To see the other types of publications on this topic, follow the link: Superheterodyne laser.

Journal articles on the topic 'Superheterodyne laser'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 33 journal articles for your research on the topic 'Superheterodyne laser.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Murray, Todd W., Suraj Bramhavar, Ashwin Sampathkumar, Kamil L. Ekinci, and Bruno Pouet. "Superheterodyne techniques in laser ultrasonics." Journal of the Acoustical Society of America 126, no. 4 (2009): 2238. http://dx.doi.org/10.1121/1.3249191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dändliker, R., R. Thalmann, and D. Prongué. "Two-wavelength laser interferometry using superheterodyne detection." Optics Letters 13, no. 5 (1988): 339. http://dx.doi.org/10.1364/ol.13.000339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bramhavar, Suraj, Bruno Pouet, and Todd W. Murray. "Superheterodyne detection of laser generated acoustic waves." Applied Physics Letters 94, no. 11 (2009): 114102. http://dx.doi.org/10.1063/1.3103324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Кулиш, В. В., А. В. Лысенко, and В. В. Коваль. "Nonlinear theory of plasma-beam superheterodyne free electron laser with h-ubitron pumping." Scientific Herald of Uzhhorod University.Series Physics 24 (June 30, 2009): 108–14. http://dx.doi.org/10.24144/2415-8038.2009.24.108-114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lysenko, A. V., and S. S. Ilin. "Multiharmonic Interactions of Longitudinal Waves in Amplification Section of Superheterodyne Free Electron Laser." Journal of Nano- and Electronic Physics 14, no. 5 (2022): 05006–1. http://dx.doi.org/10.21272/jnep.14(5).05006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulish, V. V., A. V. Lysenko, and V. V. Koval. "CUBIC-NONLINEAR THEORY OF A PLASMA-BEAM SUPERHETERODYNE FREE ELECTRON LASER WITH H-UBITRON PUMPING." Telecommunications and Radio Engineering 69, no. 20 (2010): 1859–69. http://dx.doi.org/10.1615/telecomradeng.v69.i20.90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kulish, V. V., A. V. Lysenko, and V. V. Koval. "On the theory of a plasma-beam superheterodyne free-electron laser with H-ubitron pumping." Technical Physics Letters 35, no. 8 (2009): 696–99. http://dx.doi.org/10.1134/s1063785009080045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lysenko, A. V., and G. A. Alekseyenko. "PLASMA-BEAM SUPERHETERODYNE FREE ELECTRON LASER WITH H-UBITRON PUMPING AND NON-AXIAL ELECTRON BEAM INJECTION." Telecommunications and Radio Engineering 75, no. 8 (2016): 745–56. http://dx.doi.org/10.1615/telecomradeng.v75.i8.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lysenko, A., and G. Oleksiienko. "Plasma-beam superheterodyne free electron laser with H-ubitron pump with non-axial injection of electron beam." RADIOFIZIKA I ELEKTRONIKA 21, no. 1 (2016): 48–54. http://dx.doi.org/10.15407/rej2016.01.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lysenko, A. V., I. I. Volk, G. A. Oleksiienko, and A. Ju Brusnyk. "Formation of Powerful Multiharmonic Electromagnetic Wave by Two Stream Superheterodyne Klystron Free Electron Laser with Helical Electron Beam." Journal of Nano- and Electronic Physics 10, no. 5 (2018): 05002–1. http://dx.doi.org/10.21272/jnep.10(5).05002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lysenko, A. V., G. A. Oleksiienko, and A. V. Pavlov. "AXIAL MAGNETIC FIELD EFFECTS IN WAVE AMPLIFICATION IN BEAM-PLASMA SUPERHETERODYNE FREE ELECTRON LASER OF THE DOPPLERTRON TYPE." Telecommunications and Radio Engineering 77, no. 6 (2018): 513–23. http://dx.doi.org/10.1615/telecomradeng.v77.i6.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kulish, V. V., A. V. Lysenko, G. A. Oleksiienko, V. V. Koval, and M. Yu. Rombovsky. "Nonlinear Theory of Plasma-Beam Superheterodyne Free Electron Laser of Dopplertron Type with Non-Axial Injection of Electron Beam." Acta Physica Polonica A 126, no. 6 (2014): 1263–68. http://dx.doi.org/10.12693/aphyspola.126.1263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lysenko, A. V., and S. S. Ilin. "The Effect of the Generated Pump Electric Field on the Amplification Properties of a Superheterodyne Parametric Free-Electron Laser." Journal of Nano- and Electronic Physics 15, no. 5 (2023): 05022–1. http://dx.doi.org/10.21272/jnep.15(5).05022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lysenko, A., G. Oleksiienko, and A. Pavlov. "Influence of axial guiding magnetic field on amplification of waves in a plasma-beam superheterodyne free electron laser of dopplertrone type." RADIOFIZIKA I ELEKTRONIKA 22, no. 4 (2017): 55–61. http://dx.doi.org/10.15407/rej2017.04.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

LURYI, SERGE, and MIKHAIL GOUZMAN. "FEASIBILITY OF AN OPTICAL FREQUENCY MODULATION SYSTEM FOR FREE-SPACE OPTICAL COMMUNICATIONS." International Journal of High Speed Electronics and Systems 16, no. 02 (2006): 559–66. http://dx.doi.org/10.1142/s0129156406003849.

Full text
Abstract:
We consider a free-space communication system based on optical frequency modulation (FM), where the information is encoded by a time-variable wavelength. As is well known, broadband FM systems use a transmission bandwidth that is larger than the signal's information bandwidth, thus enabling an enhancement of the signal-to-noise ratio (SNR) and hence the effective information rate per unit transmitter power. Because of the atmospheric conditions, any optical free-space communication system, contemplated at a terrestrial level, must operate at mid-infrared wavelengths in the range λ = 2.5 2.8 μ
APA, Harvard, Vancouver, ISO, and other styles
16

Kulish, V. V. "Superheterodyne electron-wave free-electron lasers." International Journal of Infrared and Millimeter Waves 14, no. 3 (1993): 415–50. http://dx.doi.org/10.1007/bf02209263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tanaka, Hajime, and Tsuyoshi Sonehara. "Superheterodyne Brillouin spectroscopy using frequency-tunable lasers." Physica B: Condensed Matter 219-220 (April 1996): 556–58. http://dx.doi.org/10.1016/0921-4526(95)00810-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kulish, V. V., S. A. Kuleshov, and A. V. Lysenko. "Nonlinear self-consistent theory of superheterodyne and parametric free electron lasers." International Journal of Infrared and Millimeter Waves 14, no. 3 (1993): 451–567. http://dx.doi.org/10.1007/bf02209264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kulish, V. V., S. A. Kuleshov, and A. V. Lysenko. "Nonlinear self-consistent theory of two-stream superheterodyne free electon lasers." International Journal of Infrared and Millimeter Waves 15, no. 1 (1994): 77–120. http://dx.doi.org/10.1007/bf02265878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tanaka, Hajime, and Tsuyoshi Sonehara. "Superheterodyne light beating spectroscopy for Rayleigh–Brillouin scattering using frequency-tunable lasers." Review of Scientific Instruments 73, no. 5 (2002): 1998–2010. http://dx.doi.org/10.1063/1.1469671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kulish, V. V., A. V. Lysenko, M. Yu Rombovsky, V. V. Koval, and I. I. Volk. "Forming of Ultrashort Electromagnetic Clusters by Two-Stream Superheterodyne Free Electron Lasers." Acta Physica Polonica A 131, no. 1 (2017): 213–21. http://dx.doi.org/10.12693/aphyspola.131.213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Fengqiang, Joshua Yablon, Andreas Velten, Mohit Gupta, and Oliver Cossairt. "High-depth-resolution range imaging with multiple-wavelength superheterodyne interferometry using 1550-nm lasers." Applied Optics 56, no. 31 (2017): H51. http://dx.doi.org/10.1364/ao.56.000h51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tanaka, Hajime, and Tsuyoshi Sonehara. "New Method of Superheterodyne Light Beating Spectroscopy for Brillouin Scattering Using Frequency-Tunable Lasers." Physical Review Letters 74, no. 9 (1995): 1609–12. http://dx.doi.org/10.1103/physrevlett.74.1609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kulish, V. V., A. V. Lysenko, and V. V. Koval. "Multiharmonic cubic-nonlinear theory of plasma-beam superheterodyne free-electron lasers of the dopplertron type." Plasma Physics Reports 36, no. 13 (2010): 1185–90. http://dx.doi.org/10.1134/s1063780x10130167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lysenko, A. V., I. I. Volk, and G. A. Oleksiienko. "Plural Interactions of Waves in Multiharmonic Two-stream Superheterodyne Free-electron Lasers with Helical Electron Beams." Journal of Nano- and Electronic Physics 10, no. 2 (2018): 02014–1. http://dx.doi.org/10.21272/jnep.10(2).02014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Azouigui, S., T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar. "Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers." Review of Scientific Instruments 81, no. 5 (2010): 053112. http://dx.doi.org/10.1063/1.3428729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lysenko, A. V., and S. S. Ilin. "The influence of the quasi-electrostatic support on the amplification of space charge waves in the amplification section of a superheterodyne free electron laser." Chinese Physics B, October 18, 2024. http://dx.doi.org/10.1088/1674-1056/ad8869.

Full text
Abstract:
Abstract In this work, a theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave (SCW) in the amplification section of a superheterodyne free electron laser (FEL) was carried out. One of the ways to significantly increase the saturation level of the slow SCW is maintaining the conditions of a three-wave parametric resonance between the slow, fast SCWs and the resulting pump electric field. This can be done by introducing the quasi-electrostatic support in the superheterodyne FEL amplification section. Also, it was found that
APA, Harvard, Vancouver, ISO, and other styles
28

WANG, ZHENG, Mingyong Jing, Peng Zhang, et al. "Noise analysis of the atomic superheterodyne receiver based on flat-top laser beams." Optics Express, May 17, 2023. http://dx.doi.org/10.1364/oe.491718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kulish, Viktor, Olexandr Lysenko, Igor Gubanov, and Georgy Vаldenmayer. "The project of the compact media-accelerator for the two-stream superheterodyne free electron laser." Proceedings of National Aviation University 33, no. 3-4 (2007). http://dx.doi.org/10.18372/2306-1472.33.1519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lysenko, A. V., O. I. Voroshylo, and S. S. Ilin. "INFLUENCE OF GENERATED PUMP ELECTRIC FIELD ON MULTIHARMONIC INTERACTION OF WAVES IN AMPLIFICATION SECTION OF SUPERHETERODYNE FEL." Problems of Atomic Science and Technology, December 12, 2023, 186–91. http://dx.doi.org/10.46813/2023-148-186.

Full text
Abstract:
In the cubic nonlinear approximation, we analyze the processes of generating the electric pump field by an electron beam and its effect on the amplification of space charge waves (SCW) in the amplification section of a parametric superheterodyne free-electron laser (FEL). We found that the generated pump electric field amplitude is within 21…33% of the amplitude of the external pump electric field. We showed that the generated pump electric field is in phase with the external one. It leads to an increase in the growth increments of SCW; therefore, the length of the SCW amplification section is
APA, Harvard, Vancouver, ISO, and other styles
31

Hu, Jinlian, Yuechun Jiao, Yunhui He, et al. "Improvement of response bandwidth and sensitivity of Rydberg receiver using multi-channel excitations." EPJ Quantum Technology 10, no. 1 (2023). http://dx.doi.org/10.1140/epjqt/s40507-023-00209-7.

Full text
Abstract:
AbstractWe investigate the response bandwidth of a superheterodyne Rydberg receiver at a room-temperature vapor cell, and present an architecture of multi-channel lasers excitation to increase the response bandwidth and keep sensitivity, simultaneously. Two microwave fields, denoted as a local oscillator (LO) $E_{\text{LO}}$ E LO and a signal field $E_{\text{SIG}}$ E SIG , couple two Rydberg states transition of $|52D_{5/2}\rangle \to |53P_{3/2}\rangle $ | 52 D 5 / 2 〉 → | 53 P 3 / 2 〉 . In the presence of the LO field, the frequency difference between two fields can be read out as an intermed
APA, Harvard, Vancouver, ISO, and other styles
32

Weichman, Peter B. "Doppler sensitivity and resonant tuning of Rydberg atom-based antennas." Journal of Physics B: Atomic, Molecular and Optical Physics, July 15, 2024. http://dx.doi.org/10.1088/1361-6455/ad6385.

Full text
Abstract:
Abstract Radio frequency antennas based on Rydberg atom vapor cells can in principle reach sensitivities beyond those of any conventional wire antenna, especially at lower frequencies where very long wires are needed to accommodate the growing wavelength. They also have other desirable features such as nonmetallic, hence lower profile, elements. This paper presents a detailed theoretical investigation of Rydberg antenna sensitivity, elucidating parameter regimes that could cumulatively lead to 2--3 orders of magnitude sensitivity increase beyond that of currently tested configurations. The key
APA, Harvard, Vancouver, ISO, and other styles
33

Wu, Bo, Jiawei Yao, Fengchuan Wu, Qiang An, and Yunqi Fu. "Effect of Rydberg-atom-based sensor performance on different Rydberg atom population at one atomic-vapor cell." Chinese Physics B, November 9, 2023. http://dx.doi.org/10.1088/1674-1056/ad0b04.

Full text
Abstract:
Abstract The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors, and impacts on overall capability of Rydberg sensor. However, the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions, that is, the same atomic population density and buffer gas pressure, which make it unable to accurately capture actualA response about effect of Rydberg-atom-based sensor performance on different Rydberg atom population. Here, utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and bu
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!