Journal articles on the topic 'Superheater corrosion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superheater corrosion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
SHARP, W. B. A. (SANDY), W. J. JIM FREDERICK, JAMES R. KEISER, and DOUGLAS L. SINGBEIL. "Could biomass-fueled boilers be operated at higher steam temperatures? Part 3: Initial analysis of costs and benefits." August 2014 13, no. 8 (2014): 65–78. http://dx.doi.org/10.32964/tj13.8.65.
Full textLehmusto, Juho, Patrik Yrjas, and Mikko Hupa. "The Effect of Pretreatment on the Corrosion Resistance of Superheater Materials." Solid State Phenomena 227 (January 2015): 309–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.227.309.
Full textKUMAR, KUNAL, VILJAMI MAAKALA, and VILLE VUORINEN. "Integrated study of flue gas flow and superheating process in a recovery boiler using computational fluid dynamics and 1D-process modeling." June 2020 19, no. 6 (2020): 303–16. http://dx.doi.org/10.32964/tj19.6.303.
Full textFelkowski, Łukasz, and Jakub Mędrala. "Analysis of superheater tubes failure." E3S Web of Conferences 82 (2019): 01002. http://dx.doi.org/10.1051/e3sconf/20198201002.
Full textTallermo, H., I. Klevtsov, M. Uus, and R. A. Crane. "High-Temperature Corrosion of Martensite Alloy Under Oil Shale Fly Ash." Journal of Pressure Vessel Technology 123, no. 3 (2000): 387–90. http://dx.doi.org/10.1115/1.1360693.
Full textZhang, Hongliang, Fang Zhang, Wei Su, Ya Jiang, and Yuchun Li. "Research and evaluation of T91 superheater material for high temperature corrosion in biomass power plants." Anti-Corrosion Methods and Materials 62, no. 3 (2015): 133–35. http://dx.doi.org/10.1108/acmm-01-2015-1486.
Full textLi, Hongfeng, Qingtang Xue, Xinhui Nie, and Yunfei Xu. "Investigation of Chemical Cleaning of Supercritical Superheater Oxide Scale." MATEC Web of Conferences 238 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201823802011.
Full textBerlanga, C., and J. A. Ruiz. "Study of Corrosion in a Biomass Boiler." Journal of Chemistry 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/272090.
Full textKEISER, JAMES R., W. B. A. SANDY SHARP, and DOUGLAS L. SINGBEIL. "Could biomass-fueled boilers be operated at higher steam temperatures? Part 2: Field tests of candidate superheater alloys." August 2014 13, no. 8 (2014): 51–63. http://dx.doi.org/10.32964/tj13.8.51.
Full textMuhajir, Habib, Gunawan Dwi Haryadi, and Achmad Widodo. "Remaining Life Assessment of Superheater Tube in Boiler of Coal Fired Power Plant." MATEC Web of Conferences 159 (2018): 02041. http://dx.doi.org/10.1051/matecconf/201815902041.
Full textTrojan, Marcin, Dawid Taler, and Szymon Wielgus. "On-line monitoring of the fouling of the boiler heating surfaces." Thermal Science 23, Suppl. 4 (2019): 1289–300. http://dx.doi.org/10.2298/tsci19s4289t.
Full textKEISER, JAMES R., W. B. A. SANDY SHARP, DOUGLAS A. SINGBEIL, LAURIE A. FREDERICK, and CURTIS CLEMMONS. "Performance of alternate superheater materials in a potassium-rich recovery boiler environment." TAPPI Journal 12, no. 7 (2013): 45–56. http://dx.doi.org/10.32964/tj12.7.45.
Full textJaeger, M., H. Benhaim, D. Tzidony, A. Dumai, and T. Itai. "A techno-economic probabilistic approach to superheater lifetime determination." Journal of Energy in Southern Africa 17, no. 1 (2006): 66–71. http://dx.doi.org/10.17159/2413-3051/2006/v17i1a3295.
Full textHenderson, P., P. Szakálos, R. Pettersson, C. Andersson, and J. Högberg. "Reducing superheater corrosion in wood-fired boilers." Materials and Corrosion 57, no. 2 (2006): 128–34. http://dx.doi.org/10.1002/maco.200503899.
Full textSang, Sheng Huan, Yu Feng Duan, Hui Chao Chen, and Chang Sui Zhao. "High Temperature Corrosion of Superheater Materials in Chlorination-Oxidation Atmosphere." Advanced Materials Research 718-720 (July 2013): 52–58. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.52.
Full textLuo, Wen-Wen, Zong-De Liu, Yong-Tian Wang, and Rong-Juan Yang. "High Temperature Corrosion Behaviors of the Superheater Materials." Procedia Engineering 36 (2012): 212–16. http://dx.doi.org/10.1016/j.proeng.2012.03.033.
Full textKumari, Amrita, S. K. Das, and P. K. Srivastava. "Data-driven modeling of fireside corrosion rate." Anti-Corrosion Methods and Materials 64, no. 4 (2017): 397–404. http://dx.doi.org/10.1108/acmm-11-2016-1732.
Full textShigeta, Jun-Ichi, Yoshio Hamao, Hiroshi Aoki, and Ichiro Kajigaya. "Development of a Coal Ash Corrosivity Index for High Temperature Corrosion." Journal of Engineering Materials and Technology 109, no. 4 (1987): 299–305. http://dx.doi.org/10.1115/1.3225981.
Full textBrossard, Jean Michel, François Nicol, and Xavier Chaucherie. "Fireside Corrosion in Energy Recovery Boilers and Maintenance Issues." Materials Science Forum 595-598 (September 2008): 281–88. http://dx.doi.org/10.4028/www.scientific.net/msf.595-598.281.
Full textAsgaryan, Mohammad, Nigel Simms, and Shao Min Wu. "Prediction of the Remaining Service Life of Superheater and Reheater Tubes in Coal-Biomass Fired Power Plants." Advanced Materials Research 856 (December 2013): 343–48. http://dx.doi.org/10.4028/www.scientific.net/amr.856.343.
Full textAdnyana, D. N. "Korosi Retak Tegang pada Pipa Superheater Ketel Uap yang Baru Dibangun [Stress Corrosion Cracking of Cage Superheater Tubes of a Newly Built Boiler]." Metalurgi 32, no. 3 (2017): 123. http://dx.doi.org/10.14203/metalurgi.v32i3.357.
Full textLee, Doyeon, Hana Kim, Jae Hyeok Park, et al. "High Temperature Corrosion of Superheater Tube under Alkali Chlorides Deposit." Journal of Korea Society of Waste Management 34, no. 5 (2017): 482–89. http://dx.doi.org/10.9786/kswm.2017.34.5.482.
Full textViklund, Peter, Anders Hjörnhede, Pamela Henderson, Annika Stålenheim, and Rachel Pettersson. "Corrosion of superheater materials in a waste-to-energy plant." Fuel Processing Technology 105 (January 2013): 106–12. http://dx.doi.org/10.1016/j.fuproc.2011.06.017.
Full textValente, T. "Fireside Corrosion of Superheater Materials in Chlorine Containing Flue Gas." Journal of Materials Engineering and Performance 10, no. 5 (2001): 608–13. http://dx.doi.org/10.1361/105994901770344773.
Full textAbang, Roger, Alexander Lisk, and Hans Joachim Krautz. "Fireside Corrosion of Superheater Materials Under Oxy-coal Firing Conditions." Energy Procedia 40 (2013): 304–11. http://dx.doi.org/10.1016/j.egypro.2013.08.035.
Full textKuntadi, Koos Sardjono. "KAJIAN KERUSAKAN MATERIAL SUPERHEATER TUBE 2” DENGAN PENDEKATAN STANDAR ASTM." Jurnal Standardisasi 8, no. 2 (2008): 74. http://dx.doi.org/10.31153/js.v8i2.663.
Full textLi, Yuchun, Hongliang Zhang, and Yuwu He. "Evaluation of Anticorrosion Performance of New Materials for Alternative Superheater Tubes in Biomass Power Plants." High Temperature Materials and Processes 35, no. 8 (2016): 799–803. http://dx.doi.org/10.1515/htmp-2015-0089.
Full textLi, Xiu Juan, Yong Zheng Wang, and Mao Zhen Yue. "Experimental Study on the Corrosion Characteristics during Co-Firing of Cornstalk and Lean Coal." Advanced Materials Research 347-353 (October 2011): 2622–25. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.2622.
Full textBrossard, Jean Michel, Xavier Chaucherie, François Nicol, Christophe Rapin, and Michel Vilasi. "Superheater Fireside Corrosion Mechanisms of SA192 and AISI 316L in WtE Environment: Lab-Scale and Industrial Results." Materials Science Forum 696 (September 2011): 212–17. http://dx.doi.org/10.4028/www.scientific.net/msf.696.212.
Full textKawahara, Yuuzou, Kouji Sasaki, and Yuuji Nakagawa. "Development and Application of High Cr-High Si-Fe-Ni Alloys to High Efficiency Waste-To-Energy Boilers." Materials Science Forum 522-523 (August 2006): 513–22. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.513.
Full textBankiewicz, Dorota, Patrik Yrjas, and Mikko Hupa. "High-Temperature Corrosion of Superheater Tube Materials Exposed to Zinc Salts†." Energy & Fuels 23, no. 7 (2009): 3469–74. http://dx.doi.org/10.1021/ef801012z.
Full textKatamipour, Alireza, Mohsen Shamshirsaz, and Abdolhossein Fereidoon. "Failure of Secondary Superheater Tube by Caustic Stress Corrosion Cracking (CSCC)." Journal of Failure Analysis and Prevention 15, no. 5 (2015): 583–92. http://dx.doi.org/10.1007/s11668-015-9991-y.
Full textPettersson, J., C. Pettersson, Nicklas Folkeson, Lars Gunnar Johansson, Erik Skog, and Jan Erik Svensson. "The Influence of Sulfur Additions on the Corrosive Environments in a Waste-Fired CFB Boiler." Materials Science Forum 522-523 (August 2006): 563–70. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.563.
Full textFolkeson, Nicklas, J. Pettersson, C. Pettersson, et al. "Fireside Corrosion of Stainless and Low Alloyed Steels in a Waste-Fired CFB Boiler; The Effect of Adding Sulphur to the Fuel." Materials Science Forum 595-598 (September 2008): 289–97. http://dx.doi.org/10.4028/www.scientific.net/msf.595-598.289.
Full textKish, J. R., C. Reid, D. L. Singbeil, and R. Seguin. "Corrosion of High-Alloy Superheater Tubes in a Coastal Biomass Power Boiler." CORROSION 64, no. 4 (2008): 356–66. http://dx.doi.org/10.5006/1.3278479.
Full textNakagawa, Kiyokazu, Teiich Isozaki, and Shigemitu Kihara. "Effects of Ash Composition on the Coal Ash Corrosion of Superheater Tube." CORROSION ENGINEERING 36, no. 6 (1987): 376–82. http://dx.doi.org/10.3323/jcorr1974.36.6_376.
Full textAho, M., P. Yrjas, R. Taipale, M. Hupa, and J. Silvennoinen. "Reduction of superheater corrosion by co-firing risky biomass with sewage sludge." Fuel 89, no. 9 (2010): 2376–86. http://dx.doi.org/10.1016/j.fuel.2010.01.023.
Full textStein-Brzozowska, Gosia, Jörg Maier, Günter Scheffknecht, et al. "Fireside Corrosion of Applied and Modern Superheater-alloys Under Oxy-fuel Conditions." Energy Procedia 37 (2013): 1448–61. http://dx.doi.org/10.1016/j.egypro.2013.06.020.
Full textAsnavandi, Majid, Mohaddeseh Kahram, Milad Rezaei, and Davar Rezakhani. "Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler." International Journal of Corrosion 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7367046.
Full textSingh Sidhu, Varinder Pal, Khushdeep Goyal, and Rakesh Goyal. "Corrosion Behaviour of HVOF Sprayed Coatings on ASME SA213 T22 Boiler Steel in an Actual Boiler Environment." Advanced Engineering Forum 20 (January 2017): 1–9. http://dx.doi.org/10.4028/www.scientific.net/aef.20.1.
Full textArivazhagan, N., P. R. Hari, M. Nageswara Rao, and A. H. V. Pavan. "Hot Corrosion of Alloy 617 OCC in Simulated USC Power Plant Environment." Materials Science Forum 941 (December 2018): 1748–53. http://dx.doi.org/10.4028/www.scientific.net/msf.941.1748.
Full textChatha, Sukhpal Singh, Hazoor S. Sidhu, and Buta Singh Sidhu. "Performance of 75Cr3C2-25NiCr Coating Produced by HVOF Process in a Coal-Fired Thermal Power Plant." Advanced Materials Research 1137 (June 2016): 88–100. http://dx.doi.org/10.4028/www.scientific.net/amr.1137.88.
Full textWeulersse, Katia, Gérard Moulin, P. Billard, and G. Pierotti. "High Temperature Corrosion of Superheater Tubes in Waste Incinerators and Coal-Fired Plants." Materials Science Forum 461-464 (August 2004): 973–80. http://dx.doi.org/10.4028/www.scientific.net/msf.461-464.973.
Full textUusitalo, Mikko A., Mikko Kaipiainen, Petri M. J. Vuoristo, and Tapio A. Mäntylä. "High-Temperature Erosion-Corrosion of Superheater Materials and Coatings in Chlorine-Containing Environments." Materials Science Forum 369-372 (October 2001): 475–82. http://dx.doi.org/10.4028/www.scientific.net/msf.369-372.475.
Full textNakagawa, Kiyokazu, Shigemitu Kihara, Teruaki Kawamoto, and Akira Ohtomo. "Electrochemical Evaluation for Corrosion Resistance of Superheater Tube Materials in Coal Ash Atmosphere." CORROSION ENGINEERING 35, no. 3 (1986): 149–56. http://dx.doi.org/10.3323/jcorr1974.35.3_149.
Full textHussain, Tanvir, Adnan U. Syed, and Nigel J. Simms. "Fireside Corrosion of Superheater Materials in Coal/Biomass Co-fired Advanced Power Plants." Oxidation of Metals 80, no. 5-6 (2013): 529–40. http://dx.doi.org/10.1007/s11085-013-9394-y.
Full textLehmusto, Juho, Patrik Yrjas, and Leena Hupa. "Pre-oxidation as a Means to Increase Corrosion Resistance of Commercial Superheater Steels." Oxidation of Metals 91, no. 3-4 (2019): 311–26. http://dx.doi.org/10.1007/s11085-019-09898-x.
Full textOtsuka, N., Y. Fukuda, Y. Kawahara, and T. Hosoda. "Laboratory corrosion tests for simulating fireside wastage of superheater materials in waste incinerators." Materials and Corrosion 51, no. 4 (2000): 236–41. http://dx.doi.org/10.1002/(sici)1521-4176(200004)51:4<236::aid-maco236>3.0.co;2-#.
Full textPang, Sheng Jiao, Ping Li, Ting Ju Li, and Jie Zhao. "Study on the Corrosion Resistance Behavior of Multi-Elements Alloy CoCrFeNiTi0.5." Applied Mechanics and Materials 541-542 (March 2014): 61–68. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.61.
Full textLebel, Florimonde, Christophe Rapin, Jean François Mareche, et al. "Development of a Laboratory-Scale Pilot for Studying Corrosion on MSWI Heat Exchangers." Materials Science Forum 595-598 (September 2008): 271–80. http://dx.doi.org/10.4028/www.scientific.net/msf.595-598.271.
Full text