Journal articles on the topic 'Superconductor Quantum Interference Device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superconductor Quantum Interference Device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hammad, Fayçal, and Alexandre Landry. "A simple superconductor quantum interference device for testing gravity." Modern Physics Letters A 35, no. 20 (2020): 2050171. http://dx.doi.org/10.1142/s0217732320501710.
Full textBagani, Kousik. "Scanning SQUID-on-tip Magnetic and Thermal Microscopy." Science Dialectica 01, no. 1 (2021): 1–3. http://dx.doi.org/10.54162/sd01-25201/01.
Full textLin, Jianxin, Benedikt Müller, Julian Linek, et al. "YBa2Cu3O7 nano superconducting quantum interference devices on MgO bicrystal substrates." Nanoscale 12, no. 9 (2020): 5658–68. http://dx.doi.org/10.1039/c9nr10506a.
Full textTakagi, Ryuki, Mohd Mawardi Saari, Kenji Sakai, Toshihiko Kiwa, and Keiji Tsukada. "Compact AC/DC Susceptometer using a High-temperature Superconductor Superconducting Quantum Interference Device." IEEJ Transactions on Fundamentals and Materials 134, no. 6 (2014): 369–74. http://dx.doi.org/10.1541/ieejfms.134.369.
Full textVeauvy, C., K. Hasselbach та D. Mailly. "Scanning μ-superconduction quantum interference device force microscope". Review of Scientific Instruments 73, № 11 (2002): 3825–30. http://dx.doi.org/10.1063/1.1515384.
Full textZhou, Ji Ping, John T. McDevitt, and Q. X. Jia. "Improved N-layer materials for high-Tc superconductor/normal-metal/superconductor junctions and superconducting quantum interference device sensors." Applied Physics Letters 72, no. 7 (1998): 848–50. http://dx.doi.org/10.1063/1.120913.
Full textHe, D. F., M. Yoshizawa, and M. Nakamura. "Mobile high-temperature superconductor dc superconducting quantum interference device cooled by a pulse-tube cooler." Review of Scientific Instruments 76, no. 7 (2005): 074704. http://dx.doi.org/10.1063/1.1946927.
Full textLi, Mary J., S. Aslam, T. C. Chen, et al. "Interfacial And Surface Study Of Mo-Au And Al-Ag Bilayers For Si-Based Photodetectors." Microscopy and Microanalysis 5, S2 (1999): 164–65. http://dx.doi.org/10.1017/s1431927600014148.
Full textTakeda, Keiji, Hatsumi Mori, Akira Yamaguchi, et al. "High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet." Review of Scientific Instruments 79, no. 3 (2008): 033909. http://dx.doi.org/10.1063/1.2894332.
Full textLee, Soon-Gul, Yunseok Hwang, Byung-Chang Nam, Jin-Tae Kim, and In-Seon Kim. "Direct-coupled second-order superconducting quantum interference device gradiometer from single layer of high temperature superconductor." Applied Physics Letters 73, no. 16 (1998): 2345–47. http://dx.doi.org/10.1063/1.122456.
Full textTakeda, Keiji, Hatsumi Mori, Akira Yamaguchi, et al. "Fabrication of a high temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetic hysteresis measurements." Journal of Applied Physics 103, no. 7 (2008): 07E911. http://dx.doi.org/10.1063/1.2835477.
Full textJia, Q. X., D. Reagor, C. Mombourquette, Y. Fan, J. Decker, and P. D’Alessandris. "Stability of dc superconducting quantum interference devices fabricated using ramp-edge superconductor/normal-metal/superconductor technology." Applied Physics Letters 71, no. 12 (1997): 1721–23. http://dx.doi.org/10.1063/1.120015.
Full textMerkle, K. L., and Y. Huang. "Microstructure of Josephson Junctions: Effect on Supercurrent Transport in YBCO Grain Boundary and Barrier Layer Junctions." Microscopy and Microanalysis 4, S2 (1998): 792–93. http://dx.doi.org/10.1017/s1431927600024089.
Full textWolter, Silke, Julian Linek, Josepha Altmann, et al. "Fabrication Process for Deep Submicron SQUID Circuits with Three Independent Niobium Layers." Micromachines 12, no. 4 (2021): 350. http://dx.doi.org/10.3390/mi12040350.
Full textKandori, Akihiko, Kuniomi Ogata, Ryuzo Kawabata, Sayaka Tanimoto, and Yusuke Seki. "Note: Low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles." Review of Scientific Instruments 83, no. 7 (2012): 076108. http://dx.doi.org/10.1063/1.4739311.
Full textHwang, Seong-min, Kiwoong Kim, Kwon Kyu Yu, et al. "Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic resonance." Applied Physics Letters 104, no. 6 (2014): 062602. http://dx.doi.org/10.1063/1.4865497.
Full textAstuti, Fahmi, Malik Anjelh Baqiya та Darminto. "Effect of Pb Substitution on Superconducting and Normal State Electrical Properties of Bi2Sr2CaCu2O8+σ Nanopowders". Materials Science Forum 827 (серпень 2015): 235–39. http://dx.doi.org/10.4028/www.scientific.net/msf.827.235.
Full textHuang, Y., L. Lee, M. Teepe, K. L. Merkle, and K. Char. "Microstructure of Grain Boundary Junctions in Bicrystal High-Tc Superconductor SQUIDs and its Relation with the Device Noise." Microscopy and Microanalysis 3, S2 (1997): 667–68. http://dx.doi.org/10.1017/s1431927600010229.
Full textSeredinski, Andrew, Anne Draelos, Ming-Tso Wei, et al. "Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime." MRS Advances 3, no. 47-48 (2018): 2855–64. http://dx.doi.org/10.1557/adv.2018.469.
Full textHatsukade, Yoshimi, Makoto Takemoto, Ryuichi Kurosawa, and Saburo Tanaka. "Integrated High-Temperature Superconductor Radio-Frequency Superconducting Quantum Interference Device Covered with Superconducting Thin Films in Flip-Chip Configuration." Applied Physics Express 4, no. 6 (2011): 063101. http://dx.doi.org/10.1143/apex.4.063101.
Full textMuralidhar, M., M. Jirsa, N. Sakai, Y. Wu, and M. Murakami. "Magnetic and microstructure study of bulk (Sm0.33Eu0.33Gd0.33)Ba2Cu3Oy with submicron Gd2BaCuO5 second-phase particles." Journal of Materials Research 18, no. 5 (2003): 1073–80. http://dx.doi.org/10.1557/jmr.2003.0148.
Full textLesser, Omri, Andrew Saydjari, Marie Wesson, Amir Yacoby, and Yuval Oreg. "Phase-induced topological superconductivity in a planar heterostructure." Proceedings of the National Academy of Sciences 118, no. 27 (2021): e2107377118. http://dx.doi.org/10.1073/pnas.2107377118.
Full textNam, Hyoungdo, Hua Chen, Tijiang Liu, et al. "Ultrathin two-dimensional superconductivity with strong spin–orbit coupling." Proceedings of the National Academy of Sciences 113, no. 38 (2016): 10513–17. http://dx.doi.org/10.1073/pnas.1611967113.
Full textSugimoto, Akira, Ienari Iguchi, Takashi Miyake, and Hisashi Sato. "Diamagnetic Precursor State in High-Tc Oxide Superconductors near Optimal Doping Using Scanning Superconducting Quantum Interference Device Microscopy." Japanese Journal of Applied Physics 41, Part 2, No. 5A (2002): L497—L499. http://dx.doi.org/10.1143/jjap.41.l497.
Full textLenk, Daniel, Vladimir I. Zdravkov, Jan-Michael Kehrle, et al. "Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures." Beilstein Journal of Nanotechnology 7 (July 4, 2016): 957–69. http://dx.doi.org/10.3762/bjnano.7.88.
Full textBondarenko, Stanislav, and Valentin Koverya. "Superconductivity in the Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine." International Journal of Modern Physics B 29, no. 25n26 (2015): 1542013. http://dx.doi.org/10.1142/s0217979215420138.
Full textWu, Chun Hua, Min Xu, Jie Bing Wang, Lin Li, Yin Zhong Zhao, and Hua Ping Zuo. "Relevancy between Thermochromic and Magnetic Property of La1-xSrxMnO3 (x=0.2 and 0.33) Smart Radiation Thin Film Materials Prepared by Magnetron Sputtering." Applied Mechanics and Materials 303-306 (February 2013): 7–11. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.7.
Full textPanaitov, G., M. Bick, Y. Zhang, and H. ‐J Krause. "Peculiarities of SQUID magnetometer application in TEM." GEOPHYSICS 67, no. 3 (2002): 739–45. http://dx.doi.org/10.1190/1.1484516.
Full textGoswami, Srijit, Emre Mulazimoglu, Ana M. R. V. L. Monteiro, et al. "Quantum interference in an interfacial superconductor." Nature Nanotechnology 11, no. 10 (2016): 861–65. http://dx.doi.org/10.1038/nnano.2016.112.
Full textde Graaf, S. E., S. T. Skacel, T. Hönigl-Decrinis, et al. "Charge quantum interference device." Nature Physics 14, no. 6 (2018): 590–94. http://dx.doi.org/10.1038/s41567-018-0097-9.
Full textTakagaki, Y., and K. H. Ploog. "Quantum interference effects in semiconductor–superconductor microjunctions." Superlattices and Microstructures 25, no. 5-6 (1999): 659–67. http://dx.doi.org/10.1006/spmi.1999.0707.
Full textBondarenko, S. I., V. P. Koverya, A. V. Krevsun, and L. V. Gnezdilova. "Measurement of energy gaps in superconductors by means of quantum interference devices." Low Temperature Physics 41, no. 3 (2015): 179–85. http://dx.doi.org/10.1063/1.4915915.
Full textTakeuchi, Shingo. "Holographic superconducting quantum interference device." International Journal of Modern Physics A 30, no. 09 (2015): 1550040. http://dx.doi.org/10.1142/s0217751x15500402.
Full textNojima, Hideo. "Superconducying Quantum Interference Device Magnetometer." IEEJ Transactions on Sensors and Micromachines 117, no. 9 (1997): 437–42. http://dx.doi.org/10.1541/ieejsmas.117.437.
Full textDuvauchelle, J. E., A. Francheteau, C. Marcenat, et al. "Silicon superconducting quantum interference device." Applied Physics Letters 107, no. 7 (2015): 072601. http://dx.doi.org/10.1063/1.4928660.
Full textFink, H. J., V. Grünfeld, and S. M. Roberts. "Variable superconducting quantum-interference device: Theory." Physical Review B 36, no. 1 (1987): 74–78. http://dx.doi.org/10.1103/physrevb.36.74.
Full textCleuziou, J. P., W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, and M. Monthioux. "Carbon nanotube superconducting quantum interference device." Nature Nanotechnology 1, no. 1 (2006): 53–59. http://dx.doi.org/10.1038/nnano.2006.54.
Full textHasselbach, K., D. Mailly, and J. R. Kirtley. "Micro-superconducting quantum interference device characteristics." Journal of Applied Physics 91, no. 7 (2002): 4432–37. http://dx.doi.org/10.1063/1.1448864.
Full textSeredinski, Andrew, Anne W. Draelos, Ethan G. Arnault, et al. "Quantum Hall–based superconducting interference device." Science Advances 5, no. 9 (2019): eaaw8693. http://dx.doi.org/10.1126/sciadv.aaw8693.
Full textMandal, Soumen, Tobias Bautze, Oliver A. Williams, et al. "The Diamond Superconducting Quantum Interference Device." ACS Nano 5, no. 9 (2011): 7144–48. http://dx.doi.org/10.1021/nn2018396.
Full textFink, H. J., V. Grünfeld, and A. López. "Quantum-interference device without Josephson junctions." Physical Review B 35, no. 1 (1987): 35–37. http://dx.doi.org/10.1103/physrevb.35.35.
Full textGardner, Brian W., Janice C. Wynn, Per G. Björnsson, et al. "Scanning superconducting quantum interference device susceptometry." Review of Scientific Instruments 72, no. 5 (2001): 2361–64. http://dx.doi.org/10.1063/1.1364668.
Full textLazarides, N., and G. P. Tsironis. "rf superconducting quantum interference device metamaterials." Applied Physics Letters 90, no. 16 (2007): 163501. http://dx.doi.org/10.1063/1.2722682.
Full textPratim Sahu, Partha. "Thermooptic reconfigurable Mach Zehnder quantum interference device." Results in Physics 12 (March 2019): 1329–33. http://dx.doi.org/10.1016/j.rinp.2018.11.101.
Full textFagaly, R. L. "Superconducting quantum interference device instruments and applications." Review of Scientific Instruments 77, no. 10 (2006): 101101. http://dx.doi.org/10.1063/1.2354545.
Full textBurlakov, A. A., V. L. Gurtovoi, A. I. Il’in, A. V. Nikulov, and V. A. Tulin. "Superconducting quantum interference device without Josephson junctions." JETP Letters 99, no. 3 (2014): 169–73. http://dx.doi.org/10.1134/s0021364014030059.
Full textGirit, Çaǧlar, V. Bouchiat, O. Naaman, et al. "Tunable Graphene dc Superconducting Quantum Interference Device." Nano Letters 9, no. 1 (2009): 198–99. http://dx.doi.org/10.1021/nl802765x.
Full textMatsuda, Naoki, Gen Uehara, Kunio Kazami, Youichi Takada, and Hisashi Kado. "Design and Fabrication of a Multi Loop Superconducting Quantum Interference Device, the Clover-Leaf Superconducting Quantum Interference Device." Japanese Journal of Applied Physics 34, Part 2, No. 1A (1995): L27—L30. http://dx.doi.org/10.1143/jjap.34.l27.
Full textTakagaki, Y., and Y. Tokura. "Transmission resonances in a semiconductor-superconductor junction quantum interference structure." Physical Review B 54, no. 9 (1996): 6587–99. http://dx.doi.org/10.1103/physrevb.54.6587.
Full textAo, P., and X. M. Zhu. "Quantum Interference of a Single Vortex in a Mesoscopic Superconductor." Physical Review Letters 74, no. 23 (1995): 4718–21. http://dx.doi.org/10.1103/physrevlett.74.4718.
Full text