Academic literature on the topic 'Superconducting cable'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Superconducting cable.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Superconducting cable"
Lee, Seok-Ju, Hae-Jin Sung, Minwon Park, DuYean Won, Jaeun Yoo, and Hyung Suk Yang. "Analysis of the Temperature Characteristics of Three-Phase Coaxial Superconducting Power Cable according to a Liquid Nitrogen Circulation Method for Real-Grid Application in Korea." Energies 12, no. 9 (May 8, 2019): 1740. http://dx.doi.org/10.3390/en12091740.
Full textSOSNOWSKI, Jacek. "SUPERCONDUCTING CABLES – ANALYSIS OF THEIR OPERATION AND APPLICATIONS IN ELECTRIC GRIDS." Proceedings of Electrotechnical Institute 63 (December 15, 2016): 89–96. http://dx.doi.org/10.5604/01.3001.0009.4425.
Full textLee, Seok-Ju, Seong Yeol Kang, Minwon Park, DuYean Won, Jaeun Yoo, and Hyung Suk Yang. "Performance Analysis of Real-Scale 23 kV/60 MVA Class Tri-Axial HTS Power Cable for Real-Grid Application in Korea." Energies 13, no. 8 (April 20, 2020): 2053. http://dx.doi.org/10.3390/en13082053.
Full textOHYA, Masayoshi, and Masashi YAGI. "Superconducting Power Cable." Journal of The Institute of Electrical Engineers of Japan 134, no. 8 (2014): 549–52. http://dx.doi.org/10.1541/ieejjournal.134.549.
Full textWANG, WENMING. "PREPARATION OF SICP/6066AL COMPOSITE AS SHEATH OF HIGH-TC SUPERCONDUCTING CABLE FOR TRANSMITTING ELECTRICITY." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 655–57. http://dx.doi.org/10.1142/s0217979205029250.
Full textHerbelot, O., M. M. Steeves, and M. O. Hoenig. "Superconducting cable joint resistance." IEEE Transactions on Magnetics 27, no. 2 (March 1991): 1850–53. http://dx.doi.org/10.1109/20.133556.
Full textZarubin, V. S., G. N. Kuvyrkin, and I. Yu Savelyeva. "Temperature State of the Electrical Insulation Layer of a Superconducting DC Cable with Double-Sided Cooling." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (97) (August 2021): 71–85. http://dx.doi.org/10.18698/1812-3368-2021-4-71-85.
Full textIluk, Artur. "Investigation of Mechanical Strains in Thermal Compensation Loop of Superconducting NbTi Cable during Bending and Cyclic Operation." Materials 14, no. 5 (February 26, 2021): 1097. http://dx.doi.org/10.3390/ma14051097.
Full textMukoyama, S., M. Yagi, N. Kashima, Yutaka Yamada, and Yuh Shiohara. "Development of an HTS Power Cable Based on YBCO Tapes." Advances in Science and Technology 47 (October 2006): 220–27. http://dx.doi.org/10.4028/www.scientific.net/ast.47.220.
Full textRoy, Sree Shankhachur, Prasad Potluri, Simon Canfer, and George Ellwood. "Braiding ultrathin layer for insulation of superconducting Rutherford cables." Journal of Industrial Textiles 48, no. 5 (July 26, 2016): 827–47. http://dx.doi.org/10.1177/1528083716661204.
Full textDissertations / Theses on the topic "Superconducting cable"
Hathaway, Graham Michael. "High temperature superconducting power cable termination." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301206.
Full textZhang, Zhenyu. "Electrical characterizing of superconducting power cable consisted of second-generation high-temperature superconducting tapes." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707575.
Full textLao, Man I. "Simulation on I-V feature of protection system for superconducting cable." Thesis, University of Macau, 2008. http://umaclib3.umac.mo/record=b1795645.
Full textShajii, A. (Ali). "Theory and modelling of quench in cable-in-conduit superconducting magnets." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11987.
Full textOkubo, Hitoshi, Masahiro Hanai, Naoki Hayakawa, Fumihiko Kato, and Hiroki Kojima. "Superconducting Fault Current Limiting Cable (SFCLC) with Current Limitation and Recovery Function." Elsevier, 2012. http://hdl.handle.net/2237/20732.
Full textRenard, Bertrand. "Thermo-Hydraulic behaviour of dual-channel superconducting Cable-In-Conduit Conductors for ITEER." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11030.
Full textIn an effort to optimise the cryogenics of large superconducting coils for fusion applications (ITER), dual channel Cable-In-Conduit Conductors (CICC) are designed with a central channel spiral to provide low hydraulic resistance and faster helium circulation. The qualitative and economic rationale of the conductor central channel is here justified to limit the superconductor temperature increase, but brings more complexity to the conductor cooling characteristics. The pressure drop of spirals is experimentally evaluated in nitrogen and water and an explicit hydraulic friction model is proposed. Temperatures in the cable must be quantified to guarantee superconductor margin during coil operation under heat disturbance and set adequate inlet temperature. Analytical one-dimensional thermal models, in steady state and in transient, allow to better understand the thermal coupling of CICC central and annular channels. The measurement of a heat transfer characteristic space and time constants provides cross-checking experimental estimations of the internal thermal homogenisation. A simple explicit model of global interchannel heat exchange coefficient is proposed. The risk of thermosiphon between the two channels is considered since vertical portions of fusion coils are subject to gravity. The new hydraulic model, heat exchange model and gravitational risk ratio allow the thermohydraulic improvement of CICC central spirals
Um die Kryogen-Benutzung und -Kontrolle der Supraleitenden Großmagneten für die Kernfusion (ITER) zu optimieren, wurde der Zweikanalrohrsupraleiterkabel (CICC) mit einer zentralen Spirale entworfen. Der Zentralkanal soll einen minimalen hydraulischen Widerstand und einen schnellen Heliumverkehr gewährleisten, führt jedoch zu einer schwierigeren Abkühlung des Kabels. Das qualitative und ökonomische Grundprinzip der Leiterspirale wird hier durch die Begrenzung der Supraleitertemperatur gerechtfertigt. Der Druckabfall der zentralen Spirale wird experimentell am Stickstoff und danach am Druckwasser ausgewertet und daraus ein hydraulisches Modell vorgeschlagen. Die Temperaturen im Kabel müssen quantitativ bekannt sein, um Hitzestörungen des Supraleiters während des Betriebes der Spule zu verhindern, sowie um ausreichende Spielräume mit entsprechend niedriger Eintrittstemperatur einzustellen. Es wurde analytische eindimensionale Modelle entwickelt, um die thermische Kopplung zwischen den Kanälen des CICC im Dauer- und Übergangszustand besser zu verstehen. Die Messung der Raum- und Zeit-Konstanten liefert eine Versuchsbewertung der internen thermischen Homogenisierung. Es wird ein einfaches und ausdrückliches Modell des globalen Zwischenkanal-Wärmeaustauschkoeffizienten vorgeschlagen. Das bestehende Thermosiphonrisiko zwischen den zwei Kanälen bei vertikale Fusionsspulen verweist auf ein Kriterium. Das neue hydraulische Modell, das Wärmeaustauschmodell und das Kriterium des Thermosiphonrisikos erlauben schließlich die thermohydraulische Optimierung der Kabel-Zentralspirale
Talami, Matteo. "Modeling of the Toroidal Field Insert coil for the ITER Project." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/12916/.
Full textShimizu, H., T. Shiroki, Y. Yokomizu, and T. Matsumura. "Dependence of quench current level of superconducting wire and cable on the winding tension." IEEE, 1999. http://hdl.handle.net/2237/6792.
Full textNelson, Richard J. (Richard Joseph). "Optimization of transverse resistivity for increased stability in ramped cable-in-conduit superconducting magnets." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36010.
Full textOkubo, Hitoshi, Masahiro Hanai, Naoki Hayakawa, Fumihiko Kato, and Hiroki Kojima. "Feasibility Study on a High-Temperature Superconducting Fault-Current-Limiting Cable (SFCLC) Using Flux-Flow Resistance." IEEE, 2012. http://hdl.handle.net/2237/20734.
Full textBooks on the topic "Superconducting cable"
Forbes, Donn. The U.S. market for high-temperature superconducting wire in transmission cable applications. Golden, CO: National Renewable Energy Laboratory, 1996.
Find full textBook chapters on the topic "Superconducting cable"
Wipf, Stefan L. "Superconducting Cable for HERA." In Supercollider 2, 557–79. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3728-1_52.
Full textKreilick, T. S., E. Gregory, D. Christopherson, G. P. Swenson, and J. Wong. "Superconducting Wire and Cable for the Superconducting Supercollider." In Supercollider 1, 235–42. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0841-6_22.
Full textKuchnir, M. "Electrical Resistance of Superconducting Cable Splices." In Advances in Cryogenic Engineering Materials, 1069–75. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9056-6_140.
Full textMasuda, Takato, Michihiko Watanabe, Chizuru Suzawa, Masayuki Hirose, Shigeki Isojima, Shoichi Honjo, Tomoo Mimura, and Yoshihisa Takahashi. "Development of a High Tc Superconducting Cable." In Advances in Superconductivity XII, 830–32. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66877-0_245.
Full textBardos, V. A., E. S. Coleman, M. J. Erdmann, B. A. Jones, K. S. Kozman, D. J. Little, and J. M. Seuntjens. "Databases for Analysis of Superconducting Cable Manufacturing." In Supercollider 5, 579–82. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2439-7_135.
Full textArai, Kazuaki, Naotake Natori, Noboru Higuchi, and Tsutomu Hoshino. "AC Loss Characteristics of Superconducting Power Transmission Cable." In 11th International Conference on Magnet Technology (MT-11), 485–90. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0769-0_83.
Full textKume, Atsushi, Shigeo Nagaya, Takenori Nakajima, Naohiro Futaki, Nobuyuki Sadakata, Yoshiaki Nakao, Takashi Saitoh, and Osamu Kohno. "Design of the High-Tc Superconducting Model Cable." In Advances in Superconductivity X, 1267–70. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66879-4_299.
Full textBein, D. A., J. Zbasnik, S. Graham, and R. Scanlan. "Eddy Current Inspection of Superconducting Cable During Manufacturing." In Supercollider 4, 677–84. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3454-9_83.
Full textAoki, Yuji, Nozomu Ohtani, Takayo Hasegawa, L. Motowidlo, R. S. Sokolowski, R. M. Scanlan, and Shigeo Nagaya. "A High-Tc Superconducting Rutherford Cable Using Bi-2212 Oxide Superconducting Round Wire." In Advances in Superconductivity XII, 827–29. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66877-0_244.
Full textRazevig, D. V., Y. L. Blinkov, and Y. S. Goldenberg. "Research on a Laboratory Model of Superconducting Test Cable." In Advances in Cryogenic Engineering, 92–100. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-9847-9_11.
Full textConference papers on the topic "Superconducting cable"
Adachi, Kazuhisa, Hideo Sugane, Kei Siohara, Hiroki Onishi, Tatsuhisa Nakanishi, Tasuku Kitamura, Nobuhiro Mido, et al. "Development of superconducting triaxial cable." In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2018. http://dx.doi.org/10.1109/icpadm.2018.8401191.
Full textXin, Y., H. Hui, W. Z. Gong, F. Ye, J. Z. Wang, B. Tian, A. L. Ren, and M. R. Zi. "Superconducting cable and superconducting fault current limiter at Puji Substation." In 2009 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2009. http://dx.doi.org/10.1109/asemd.2009.5306612.
Full textBarzi, E., N. Andreev, J. Brandt, C. Carmignani, M. Danuso, V. V. Kashikhin, V. S. Kashikhin, et al. "SUPERCONDUCTING TRANSFORMER FOR SUPERCONDUCTING CABLE TESTS IN A MAGNETIC FIELD." In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422384.
Full textHathaway, G. M. "Dielectric considerations for a superconducting cable termination." In 11th International Symposium on High-Voltage Engineering (ISH 99). IEE, 1999. http://dx.doi.org/10.1049/cp:19990798.
Full textZhang, Rong-bao, Jian-wen Zhang, and Xiao-dong Zhang. "Simulation research on high temperature superconducting power cable." In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6057027.
Full textHilty, Robert D., and Roger N. Wright. "Mechanical damage assessment in prototype superconducting cable components." In Superconductivity and its applications. AIP, 1991. http://dx.doi.org/10.1063/1.40222.
Full textHole, Stephane, Christian-Eric Bruzek, and Nicolas Lallouet. "Liquid Nitrogen Impregnated Paper for Highpower Superconducting Cable Insulation." In 2018 IEEE 2nd International Conference on Dielectrics (ICD). IEEE, 2018. http://dx.doi.org/10.1109/icd.2018.8468365.
Full textHole, Stephane, Christian-Eric Bruzek, and Nicolas Lallouet. "Liquid Nitrogen Impregnated Paper for Highpower Superconducting Cable Insulation." In 2018 IEEE 2nd International Conference on Dielectrics (ICD). IEEE, 2018. http://dx.doi.org/10.1109/icd.2018.8514637.
Full textPi, Wei, and Quan Yang. "Insulation Characteristics of Cold Dielectric High Temperature Superconducting Cable." In 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2018. http://dx.doi.org/10.1109/asemd.2018.8558948.
Full textWei, Bengang, Liming Wang, Honglei Li, and Cien Xiao. "AC Loss Analysis of 35kV High Temperature Superconducting Cable." In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. http://dx.doi.org/10.1109/ichve49031.2020.9279923.
Full textReports on the topic "Superconducting cable"
Farrell, Roger, A. High Temperature Superconducting Underground Cable. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/975691.
Full textHawsey, R., J. P. Stovall, R. L. Hughey, and U. K. Sinha. Development of superconducting transmission cable. CRADA final report. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/639729.
Full textSinha, Uday, and David Lindsay. Southwire's High Temperature Superconducting Cable Development - Summary Report. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/862429.
Full textLay, Kenneth W. Development of Elements of a High Tc Superconducting Cable. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada208370.
Full textCarson, J. A., E. Barczak, R. Bossert, E. Fisk, P. Mantsch, R. Riley, E. E. Schmidt, and E. E. Jr Schmidt. A device for precision dimensional measurement of superconducting cable. Office of Scientific and Technical Information (OSTI), May 1986. http://dx.doi.org/10.2172/6900129.
Full textLay, Kenneth W. Development of Elements of a High Tc Superconducting Cable. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada242479.
Full textLay, Kenneth W. Development of Elements of a High Tc Superconducting Cable. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada239766.
Full textNg, King-Yuen. Minimum propagating zone of the SSC superconducting dipole cable. Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/6732540.
Full textKelley, Nathan, and Pietro Corsaro. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/878239.
Full textShajii, Ali. Theory and modelling of quench in cable-in-conduit superconducting magnets. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10190593.
Full text