Journal articles on the topic 'Superlubricity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superlubricity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zeng, Qunfeng, and Wenling Zhang. "A Systematic Review of the Recent Advances in Superlubricity Research." Coatings 13, no. 12 (2023): 1989. http://dx.doi.org/10.3390/coatings13121989.
Full textRamezani, Maziar, Zaidi Mohd Ripin, Cho-Pei Jiang, and Tim Pasang. "Superlubricity of Materials: Progress, Potential, and Challenges." Materials 16, no. 14 (2023): 5145. http://dx.doi.org/10.3390/ma16145145.
Full textGao, Xinlei, Yuwei Cheng, Miaomiao Shi, Hao Chen, Li Wu, and Tingting Wang. "Design of Superlubricity System Using Si3N4/Polyimide as the Friction Pair and Nematic Liquid Crystals as the Lubricant." Polymers 15, no. 18 (2023): 3693. http://dx.doi.org/10.3390/polym15183693.
Full textJiang, Xian, Zhibin Lu, and Renhui Zhang. "The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation." Materials 14, no. 5 (2021): 1201. http://dx.doi.org/10.3390/ma14051201.
Full textWu, Fan-Bin, Sheng-Jian Zhou, Jia-Hu Ouyang, Shu-Qi Wang, and Lei Chen. "Structural Superlubricity of Two-Dimensional Materials: Mechanisms, Properties, Influencing Factors, and Applications." Lubricants 12, no. 4 (2024): 138. http://dx.doi.org/10.3390/lubricants12040138.
Full textLi, Jinjin, Chenhui Zhang, Mingming Deng, and Jianbin Luo. "Investigation of the difference in liquid superlubricity between water- and oil-based lubricants." RSC Advances 5, no. 78 (2015): 63827–33. http://dx.doi.org/10.1039/c5ra10834a.
Full textZeng, Qunfeng, Osman Eryilmaz, and Ali Erdemir. "Superlubricity of the DLC films-related friction system at elevated temperature." RSC Advances 5, no. 113 (2015): 93147–54. http://dx.doi.org/10.1039/c5ra16084g.
Full textGong, Penghui, Yishen Qu, Wei Wang, Fanfan Lv, and Jie Jin. "Macroscale Superlubricity of Black Phosphorus Quantum Dots." Lubricants 10, no. 7 (2022): 158. http://dx.doi.org/10.3390/lubricants10070158.
Full textGe, Xiangyu, Zhiyuan Chai, Qiuyu Shi, Yanfei Liu, Jiawei Tang, and Wenzhong Wang. "Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts." Materials 15, no. 10 (2022): 3546. http://dx.doi.org/10.3390/ma15103546.
Full textYuan, Yuyang, Tobias Amann, Yuwen Xu, et al. "Load and velocity boundaries of oil-based superlubricity using 1,3-diketone." Friction 11, no. 5 (2023): 704–15. http://dx.doi.org/10.1007/s40544-022-0647-0.
Full textUrbakh, Michael. "Towards macroscale superlubricity." Nature Nanotechnology 8, no. 12 (2013): 893–94. http://dx.doi.org/10.1038/nnano.2013.244.
Full textLi, JinJin, and JianBin Luo. "Advancements in superlubricity." Science China Technological Sciences 56, no. 12 (2013): 2877–87. http://dx.doi.org/10.1007/s11431-013-5387-y.
Full textHirano, Motohisa. "Atomistics of superlubricity." Friction 2, no. 2 (2014): 95–105. http://dx.doi.org/10.1007/s40544-014-0049-z.
Full textHIRANO, Motohisa. "Study of Superlubricity." Hyomen Kagaku 24, no. 6 (2003): 334–39. http://dx.doi.org/10.1380/jsssj.24.334.
Full textZhai, Wenzheng, and Kun Zhou. "Nanomaterials in Superlubricity." Advanced Functional Materials 29, no. 28 (2019): 1806395. http://dx.doi.org/10.1002/adfm.201806395.
Full textHan, Ke, Liran Ma, Yu Tian, and Jianbin Luo. "Photoinduced superlubricity on TiO2 surfaces." Friction 12, no. 3 (2023): 428–38. http://dx.doi.org/10.1007/s40544-023-0736-8.
Full textDu, Changhe, Tongtong Yu, Zishuai Wu, et al. "Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant." Friction 11, no. 5 (2023): 748–62. http://dx.doi.org/10.1007/s40544-022-0660-3.
Full textJIANG, BINGQI, XIAOHONG JIA, FEI GUO, and YUMING WANG. "INFLUENCE OF SURFACE POLISHING ON THE FRICTION BEHAVIORS OF NBR." Surface Review and Letters 25, no. 07 (2018): 1950016. http://dx.doi.org/10.1142/s0218625x19500161.
Full textSasaki, Naruo, Noriaki Itamura, Daisuke Tsuda, and Kouji Miura. "Nanomechanical Studies of Superlubricity." Current Nanoscience 3, no. 1 (2007): 105–15. http://dx.doi.org/10.2174/157341307779940553.
Full textConsoli, L., A. Fasolino, H. J. F. Knops, and T. Janssen. "Can aperiodicity cause superlubricity?" Ferroelectrics 250, no. 1 (2001): 111–14. http://dx.doi.org/10.1080/00150190108225045.
Full textMartin, Jean Michel, and Ali Erdemir. "Superlubricity: Friction’s vanishing act." Physics Today 71, no. 4 (2018): 40–46. http://dx.doi.org/10.1063/pt.3.3897.
Full textFayeulle, Serge. "Superlubricity: when friction stops." Physics World 10, no. 5 (1997): 29–32. http://dx.doi.org/10.1088/2058-7058/10/5/23.
Full textMartin, J. M., C. Donnet, Th Le Mogne, and Th Epicier. "Superlubricity of molybdenum disulphide." Physical Review B 48, no. 14 (1993): 10583–86. http://dx.doi.org/10.1103/physrevb.48.10583.
Full textChen, Xinchun, and Jinjin Li. "Superlubricity of carbon nanostructures." Carbon 158 (March 2020): 1–23. http://dx.doi.org/10.1016/j.carbon.2019.11.077.
Full textZheng, Quanshui, and Ze Liu. "Experimental advances in superlubricity." Friction 2, no. 2 (2014): 182–92. http://dx.doi.org/10.1007/s40544-014-0056-0.
Full textGnecco, Enrico, Sabine Maier, and Ernst Meyer. "Superlubricity of dry nanocontacts." Journal of Physics: Condensed Matter 20, no. 35 (2008): 354004. http://dx.doi.org/10.1088/0953-8984/20/35/354004.
Full textHirano, Motohisa, and Kazumasa Shinjo. "Superlubricity and frictional anisotropy." Wear 168, no. 1-2 (1993): 121–25. http://dx.doi.org/10.1016/0043-1648(93)90207-3.
Full textLi, He, Jinhuan Wang, Song Gao, et al. "Superlubricity between MoS2 Monolayers." Advanced Materials 29, no. 27 (2017): 1701474. http://dx.doi.org/10.1002/adma.201701474.
Full textXu, Jun, and Jinjin Li. "New achievements in superlubricity from international workshop on superlubricity: fundamental and applications." Friction 3, no. 4 (2015): 344–51. http://dx.doi.org/10.1007/s40544-015-0100-8.
Full textLiu, Mengmeng, Caixia Zhang, Lihui Wang, et al. "Regulation Mechanism of Trivalent Cations on Friction Coefficient of a Poly(Vinylphosphonic Acid) (PVPA) Superlubricity System." Lubricants 10, no. 8 (2022): 191. http://dx.doi.org/10.3390/lubricants10080191.
Full textZhang, Zhenyu, Yuefeng Du, Siling Huang, et al. "Macroscale Superlubricity: Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces (Adv. Sci. 4/2020)." Advanced Science 7, no. 4 (2020): 2070023. http://dx.doi.org/10.1002/advs.202070023.
Full textKabengele, Tilas, and Erin R. Johnson. "Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene." Nanoscale 13, no. 34 (2021): 14399–407. http://dx.doi.org/10.1039/d1nr03001a.
Full textDeng, He, Ming Ma, Yiming Song, Qichang He, and Quanshui Zheng. "Structural superlubricity in graphite flakes assembled under ambient conditions." Nanoscale 10, no. 29 (2018): 14314–20. http://dx.doi.org/10.1039/c7nr09628c.
Full textBall, Philip. "A new twist on superlubricity." Nature Materials 18, no. 8 (2019): 774. http://dx.doi.org/10.1038/s41563-019-0450-0.
Full textMutyala, Kalyan C., Gary L. Doll, Jianguo Wen, and Anirudha V. Sumant. "Superlubricity in rolling/sliding contacts." Applied Physics Letters 115, no. 10 (2019): 103103. http://dx.doi.org/10.1063/1.5116142.
Full textWang, Kunqi, Wengen Ouyang, Wei Cao, Ming Ma, and Quanshui Zheng. "Robust superlubricity by strain engineering." Nanoscale 11, no. 5 (2019): 2186–93. http://dx.doi.org/10.1039/c8nr07963c.
Full textMeyer, Ernst, and Enrico Gnecco. "Superlubricity on the nanometer scale." Friction 2, no. 2 (2014): 106–13. http://dx.doi.org/10.1007/s40544-014-0052-4.
Full textXiao, Chen, Jinjin Li, Lei Chen, et al. "Water-based superlubricity in vacuum." Friction 7, no. 2 (2018): 192–98. http://dx.doi.org/10.1007/s40544-018-0212-z.
Full textWang, Anle, Qichang He, and Zhiping Xu. "Predicting the lifetime of superlubricity." EPL (Europhysics Letters) 112, no. 6 (2015): 60007. http://dx.doi.org/10.1209/0295-5075/112/60007.
Full textvan Wijk, Merel M., Astrid S. de Wijn, and Annalisa Fasolino. "Collective superlubricity of graphene flakes." Journal of Physics: Condensed Matter 28, no. 13 (2016): 134007. http://dx.doi.org/10.1088/0953-8984/28/13/134007.
Full textXiao, Chen, Jinjin Li, Jian Gong, et al. "Gradual degeneration of liquid superlubricity: Transition from superlubricity to ordinary lubrication, and lubrication failure." Tribology International 130 (February 2019): 352–58. http://dx.doi.org/10.1016/j.triboint.2018.10.008.
Full textZhu, Dongxiang, Hongxuan Li, Li Ji, Huidi Zhou, and Jianmin Chen. "Tribochemistry of superlubricating amorphous carbon films." Chemical Communications 57, no. 89 (2021): 11776–86. http://dx.doi.org/10.1039/d1cc04119c.
Full textWang, Chengbing, Bingrui Li, Xiaoming Ling, and Junyan Zhang. "Superlubricity of hydrogenated carbon films in a nitrogen gas environment: adsorption and electronic interactions at the sliding interface." RSC Advances 7, no. 5 (2017): 3025–34. http://dx.doi.org/10.1039/c6ra25505a.
Full textLi, Jinjin, Chenhui Zhang, and Jianbin Luo. "Effect of pH on the liquid superlubricity between Si3N4 and glass achieved with phosphoric acid." RSC Adv. 4, no. 86 (2014): 45735–41. http://dx.doi.org/10.1039/c4ra04970e.
Full textSong, Aisheng, Lei Gao, Jie Zhang, et al. "Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: a computational investigation." Nanoscale 12, no. 14 (2020): 7857–63. http://dx.doi.org/10.1039/c9nr09662k.
Full textGong, Zhenbin, Jing Shi, Wei Ma, Bin Zhang, and Junyan Zhang. "Engineering-scale superlubricity of the fingerprint-like carbon films based on high power pulsed plasma enhanced chemical vapor deposition." RSC Advances 6, no. 116 (2016): 115092–100. http://dx.doi.org/10.1039/c6ra24933g.
Full textZhang, Bozhao, Ziwen Cheng, Guangan Zhang, Zhibin Lu, Fei Ma, and Feng Zhou. "First-principles theory of atomic-scale friction explored by an intuitive charge density fluctuation surface." Physical Chemistry Chemical Physics 21, no. 44 (2019): 24565–71. http://dx.doi.org/10.1039/c9cp04825a.
Full textLainé, Antoine, Andrea Vanossi, Antoine Niguès, Erio Tosatti, and Alessandro Siria. "Amplitude nanofriction spectroscopy." Nanoscale 13, no. 3 (2021): 1955–60. http://dx.doi.org/10.1039/d0nr07925a.
Full textLi, Jiahao, Yong Peng, Xianqiong Tang, Qian Xu, and Lichun Bai. "Effect of strain engineering on superlubricity in a double-walled carbon nanotube." Physical Chemistry Chemical Physics 23, no. 8 (2021): 4988–5000. http://dx.doi.org/10.1039/d0cp06052f.
Full textWang, Linfeng, Xiang Zhou, Tianbao Ma, et al. "Superlubricity of a graphene/MoS2 heterostructure: a combined experimental and DFT study." Nanoscale 9, no. 30 (2017): 10846–53. http://dx.doi.org/10.1039/c7nr01451a.
Full text