Academic literature on the topic 'Superconducting electronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Superconducting electronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Superconducting electronics"
ITOZAKI, Hideo, Shuichi TAHARA, Takashi NOGUCHI, Hisao HAYAKAWA, Youichi MATSUBARA, and Noriharu TAMADA. "Superconducting Electronics. Talking about Superconducting Electronics." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 31, no. 11 (1996): 606–20. http://dx.doi.org/10.2221/jcsj.31.606.
Full textRogalla, Horst. "Superconducting electronics." Cryogenics 34 (January 1994): 25–30. http://dx.doi.org/10.1016/s0011-2275(05)80006-2.
Full textCHONG, Yonuk, Yong Ho LEE, and Yong Hamb KIM. "Superconducting Electronics." Physics and High Technology 20, no. 9 (September 30, 2011): 15. http://dx.doi.org/10.3938/phit.20.036.
Full textKoch, H. "Superconducting Electronics." Cryogenics 30, no. 8 (August 1990): 738. http://dx.doi.org/10.1016/0011-2275(90)90244-7.
Full textHinken, J. H., V. Kose, Harold Weinstock, Martin Nisenoff, and Robert L. Fagaly. "Superconductor Electronics: Fundamentals and Microwave Applications; Superconducting Quantum Electronics; Superconducting Electronics." Physics Today 44, no. 2 (February 1991): 92–94. http://dx.doi.org/10.1063/1.2809995.
Full textHayakawa, H., N. Yoshikawa, S. Yorozu, and A. Fujimaki. "Superconducting digital electronics." Proceedings of the IEEE 92, no. 10 (October 2004): 1549–63. http://dx.doi.org/10.1109/jproc.2004.833658.
Full textTahara, S., S. Yorozu, Y. Kameda, Y. Hashimoto, H. Numata, T. Satoh, W. Hattori, and M. Hidaka. "Superconducting digital electronics." IEEE Transactions on Appiled Superconductivity 11, no. 1 (March 2001): 463–68. http://dx.doi.org/10.1109/77.919383.
Full textRichards, Paul L. "Analog Superconducting Electronics." Physics Today 39, no. 3 (March 1986): 54–62. http://dx.doi.org/10.1063/1.881056.
Full textPegrum, Colin. "Modelling high- Tc electronics." Superconductor Science and Technology 36, no. 5 (March 9, 2023): 053001. http://dx.doi.org/10.1088/1361-6668/acbb35.
Full textGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li, et al. "Low-latency readout electronics for dynamic superconducting quantum computing." AIP Advances 12, no. 4 (April 1, 2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Full textDissertations / Theses on the topic "Superconducting electronics"
Toomey, Emily. "Superconducting nanowire electronics for alternative computing." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127003.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 141-153).
With traditional computing systems struggling to meet the demands of modern technology, new approaches to both hardware and architecture are becoming increasingly critical. In this work, I develop the foundation of a power-efficient alternative computing system using superconducting nanowires. Although traditionally operated as single photon detectors, superconducting nanowires host a suite of attractive characteristics that have recently inspired their use in digital circuit applications for amplification, addressing, and memory. Here, I take advantage of the electrothermal feedback that occurs in resistively shunted nanowires to develop two new technologies: (1) A multilevel memory cell made by incorporating a shunted nanowire into a superconducting loop, allowing flux to be controllably added and stored; and (2) An artificial neuron for use in spiking neural networks, consisting of two nanowire-based relaxation oscillators acting analogously to the two ion channels in a biological neuron. By harnessing the intrinsic dynamics of superconducting nanowires, these devices offer competitive energy performance and a step towards bringing memory and processing closer together on the same platform.
by Emily Toomey.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Wang, Yi. "Superconducting coplanar delay lines." Thesis, University of Birmingham, 2005. http://etheses.bham.ac.uk//id/eprint/7/.
Full textBanerjee, Archan. "Optimisation of superconducting thin film growth for next generation superconducting detector applications." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8573/.
Full textWalliman, Dominic Christoph. "Fabrication and measurement of superconducting nanowires." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1162/.
Full textThiede, David Anthony 1965. "Optical response in high temperature superconducting thin films." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/278027.
Full textBaker, Luke James. "Superconducting nanowire devices for optical quantum information processing." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/8440/.
Full textLukasik, Bartosz. "Design and optimisation of a coreless superconducting synchronous generator." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/158457/.
Full textKirkwood, Robert A. "Superconducting single photon detectors for quantum information processing." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8136/.
Full textDonehoo, Brandon. "A superconducting investigation of nanoscale mechanics in niobium quantum point contacts." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24784.
Full textCommittee Chair: Alexei Marchenkov; Committee Member: Bruno Frazier; Committee Member: Dragomir Davidovic; Committee Member: Markus Kindermann; Committee Member: Phillip First
Barnes, Matthew A. "Integrating High Temperature Superconducting Yttrium Barium Copper Oxide with Silicon-on-Sapphire Electronics." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337717493.
Full textBooks on the topic "Superconducting electronics"
Weinstock, Harold, and Martin Nisenoff, eds. Superconducting Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9.
Full text1934-, Weinstock Harold, Nisenoff Martin 1928-, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Superconducting electronics. Berlin: Springer-Verlag, 1989.
Find full textKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textKose, Volkmar, ed. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Full textVolkmar, Kose, and Albrecht M, eds. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Find full textWeinstock, Harold, and Richard W. Ralston, eds. The New Superconducting Electronics. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1918-4.
Full textWeinstock, Harold. The New Superconducting Electronics. Dordrecht: Springer Netherlands, 1993.
Find full textHarold, Weinstock, Ralston Richard W, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on the New Superconducting Electronics (1992 : Waterville Valley, N.H.), eds. The New superconducting electronics. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textPekola, Jukka, Berardo Ruggiero, and Paolo Silvestrini, eds. International Workshop on Superconducting Nano-Electronics Devices. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6.
Full textGallop, J. C. SQUIDS, the Josephson effects and superconducting electronics. Bristol, England: Adam Hilger, 1991.
Find full textBook chapters on the topic "Superconducting electronics"
Clem, John R. "Superconductivity Theory." In Superconducting Electronics, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_1.
Full textGundlach, K. H. "Principles of Direct and Heterodyne Detection with SIS Junctions." In Superconducting Electronics, 259–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_10.
Full textVan Duzer, T. "Signal Processing." In Superconducting Electronics, 285–330. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_11.
Full textHayakawa, Hisao. "Josephson LSI Technology and Circuits." In Superconducting Electronics, 331–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_12.
Full textKlapwijk, T. M., D. R. Heslinga, and W. M. van Huffelen. "Superconducting Field-Effect Devices." In Superconducting Electronics, 385–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_13.
Full textHeiden, C. "Cryogenics for Superconducting Electronics." In Superconducting Electronics, 409–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_14.
Full textBarone, Antonio. "Introduction to the Phenomenology of Tunneling in High-Temperature Superconductors." In Superconducting Electronics, 431–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_15.
Full textVan Haesendonck, C., and Y. Bruynseraede. "Quantum Interference in Normal Metals." In Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Full textBruynseraede, Y., C. Vlekken, and C. Van Haesendonck. "Giaever and Josephson Tunneling." In Superconducting Electronics, 35–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_3.
Full textDonaldson, G. B. "Fabrication of Tunnel Junction Structures." In Superconducting Electronics, 57–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_4.
Full textConference papers on the topic "Superconducting electronics"
Russer, Peter, and Johannes A. Russer. "Josephson Effect based Superconducting Electronics." In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2020. http://dx.doi.org/10.23919/ursigass49373.2020.9231988.
Full textSiercke, M., K. S. Chan, B. Zhang, M. J. Lim, and R. Dumke. "Superconducting Atom Chips." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i414.
Full textSorenson, Andrew M., Tony X. Zhou, and Karl K. Berggren. "The Effects of Radiation on Superconducting Nanowire Electronics." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth3a.21.
Full textJenkins, Mark W., Paiboon Tangyunyong, Nancy A. Missert, Alejandro A. Pimentel, Igor Vernik, Alex Kirichhenko, Oleg Mukhanov, et al. "Ambient Temperature Thermally Induced Voltage Alteration for Identification of Defects in Superconducting Electronics." In ISTFA 2018. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.istfa2018p0148.
Full textBerggren, Karl K., Lucy Archer, Francesco Bellei, Niccolo Calandri, Andrew E. Dane, Adam N. McCaughan, Emily A. Toomey, Qingyuan Zhao, and Di Zhu. "Superconducting Nanowire Single-Photon Detectors and Nanowire-Based Superconducting On-Chip Electronics." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_qels.2016.fw1c.1.
Full textWelker, N. K. "Digital Superconducting Electronics: Where Does It Fit?" In Electro International, 1991. IEEE, 1991. http://dx.doi.org/10.1109/electr.1991.718273.
Full textMichal, Vratislav, Emanuele Baggetta, Mario Aurino, Sophie Bouat, and Jean-Claude Villegier. "Superconducting RSFQ logic: Towards 100GHz digital electronics." In 2011 21st International Conference Radioelektronika (RADIOELEKTRONIKA 2011). IEEE, 2011. http://dx.doi.org/10.1109/radioelek.2011.5936486.
Full textSobolewski, Roman, Aleksandr Verevkin, and Gregory N. Gol'tsman. "Superconducting optical single-photon detectors." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithd1.
Full textSingh, Ranjan, Zhen Tian, Jianqiang Gu, Judy Wu, Jingwen W. Zhang, and Weili Zhang. "Terahertz superconducting plasmonics and metamaterials." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/qels.2011.qthk4.
Full textSavinov, Vassili, Anagnostis Tsiatmas, Anthony R. Buckingham, Vassili A. Fedotov, Peter A. de Groot, and Nikolay I. Zheludev. "Flux Exclusion Quantum Superconducting Metamaterial." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qm3f.7.
Full textReports on the topic "Superconducting electronics"
Bocko, Mark F., and Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada344625.
Full textBeasley, M. R., and M. Horowitz. Superconducting/Semiconducting Hybrids and Advance Memory Concepts for Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada277766.
Full textBeasley, M. R., and M. Horowitz. Superconducting/Semiconducting Hybrids and Advance Memory Concepts for Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada304374.
Full textChristiansen, P. L., R. D. Paramentier, and O. Skovgaard. Coherence and Chaos Phenomena in Josephson Oscillators for Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada205469.
Full textWarburton, William K. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/948826.
Full textLi, Qiang, and Michael Furey. Development of ultra-high field superconducting magnetic energy storage (SMES) for use in the ARPA-E project titled “Superconducting Magnet Energy Storage System with Direct Power Electronics Interface”. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1209920.
Full textBeasley, M. R. Superconductivity and Superconductive Electronics. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada230409.
Full textNordman, James E. Superconductive Electronic Devices Using Flux Quanta. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada310962.
Full textWu, X. D., A. Finokoglu, M. Hawley, Q. Jia, T. Mitchell, F. Mueller, D. Reagor, and J. Tesmer. High-temperature superconducting thin-film-based electronic devices. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/378956.
Full textBeasley, M. R. Stanford Center for Research on Superconductivity and Superconductive Electronics. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada250204.
Full text