C: Science Reference Section, Science, Technology, and Business Division, Library of Congress, 2007.
Find full textBook chapters on the topic "Supercapacitors"
Donne, Scott W. "General Principles of Electrochemistry." In Supercapacitors, 1–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch1.
Full textAzaïs, Philippe. "Manufacturing of Industrial Supercapacitors." In Supercapacitors, 307–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch10.
Full textGualous, Hamid, and Roland Gallay. "Supercapacitor Module Sizing and Heat Management under Electric, Thermal, and Aging Constraints." In Supercapacitors, 373–436. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch11.
Full textBurke, Andrew. "Testing of Electrochemical Capacitors." In Supercapacitors, 437–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch12.
Full textMiller, John R. "Reliability of Electrochemical Capacitors." In Supercapacitors, 473–507. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch13.
Full textMiller, John R. "Market and Applications of Electrochemical Capacitors." In Supercapacitors, 509–26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch14.
Full textPandolfo, Tony, Vanessa Ruiz, Seepalakottai Sivakkumar, and Jawahr Nerkar. "General Properties of Electrochemical Capacitors." In Supercapacitors, 69–109. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch2.
Full textTaberna, Pierre-Louis, and Patrice Simon. "Electrochemical Techniques." In Supercapacitors, 111–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch3.
Full textSimon, Patrice, Pierre-Louis Taberna, and François Béguin. "Electrical Double-Layer Capacitors and Carbons for EDLCs." In Supercapacitors, 131–65. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch4.
Full textHuang, Jingsong, Rui Qiao, Guang Feng, Bobby G. Sumpter, and Vincent Meunier. "Modern Theories of Carbon-Based Electrochemical Capacitors." In Supercapacitors, 167–206. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch5.
Full textConference papers on the topic "Supercapacitors"
Xu, Xinqiang, Bahgat G. Sammakia, DaeYoung Jung, and Thor Eilertsen. "Multiphysics Approach to Modeling Supercapacitors for Improving Performance." In ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52081.
Full textWong, Ching-Ping. "Rational Synthesis of Nanostructured Electrode Materials for High-Performance Supercapacitors." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2833.
Full textGeier, Sebastian, Jan Petersen, and Peter Wierach. "Structure Integrated Supercapacitors for Space Applications." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5687.
Full textZou, Zhongyue, Junyi Cao, Chengbin Ma, and Huarong Zhang. "A Measurement System for Electric Vehicle Powered by Supercapacitors." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47138.
Full textPetersen, Jan, Sebastian Geier, and Peter Wierach. "Integrated Thin Film Supercapacitor as Multifunctional Sensor System." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-68171.
Full textXu, Xinqiang, Bahgat G. Sammakia, Bruce T. Murray, DaeYoung Jung, and Thor Eilertsen. "Thermal Modeling and Heat Management of Supercapacitor Modules by High Velocity Impinging Fan Flow." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65676.
Full textDelrue, Andre A. G., Peter van der Veen, and Jens Ekelaar. "The Application of Supercapacitors Based Energy Storage Systems on Heave Compensation Systems for Offshore Lifting Equipment." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49688.
Full textGeier, Sebastian, Jan Petersen, Marius Eilenberger, and Peter Wierach. "Robust and Powerful Structural Integrated Thin Film Supercapacitors for Lightweight Space Structures." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-68349.
Full textGeier, Sebastian, Jan Petersen, and Peter Wierach. "Challenges of Upscaling Power Composites for Aerospace Applications." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-91201.
Full textMehta, Siddhi, Swarn Jha, Weston Stewart, and Hong Liang. "Microwave Synthesis of Plant-Based Supercapacitor Electrodes for Flexible Electronics." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70062.
Full textReports on the topic "Supercapacitors"
Reynolds, John R., and Anna M. Osterholm. Optimized Electroactive Polymer Supercapacitors. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada614206.
Full textMacDonald, Digby D., and Subhash C. Narang. Development of Electro Supercapacitors. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada252208.
Full textAnton, Christopher M., and Matthew H. Ervin. Carbon Nanotube Based Flexible Supercapacitors. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada543112.
Full textLin, Terri C. Poly(amido amine) Dendrimers in Supercapacitors. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1091321.
Full textEdwards, Stephanie L. The Use of Dendrimers in Supercapacitors. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1068956.
Full textProkopuk, Nicholas. All Organic Supercapacitors as Alternatives to Lithium Batteries. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada603487.
Full textProkopuk, Nicholas. All-Organic Supercapacitors as Alternatives to Lithium Batteries. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada480553.
Full textProkopuk, Nicholas. High-Voltage Polymers for High-Power Supercapacitors. Version 1. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada480216.
Full textErvin, Matthew H. Carbon Nanotube and Graphene-Based Supercapacitors: Rationale, Status, and Prospects. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada528738.
Full textRitter, James A. Supercapacitors and Batteries from Sol-Gel Derived Carbon - Metal Oxide Electrodes. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada392659.
Full text