Journal articles on the topic 'Supervised Machine Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Supervised Machine Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sabeti, Behnam, Hossein Abedi Firouzjaee, Reza Fahmi, Saeid Safavi, Wenwu Wang, and Mark D. Plumbley. "Credit Risk Rating Using State Machines and Machine Learning." International Journal of Trade, Economics and Finance 11, no. 6 (2020): 163–68. http://dx.doi.org/10.18178/ijtef.2020.11.6.683.
Full textBzdok, Danilo, Martin Krzywinski, and Naomi Altman. "Machine learning: supervised methods." Nature Methods 15, no. 1 (2018): 5–6. http://dx.doi.org/10.1038/nmeth.4551.
Full textJha, Ritambhara. "Transforming Manufacturing Sector with Supervised Machine Learning Techniques." International Journal of Science and Research (IJSR) 10, no. 4 (2021): 1367–69. http://dx.doi.org/10.21275/sr24203180211.
Full textVerma, Shivangi, and Chhavi Chaudhary. "Supervised Machine Learning: A Review on Regression Technique." International Journal of Research Publication and Reviews 6, sp5 (2025): 79–87. https://doi.org/10.55248/gengpi.6.sp525.1911.
Full textLok, Lai Kai, Vazeerudeen Abdul Hameed, and Muhammad Ehsan Rana. "Hybrid machine learning approach for anomaly detection." Indonesian Journal of Electrical Engineering and Computer Science 27, no. 2 (2022): 1016–24. https://doi.org/10.11591/ijeecs.v27.i2.pp1016-1024.
Full textAmrita, Sadarangani *. Dr. Anjali Jivani. "A SURVEY OF SEMI-SUPERVISED LEARNING." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 5, no. 10 (2016): 138–43. https://doi.org/10.5281/zenodo.159333.
Full textSharma, Swapnil. "Supervised Learning: An InDepth Analysis." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 06 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem35414.
Full textMa, Jun, Yakun Wen, and Liming Yang. "Lagrangian supervised and semi-supervised extreme learning machine." Applied Intelligence 49, no. 2 (2018): 303–18. http://dx.doi.org/10.1007/s10489-018-1273-4.
Full textAsharef, Dhahabiyya. "COVID-19 Future Forecasting Using Supervised Machine Learning Models." International Journal of Science and Research (IJSR) 11, no. 2 (2022): 960–67. http://dx.doi.org/10.21275/sr22221205524.
Full textDr, A. R. JayaSudha, and Anes J. Mohammed. "Malware Analysis Using Supervised Machine Learning." Recent Innovations in Wireless Network Security 5, no. 1 (2023): 24–32. https://doi.org/10.5281/zenodo.7797951.
Full textBiswas, Aditya, Ishan Saran, and F. Perry Wilson. "Introduction to Supervised Machine Learning." Kidney360 2, no. 5 (2021): 878–80. http://dx.doi.org/10.34067/kid.0000182021.
Full textFares, Ahmed H., Mohamed I. Sharawy, and Hala H. Zayed. "Intrusion Detection: Supervised Machine Learning." Journal of Computing Science and Engineering 5, no. 4 (2011): 305–13. http://dx.doi.org/10.5626/jcse.2011.5.4.305.
Full textIosifidis, Alexandros. "Extreme learning machine based supervised subspace learning." Neurocomputing 167 (November 2015): 158–64. http://dx.doi.org/10.1016/j.neucom.2015.04.083.
Full textButlin, Patrick. "Machine Learning, Functions and Goals." Croatian journal of philosophy 22, no. 66 (2022): 351–70. http://dx.doi.org/10.52685/cjp.22.66.5.
Full textGupta, Monica. "A Comparative Study on Supervised Machine Learning Algorithm." International Journal for Research in Applied Science and Engineering Technology 10, no. 1 (2022): 1023–28. http://dx.doi.org/10.22214/ijraset.2022.39980.
Full textMa, Jun, Yakun Wen, and Liming Yang. "Fisher-regularized supervised and semi-supervised extreme learning machine." Knowledge and Information Systems 62, no. 10 (2020): 3995–4027. http://dx.doi.org/10.1007/s10115-020-01484-x.
Full textAnist., A., Raja. M. Ganapathy, M. Charles., and V. Vignesh. "Machine Failure Prediction using Supervised Machine Learning Technique." International Journal of Multidisciplinary Research Transactions 5, no. 6 (2023): 325–37. https://doi.org/10.5281/zenodo.7908959.
Full textJha, Ritambhara. "Classifying High Risk Diabetic Patients using Supervised Machine Learning Models." International Journal of Science and Research (IJSR) 12, no. 12 (2023): 806–11. http://dx.doi.org/10.21275/sr231209033422.
Full textSingh, Mr Harendra Pratap, and Dr Manoj Kumar Pandey. "Analysis of Supervised Machine Learning Techniques to Assess Water Quality." International Journal of Research Publication and Reviews 6, sp5 (2025): 23–29. https://doi.org/10.55248/gengpi.6.sp525.1903.
Full textNkemdilim, Mbeledogu Njideka, Paul Roseline Uzoamaka, Ugoh Daniel, and Mbeledogu Kaodilichukwu Chidi. "An Overview of Supervised Machine Learning Paradigms and their Classifiers." International Journal of Advanced Engineering, Management and Science 10, no. 3 (2024): 24–32. http://dx.doi.org/10.22161/ijaems.103.4.
Full textEzadeen Mehyadin, Aska, and Adnan Mohsin Abdulazeez. "CLASSIFICATION BASED ON SEMI-SUPERVISED LEARNING: A REVIEW." Iraqi Journal for Computers and Informatics 47, no. 1 (2021): 1–11. http://dx.doi.org/10.25195/ijci.v47i1.277.
Full textJ., Dr SIRISHA. "Assessing DDoS Detection Accuracy through Semi-Supervised Techniques." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem29861.
Full textJaroszewski, Daniel, Benedikt Sturm, Wolfgang Mergenthaler, et al. "Supervised Learning Using Quantum Technology." PHM Society European Conference 5, no. 1 (2020): 7. http://dx.doi.org/10.36001/phme.2020.v5i1.1275.
Full textRass, Stefan, Sandra König, Jasmin Wachter, Manuel Egger, and Manuel Hobisch. "Supervised Machine Learning with Plausible Deniability." Computers & Security 112 (January 2022): 102506. http://dx.doi.org/10.1016/j.cose.2021.102506.
Full textMuhammad, Iqbal, and Zhu Yan. "SUPERVISED MACHINE LEARNING APPROACHES: A SURVEY." ICTACT Journal on Soft Computing 05, no. 03 (2015): 946–52. http://dx.doi.org/10.21917/ijsc.2015.0133.
Full textBhardwaj, Priyank. "Analysis of Supervised Machine Learning Algorithms." International Journal for Research in Applied Science and Engineering Technology 8, no. 5 (2020): 2309–12. http://dx.doi.org/10.22214/ijraset.2020.5377.
Full textKabou, Salheddine, Zinelaabidine Rabhi, Abdeallah Hadj Seddik, and Ramadhan Masmoudi. "Data anonymization through supervised Machine Learning." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 3 (2024): e12696. https://doi.org/10.54021/seesv5n3-059.
Full textPei, Huimin, Kuaini Wang, Qiang Lin, and Ping Zhong. "Robust semi-supervised extreme learning machine." Knowledge-Based Systems 159 (November 2018): 203–20. http://dx.doi.org/10.1016/j.knosys.2018.06.029.
Full textKrishnasamy, Ganesh, and Raveendran Paramesran. "Hessian semi-supervised extreme learning machine." Neurocomputing 207 (September 2016): 560–67. http://dx.doi.org/10.1016/j.neucom.2016.05.039.
Full textNguyen Thi Thu, Thuy, and Vuong Dang Xuan. "FoRex Trading Using Supervised Machine Learning." International Journal of Engineering & Technology 7, no. 4.15 (2018): 400. http://dx.doi.org/10.14419/ijet.v7i4.15.23024.
Full textFebrian, Muhammad Exell, Fransiskus Xaverius Ferdinan, Gustian Paul Sendani, Kristien Margi Suryanigrum, and Rezki Yunanda. "Diabetes prediction using supervised machine learning." Procedia Computer Science 216 (2023): 21–30. http://dx.doi.org/10.1016/j.procs.2022.12.107.
Full textJiang, Tammy, Jaimie L. Gradus, and Anthony J. Rosellini. "Supervised Machine Learning: A Brief Primer." Behavior Therapy 51, no. 5 (2020): 675–87. http://dx.doi.org/10.1016/j.beth.2020.05.002.
Full textAn, Chang. "Student Status Supervision in Ideological and Political Machine Teaching Based on Machine Learning." E3S Web of Conferences 275 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202127503028.
Full textSineglazov, Victor, Olena Chumachenko, and Eduard Heilyk. "Semi-controlled Learning in Information Processing Problems." Electronics and Control Systems 4, no. 70 (2022): 37–43. http://dx.doi.org/10.18372/1990-5548.70.16754.
Full textR., KARTHIKEYAN, and SELVANANDHINI B. "A SYSTEMATIC REVIEW OF PREDICTION OF HEART DISEASES USING SUPERVISED MACHINE LEARNING ALGORITHMS." IJRSET SEPTEMBER Volume 9 Issue 9 9, no. 9 (2022): 1–9. https://doi.org/10.5281/zenodo.7049471.
Full textFong, A. C. M., and G. Hong. "Boosted Supervised Intensional Learning Supported by Unsupervised Learning." International Journal of Machine Learning and Computing 11, no. 2 (2021): 98–102. http://dx.doi.org/10.18178/ijmlc.2021.11.2.1020.
Full textSiddika, Ayesha, Momotaz Begum, Fahmid Al Farid, Jia Uddin, and Hezerul Abdul Karim. "Enhancing Software Defect Prediction Using Ensemble Techniques and Diverse Machine Learning Paradigms." Eng 6, no. 7 (2025): 161. https://doi.org/10.3390/eng6070161.
Full textWang, Yanyan, Qun Chen, Murtadha H. M. Ahmed, et al. "Supervised Gradual Machine Learning for Aspect-Term Sentiment Analysis." Transactions of the Association for Computational Linguistics 11 (2023): 723–39. http://dx.doi.org/10.1162/tacl_a_00571.
Full textLok, Lai Kai, Vazeerudeen Abdul Hameed, and Muhammad Ehsan Rana. "Hybrid machine learning approach for anomaly detection." Indonesian Journal of Electrical Engineering and Computer Science 27, no. 2 (2022): 1016. http://dx.doi.org/10.11591/ijeecs.v27.i2.pp1016-1024.
Full textGaurav, Kashyap. "Self-Supervised Learning: How Self-Supervised Learning Approaches Can Reduce Dependence on Labeled Data." INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH AND CREATIVE TECHNOLOGY 10, no. 4 (2024): 1–10. https://doi.org/10.5281/zenodo.14507625.
Full textAwasthi, Shivani. "Dropout Prediction with Supervised Learning." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem44873.
Full textHardanto, Lilik T., and Lili Ayu Wulandhari. "Lithofacies Classification Using Supervised and Semi-Supervised Machine Learning Approach." International Journal on Advanced Science, Engineering and Information Technology 11, no. 2 (2021): 542. http://dx.doi.org/10.18517/ijaseit.11.2.11764.
Full textKühl, Niklas, Robin Hirt, Lucas Baier, Björn Schmitz, and Gerhard Satzger. "How to Conduct Rigorous Supervised Machine Learning in Information Systems Research: The Supervised Machine Learning Report Card." Communications of the Association for Information Systems 48, no. 1 (2021): 589–615. http://dx.doi.org/10.17705/1cais.04845.
Full textGu, Qiang, Anup Kumar, Simon Bray, et al. "Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine." PLOS Computational Biology 17, no. 6 (2021): e1009014. http://dx.doi.org/10.1371/journal.pcbi.1009014.
Full textAdrin, Muchatibaya, and David Fadaralika. "A Comparative Model for Predicting Customer Churn using Supervised Machine Learning." International Journal of Science and Research (IJSR) 11, no. 2 (2022): 133–36. http://dx.doi.org/10.21275/sr22131110718.
Full textNarayan Koranchirath, Nithin. "Deciphering the Dynamics of Hospital Readmissions Patterns Using Supervised Machine Learning." International Journal of Science and Research (IJSR) 13, no. 4 (2024): 715–25. http://dx.doi.org/10.21275/sr24408093905.
Full textPandey, Prof Divya, Prof Zeba Vishwakarma, Shubhangi Soni, and Akanksha Mishra. "Efficient Machine Learning Through Self-Supervised Learning: Methodologies and Applications." International Journal of Innovative Research in Science,Engineering and Technology 12, no. 03 (2023): 1–14. http://dx.doi.org/10.15680/ijirset.2023.1203141.
Full textMurali, Nikitha, Ahmet Kucukkaya, Alexandra Petukhova, John Onofrey, and Julius Chapiro. "Supervised Machine Learning in Oncology: A Clinician's Guide." Digestive Disease Interventions 04, no. 01 (2020): 073–81. http://dx.doi.org/10.1055/s-0040-1705097.
Full textMa, Jun, and Guolin Yu. "Lagrangian Regularized Twin Extreme Learning Machine for Supervised and Semi-Supervised Classification." Symmetry 14, no. 6 (2022): 1186. http://dx.doi.org/10.3390/sym14061186.
Full textOmankwu Obinnaya Chinecherem, Ugwuja Nnenna Esther, and Kanu Chigbundu. "Comprehensive review of supervised machine learning algorithms to identify the best and error free." International Journal of Scholarly Research in Engineering and Technology 2, no. 1 (2023): 013–19. http://dx.doi.org/10.56781/ijsret.2023.2.1.0028.
Full text