Journal articles on the topic 'Superlattices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superlattices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nasiri, Milad, and Yan Wang. "Evolution of Phonon Spectral Energy Density in Superlattice Structures." Crystals 15, no. 5 (2025): 446. https://doi.org/10.3390/cryst15050446.
Full textFullerton, Eric E., Ivan K. Schuller, and Y. Bruynseraede. "Quantitative X-Ray Diffraction From Superlattices." MRS Bulletin 17, no. 12 (1992): 33–38. http://dx.doi.org/10.1557/s0883769400046935.
Full textHansen, Monica, Amber C. Abare, Peter Kozodoy, et al. "Effect Of AlGaN/GaN Strained Layer Superlattice Period On InGaN MQW Laser Diodes." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 14–19. http://dx.doi.org/10.1557/s1092578300004026.
Full textWeng, Hsu Kai, Akira Nagakubo, Hideyuki Watanabe, and Hirotsugu Ogi. "Lattice thermal conductivity in isotope diamond asymmetric superlattices." Japanese Journal of Applied Physics 61, SG (2022): SG1004. http://dx.doi.org/10.35848/1347-4065/ac4304.
Full textAntropov, N. О., and Е. А. Kravtsov. "Neutron Reflectometry in Superlattices with Strongly Absorbing Rare-Earth Metals (Gd, Dy)." Поверхность. Рентгеновские, синхротронные и нейтронные исследования, no. 8 (August 1, 2023): 11–15. http://dx.doi.org/10.31857/s1028096023070038.
Full textLiu, Yang, Xue Yang, Xiaowei Zhou, et al. "Design and Growth of P-Type AlGaN Graded Composition Superlattice." Micromachines 15, no. 12 (2024): 1420. http://dx.doi.org/10.3390/mi15121420.
Full textYu, Yixuan, Avni Jain, Adrien Guillaussier, et al. "Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting?" Faraday Discussions 181 (2015): 181–92. http://dx.doi.org/10.1039/c5fd00006h.
Full textKabalan, Amal A., and Pritpal Singh. "CdTe/PbTe Superlattice Modeling and Fabrication for Solar Cells Applications." Journal of Nano Research 48 (July 2017): 125–37. http://dx.doi.org/10.4028/www.scientific.net/jnanor.48.125.
Full textIslam, Md Tanvirul, Xinkang Chen, Tedi Kujofsa, and John E. Ayers. "Chirped Superlattices as Adjustable Strain Platforms for Metamorphic Semiconductor Devices." International Journal of High Speed Electronics and Systems 27, no. 01n02 (2018): 1840009. http://dx.doi.org/10.1142/s0129156418400098.
Full textZhao, Lu, Lijuan Zhang, Houfu Song, et al. "Incoherent phonon transport dominates heat conduction across van der Waals superlattices." Applied Physics Letters 121, no. 2 (2022): 022201. http://dx.doi.org/10.1063/5.0096861.
Full textKim, Jin O., Jan D. Achenbach, Meenam Shinn, and Scott A. Barnett. "Effective Elastic Constants of Superlattice Films Measured by Line-Focus Acoustic Microscopy." Journal of Engineering Materials and Technology 117, no. 4 (1995): 395–401. http://dx.doi.org/10.1115/1.2804732.
Full textSidorkin, Alexander, Lolita Nesterenko, Yaovi Gagou, Pierre Saint-Gregoire, Eugeniy Vorotnikov, and Nadezhda Popravko. "Dielectric Properties and Switching Processes of Barium Titanate–Barium Zirconate Ferroelectric Superlattices." Materials 11, no. 8 (2018): 1436. http://dx.doi.org/10.3390/ma11081436.
Full textZhang, Wei-Chao, Hao Wu, Wei-Feng Sun, and Zhen-Peng Zhang. "First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage." Nanomaterials 12, no. 12 (2022): 1966. http://dx.doi.org/10.3390/nano12121966.
Full textWebb, Matthew, Tao Ma, Allen H. Hunter, et al. "Geometric defects induced by strain relaxation in thin film oxide superlattices." Journal of Applied Physics 132, no. 18 (2022): 185307. http://dx.doi.org/10.1063/5.0120176.
Full textGu, X. Wendy, Xingchen Ye, David M. Koshy, Shraddha Vachhani, Peter Hosemann, and A. Paul Alivisatos. "Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals." Proceedings of the National Academy of Sciences 114, no. 11 (2017): 2836–41. http://dx.doi.org/10.1073/pnas.1618508114.
Full textKudasov, Yu B., and Dmitry Andreevich Maslov. "Magnetic Structure of Fe/V Superlattices with Variable Thickness of Iron Layers." Solid State Phenomena 152-153 (April 2009): 209–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.152-153.209.
Full textXU, MING, WENXUE YU, GUANGMING LUO, et al. "ON THE CHARACTERIZATION OF METALLIC SUPERLATTICE STRUCTURES BY X-RAY DIFFRACTION." Modern Physics Letters B 13, no. 19 (1999): 663–69. http://dx.doi.org/10.1142/s021798499900083x.
Full textStaszczak, Grzegorz, Iza Gorczyca, Ewa Grzanka, Julita Smalc-Koziorowska, Grzegorz Targowski, and Tadeusz Suski. "Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers." Materials 16, no. 23 (2023): 7386. http://dx.doi.org/10.3390/ma16237386.
Full textW. Tian, J. C. Jiang, X. Q. Pan, C.D. Theis, and D.G. Schlom. "Microstructure of PbTi03/SrTi03 Superlattice Grown by MBE." Microscopy and Microanalysis 4, S2 (1998): 576–77. http://dx.doi.org/10.1017/s143192760002300x.
Full textYonezawa, Yu, Hiroyuki Kinbara, Hiroki Umehara, et al. "Fabrication of Dielectric/Conductive Hybrid Artificial Superlattices Using Molecular Beam Epitaxy Method." Key Engineering Materials 421-422 (December 2009): 139–42. http://dx.doi.org/10.4028/www.scientific.net/kem.421-422.139.
Full textSankin, Vladimir Ilich, Alexey G. Petrov, Pavel P. Shkrebiy, Olga P. Kazarova, and Alexander A. Lebedev. "SiC Natural and Artificial Superlattices for the Implementation of the Bloch Oscillation Process: A Comparative Analysis." Materials Science Forum 1004 (July 2020): 256–64. http://dx.doi.org/10.4028/www.scientific.net/msf.1004.256.
Full textEymery, J. "Localized destructive interference in X-ray specular reflectivity." Journal of Applied Crystallography 32, no. 5 (1999): 859–63. http://dx.doi.org/10.1107/s0021889899006238.
Full textTwigg, M. E., B. R. Bennett, J. R. Waterman, J. L. Davis, B. V. Shanabrook, and R. J. Wagner. "Interfacial properties of GaSb/InAs superlattices." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 826–27. http://dx.doi.org/10.1017/s0424820100149969.
Full textWang, Bruce, Antonio Bianconi, Ian D. R. Mackinnon, and Jose A. Alarco. "Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC6." Crystals 14, no. 6 (2024): 499. http://dx.doi.org/10.3390/cryst14060499.
Full textRen, Shang-Fen, and Jason Stanfield. "Interface Phonon Modes in Strained Semiconductor Superlattices." International Journal of Modern Physics B 12, no. 29n31 (1998): 3137–40. http://dx.doi.org/10.1142/s0217979298002222.
Full textHoglund, Eric R., De-Liang Bao, Andrew O’Hara, et al. "Emergent interface vibrational structure of oxide superlattices." Nature 601, no. 7894 (2022): 556–61. http://dx.doi.org/10.1038/s41586-021-04238-z.
Full textSanina, Viktoriya, Boris Khannanov, and Evgenii Golovenchits. "Optical Control of Superlattices States Formed Due to Electronic Phase Separation in Multiferroic Eu0.8Ce0.2Mn2O5." Nanomaterials 11, no. 7 (2021): 1664. http://dx.doi.org/10.3390/nano11071664.
Full textWILSON, K. S. JOSEPH, and K. NAVANEETHAKRISHNAN. "PHONON POLARITON MODES IN QUANTUM DOT SUPERLATTICES." Modern Physics Letters B 18, no. 02n03 (2004): 105–12. http://dx.doi.org/10.1142/s021798490400672x.
Full textJaszczak, J. A., and D. Wolf. "On the elastic behavior of composition-modulated superlattices." Journal of Materials Research 6, no. 6 (1991): 1207–18. http://dx.doi.org/10.1557/jmr.1991.1207.
Full textSaito, Yuta, Paul Fons, Kirill V. Mitrofanov, et al. "Chalcogenide van der Waals superlattices: a case example of interfacial phase-change memory." Pure and Applied Chemistry 91, no. 11 (2019): 1777–86. http://dx.doi.org/10.1515/pac-2019-0105.
Full textJohn, J. D., S. Nishimoto, N. Kadowaki, et al. "Quantum device designing (QDD) for future semiconductor engineering." Review of Scientific Instruments 93, no. 3 (2022): 034703. http://dx.doi.org/10.1063/5.0081544.
Full textHarfenist, S. A., Z. L. Wang, R. L. Whetten, I. Vezmar, M. M. Alvarez, and B. E. Salisbury. "Three-Dimensional Hexagonal Close-Packed Superlattices of Passivated Ag Nanocrystals." Microscopy and Microanalysis 3, S2 (1997): 431–32. http://dx.doi.org/10.1017/s1431927600009041.
Full textPanomsuwan, Gasidit, Nagahiro Saito, and Osamu Takai. "Structural Properties and Microstructures of SrTiO3/SrTi1-xNbxO3 Superlattices Grown by Ion Beam Deposition." Materials Science Forum 695 (July 2011): 598–601. http://dx.doi.org/10.4028/www.scientific.net/msf.695.598.
Full textFigarova, Sophia, Huseynagha Huseynov, and Vagif Figarov. "Gain in Thermoelectric Figure of Merit of Al<sub>x</sub>Ga<sub>1-x</sub>As/GaAs Type Superlattices Induced by Strong Impurity Screening." Advanced Materials Research 1180 (August 26, 2024): 37–42. http://dx.doi.org/10.4028/p-2yu1ca.
Full textPark, K., L. Salamanca-Riba, and B. T. Jonker. "TEM studies of (ZnSe/FeSe) superlattices." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (1992): 1382–83. http://dx.doi.org/10.1017/s0424820100131541.
Full textGoepfert, I. D., E. F. Schubert, A. Osinsky, and P. E. Norris. "Efficient Acceptor Activation in AlxGa1−xN/GaN Doped Superlattices." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 329–35. http://dx.doi.org/10.1557/s1092578300004464.
Full textHögberg, H., J. Birch, M. Odén, J.-O. Malm, L. Hultman, and U. Jansson. "Growth, structure, and mechanical properties of transition metal carbide superlattices." Journal of Materials Research 16, no. 5 (2001): 1301–10. http://dx.doi.org/10.1557/jmr.2001.0182.
Full textYun, Hongseok, and Taejong Paik. "Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures." Nanomaterials 9, no. 9 (2019): 1243. http://dx.doi.org/10.3390/nano9091243.
Full textJin, Cai, Wanrong Geng, Linjing Wang, et al. "Tuning ferroelectricity and ferromagnetism in BiFeO3/BiMnO3 superlattices." Nanoscale 12, no. 17 (2020): 9810–16. http://dx.doi.org/10.1039/c9nr09670a.
Full textKILLI, MATTHEW, SI WU, and ARUN PARAMEKANTI. "GRAPHENE: KINKS, SUPERLATTICES, LANDAU LEVELS AND MAGNETOTRANSPORT." International Journal of Modern Physics B 26, no. 21 (2012): 1242007. http://dx.doi.org/10.1142/s0217979212420076.
Full textToso, Stefano, Dmitry Baranov, Cinzia Giannini, Sergio Marras, and Liberato Manna. "Wide-Angle X-ray Diffraction Evidence of Structural Coherence in CsPbBr3 Nanocrystal Superlattices." ACS Materials Letters 1 (July 16, 2019): 272–76. https://doi.org/10.1021/acsmaterialslett.9b00217.
Full textSakai, Yuki, and Susumu Saito. "Geometries and Electronic Structure of Graphene and Hexagonal BN Superlattices." MRS Proceedings 1407 (2012). http://dx.doi.org/10.1557/opl.2012.455.
Full textZhang, Enrui, Jinshan Yao, Zhiming Geng, Yueying Hou, Jiayu Dai, and Hong Lu. "Carrier Relaxation Times in InAs/AlAs Superlattices: Modulating by Layers, Temperature, and Carrier Concentrations." Chinese Physics Letters, January 24, 2025. https://doi.org/10.1088/0256-307x/42/2/028501.
Full textKumakura, Kazuhide, Toshiki Makimoto, and Naoki Kobayashi. "High Room-Temperature Hole Concentrations above 1019 cm−3 in Mg-Doped InGaN/GaN Superlattices." MRS Proceedings 622 (2000). http://dx.doi.org/10.1557/proc-622-t5.11.1.
Full textRodríguez-González, Rogelio, Heraclio García-Cervantes, Francisco Javier García-Rodríguez, Gerardo Jesús Escalera Santos, and Isaac Rodríguez-Vargas. "Extended states in random dimer gated graphene superlattices." Journal of Physics: Condensed Matter, May 22, 2024. http://dx.doi.org/10.1088/1361-648x/ad4f3c.
Full textSchuller, Ivan K., Eric E. Fullerton, H. Vanderstraeten, and Y. Bruynseraede. "Quantitative X-Ray Structure Determination of Superlattices and Interfaces." MRS Proceedings 229 (1991). http://dx.doi.org/10.1557/proc-229-41.
Full textHansen, Monica, Amber C. Abare, Peter Kozodoy, et al. "Effect of AlGaN/GaN Strained Layer Superlattice Period on InGaN MQW Laser Diodes." MRS Proceedings 595 (1999). http://dx.doi.org/10.1557/proc-595-f99w1.4.
Full textLuo, Chaojie, Guohua Cao, Beilin Wang, et al. "Self-assembly of 1T/1H superlattices in transition metal dichalcogenides." Nature Communications 15, no. 1 (2024). https://doi.org/10.1038/s41467-024-54948-x.
Full textSchuller, Ivan K. "Magnetic Superlattices." MRS Proceedings 103 (1987). http://dx.doi.org/10.1557/proc-103-335.
Full textWang, Lin-Di, Ying-Bin Cheng, and Jian Zhou. "Molecular dynamics study on phonon coherent transport in III–V semiconductor superlattices." Journal of Applied Physics 137, no. 11 (2025). https://doi.org/10.1063/5.0253919.
Full text