Academic literature on the topic 'Support Vector Machine Regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Support Vector Machine Regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Support Vector Machine Regression"
GUO, Hu-Sheng, and Wen-Jian WANG. "Dynamical Granular Support Vector Regression Machine." Journal of Software 24, no. 11 (January 3, 2014): 2535–47. http://dx.doi.org/10.3724/sp.j.1001.2013.04472.
Full textSun, Shaochao, and Dao Huang. "Flatheaded Support Vector Machine for Regression." Advanced Science Letters 19, no. 8 (August 1, 2013): 2293–99. http://dx.doi.org/10.1166/asl.2013.4907.
Full textWang, Jian Guo, Liang Wu Cheng, Wen Xing Zhang, and Bo Qin. "A Modified Incremental Support Vector Machine for Regression." Applied Mechanics and Materials 135-136 (October 2011): 63–69. http://dx.doi.org/10.4028/www.scientific.net/amm.135-136.63.
Full textZHENG, SHENG, YUQIU SUN, JINWEN TIAN, and JAIN LIU. "MAPPED LEAST SQUARES SUPPORT VECTOR MACHINE REGRESSION." International Journal of Pattern Recognition and Artificial Intelligence 19, no. 03 (May 2005): 459–75. http://dx.doi.org/10.1142/s0218001405004058.
Full textKhemchandani, Reshma, Keshav Goyal, and Suresh Chandra. "TWSVR: Regression via Twin Support Vector Machine." Neural Networks 74 (February 2016): 14–21. http://dx.doi.org/10.1016/j.neunet.2015.10.007.
Full textArjmandzadeh, Ameneh, Sohrab Effati, and Mohammad Zamirian. "Interval Support Vector Machine In Regression Analysis." Journal of Mathematics and Computer Science 02, no. 03 (April 15, 2011): 565–71. http://dx.doi.org/10.22436/jmcs.02.03.19.
Full text熊, 令纯. "Five Understandings on Support Vector Machine Regression." Hans Journal of Data Mining 09, no. 02 (2019): 52–59. http://dx.doi.org/10.12677/hjdm.2019.92007.
Full textRastogi (nee Khemchandani), Reshma, Pritam Anand, and Suresh Chandra. "-norm Twin Support Vector Machine-based Regression." Optimization 66, no. 11 (August 21, 2017): 1895–911. http://dx.doi.org/10.1080/02331934.2017.1364739.
Full textSeok, Kyungha, Changha Hwang, and Daehyeon Cho. "PREDICTION INTERVALS FOR SUPPORT VECTOR MACHINE REGRESSION." Communications in Statistics - Theory and Methods 31, no. 10 (January 12, 2002): 1887–98. http://dx.doi.org/10.1081/sta-120014918.
Full textXu, Qifa, Jinxiu Zhang, Cuixia Jiang, Xue Huang, and Yaoyao He. "Weighted quantile regression via support vector machine." Expert Systems with Applications 42, no. 13 (August 2015): 5441–51. http://dx.doi.org/10.1016/j.eswa.2015.03.003.
Full textDissertations / Theses on the topic "Support Vector Machine Regression"
Lee, Keun Joo. "Geometric Tolerancing of Cylindricity Utilizing Support Vector Regression." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/233.
Full textWu, Zhili. "Regularization methods for support vector machines." HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/912.
Full textShah, Rohan Shiloh. "Support vector machines for classification and regression." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100247.
Full textOLIVEIRA, A. B. "Modelo de Predição para análise comparativa de Técnicas Neuro-Fuzzy e de Regressão." Universidade Federal do Espírito Santo, 2010. http://repositorio.ufes.br/handle/10/4218.
Full textOs Modelos de Predição implementados pelos algoritmos de Aprendizagem de Máquina advindos como linha de pesquisa da Inteligência Computacional são resultantes de pesquisas e investigações empíricas em dados do mundo real. Neste contexto; estes modelos são extraídos para comparação de duas grandes técnicas de aprendizagem de máquina Redes Neuro-Fuzzy e de Regressão aplicadas no intuito de estimar um parâmetro de qualidade do produto em um ambiente industrial sob processo contínuo. Heuristicamente; esses Modelos de Predição são aplicados e comparados em um mesmo ambiente de simulação com intuito de mensurar os níveis de adequação dos mesmos, o poder de desempenho e generalização dos dados empíricos que compõem este cenário (ambiente industrial de mineração).
Wågberg, Max. "Att förutspå Sveriges bistånd : En jämförelse mellan Support Vector Regression och ARIMA." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36479.
Full textUnder det senaste åren har användningen av maskininlärning ökat markant. Dess användningsområden varierar mellan allt från att göra vardagen lättare med röststyrda smarta enheter till bildigenkänning eller att förutspå börsvärden. Att förutspå ekonomiska värden har länge varit möjligt med hjälp av andra metoder än maskininlärning, såsom exempel statistiska algoritmer. Dessa algoritmer och maskininlärningsmodeller använder tidsserier, vilket är en samling datapunkter observerade konstant över en given tidsintervall, för att kunna förutspå datapunkter bortom den originella tidsserien. Men vilken av dessa metoder ger bäst resultat? Projektets övergripande syfte är att förutse sveriges biståndskurva med hjälp av maskininlärningsmodellen Support Vector Regression och den klassiska statistiska algoritmen autoregressive integrated moving average som förkortas ARIMA. Tidsserien som används vid förutsägelsen är årliga summeringar av biståndet från openaid.se sedan år 1998 och fram till 2019. SVR och ARIMA implementeras i python med hjälp av Scikit-learn och Statsmodelsbiblioteken. Resultatet från SVR och ARIMA mäts i jämförelse mellan det originala värdet och deras förutspådda värden medan noggrannheten mäts i root square mean error och presenteras under resultatkapitlet. Resultatet visar att SVR med RBF kärnan är den algoritm som ger det bästa testresultatet för dataserien. Alla förutsägelser bortom tidsserien presenteras därefter visuellt på en openaid prototypsida med hjälp av D3.js.
Uslan, Volkan. "Support vector machine-based fuzzy systems for quantitative prediction of peptide binding affinity." Thesis, De Montfort University, 2015. http://hdl.handle.net/2086/11170.
Full textLee, Ho-Jin. "Functional data analysis: classification and regression." Texas A&M University, 2004. http://hdl.handle.net/1969.1/2805.
Full textHechter, Trudie. "A comparison of support vector machines and traditional techniques for statistical regression and classification." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49810.
Full textENGLISH ABSTRACT: Since its introduction in Boser et al. (1992), the support vector machine has become a popular tool in a variety of machine learning applications. More recently, the support vector machine has also been receiving increasing attention in the statistical community as a tool for classification and regression. In this thesis support vector machines are compared to more traditional techniques for statistical classification and regression. The techniques are applied to data from a life assurance environment for a binary classification problem and a regression problem. In the classification case the problem is the prediction of policy lapses using a variety of input variables, while in the regression case the goal is to estimate the income of clients from these variables. The performance of the support vector machine is compared to that of discriminant analysis and classification trees in the case of classification, and to that of multiple linear regression and regression trees in regression, and it is found that support vector machines generally perform well compared to the traditional techniques.
AFRIKAANSE OPSOMMING: Sedert die bekendstelling van die ondersteuningspuntalgoritme in Boser et al. (1992), het dit 'n populêre tegniek in 'n verskeidenheid masjienleerteorie applikasies geword. Meer onlangs het die ondersteuningspuntalgoritme ook meer aandag in die statistiese gemeenskap begin geniet as 'n tegniek vir klassifikasie en regressie. In hierdie tesis word ondersteuningspuntalgoritmes vergelyk met meer tradisionele tegnieke vir statistiese klassifikasie en regressie. Die tegnieke word toegepas op data uit 'n lewensversekeringomgewing vir 'n binêre klassifikasie probleem sowel as 'n regressie probleem. In die klassifikasiegeval is die probleem die voorspelling van polisvervallings deur 'n verskeidenheid invoer veranderlikes te gebruik, terwyl in die regressiegeval gepoog word om die inkomste van kliënte met behulp van hierdie veranderlikes te voorspel. Die resultate van die ondersteuningspuntalgoritme word met dié van diskriminant analise en klassifikasiebome vergelyk in die klassifikasiegeval, en met veelvoudige linêere regressie en regressiebome in die regressiegeval. Die gevolgtrekking is dat ondersteuningspuntalgoritmes oor die algemeen goed vaar in vergelyking met die tradisionele tegnieke.
Thorén, Daniel. "Radar based tank level measurement using machine learning : Agricultural machines." Thesis, Linköpings universitet, Programvara och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176259.
Full textPersson, Karl. "Predicting movie ratings : A comparative study on random forests and support vector machines." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11119.
Full textBooks on the topic "Support Vector Machine Regression"
Drezet, P. Directly optimized support vector machines for classification and regression. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1998.
Find full textmissing], [name. Least squares support vector machines. Singapore: World Scientific, 2002.
Find full textHamel, Lutz. Knowledge discovery with support vector machines. Hoboken, N.J: John Wiley & Sons, 2009.
Find full textBoyle, Brandon H. Support vector machines: Data analysis, machine learning, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textSupport vector machines for pattern classification. 2nd ed. London: Springer, 2010.
Find full textK, Suykens Johan A., Signoretto Marco, and Argyriou Andreas, eds. Regularization, optimization, kernels, and support vector machines. Boca Raton: Taylor & Francis, 2014.
Find full textJoachims, Thorsten. Learning to classify text using support vector machines. Boston: Kluwer Academic Publishers, 2002.
Find full textErtekin, Şeyda. Algorithms for efficient learning systems: Online and active learning approaches. Saarbrücken: VDM Verlag Dr. Müller, 2009.
Find full textJ, Smola Alexander, ed. Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge, Mass: MIT Press, 2002.
Find full textBook chapters on the topic "Support Vector Machine Regression"
Awad, Mariette, and Rahul Khanna. "Support Vector Regression." In Efficient Learning Machines, 67–80. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4302-5990-9_4.
Full textSchleif, Frank-Michael. "Indefinite Support Vector Regression." In Artificial Neural Networks and Machine Learning – ICANN 2017, 313–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68612-7_36.
Full textJayadeva, Reshma Khemchandani, and Suresh Chandra. "TWSVR: Twin Support Vector Machine Based Regression." In Twin Support Vector Machines, 63–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46186-1_4.
Full textBerk, Richard A. "Support Vector Machines." In Statistical Learning from a Regression Perspective, 339–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40189-4_7.
Full textBerk, Richard A. "Support Vector Machines." In Statistical Learning from a Regression Perspective, 291–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44048-4_7.
Full textUllrich, Katrin, Michael Kamp, Thomas Gärtner, Martin Vogt, and Stefan Wrobel. "Co-Regularised Support Vector Regression." In Machine Learning and Knowledge Discovery in Databases, 338–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71246-8_21.
Full textMartin, Mario. "On-Line Support Vector Machine Regression." In Lecture Notes in Computer Science, 282–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36755-1_24.
Full textChristmann, Andreas. "Regression depth and support vector machine." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 71–85. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/dimacs/072/06.
Full textDíaz-Vico, David, Jesús Prada, Adil Omari, and José R. Dorronsoro. "Deep Support Vector Classification and Regression." In From Bioinspired Systems and Biomedical Applications to Machine Learning, 33–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19651-6_4.
Full textKenesei, Tamás, and János Abonyi. "Interpretability of Support Vector Machines." In Interpretability of Computational Intelligence-Based Regression Models, 49–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21942-4_4.
Full textConference papers on the topic "Support Vector Machine Regression"
Khemchandani, Reshma, Keshav Goyal, and Suresh Chandra. "Twin Support Vector Machine based Regression." In 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). IEEE, 2015. http://dx.doi.org/10.1109/icapr.2015.7050651.
Full textXue, Zhenxia, and Wanli Liu. "A fuzzy rough support vector regression machine." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6234232.
Full textShen, Jin-Dong. "New smooth support vector machine for regression." In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6358931.
Full textHao, Pei-Yi. "Possibilistic regression analysis by support vector machine." In 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007433.
Full textFu, Guanghui, and Guanghua Hu. "Total Least Square Support Vector Machine for Regression." In 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2008. http://dx.doi.org/10.1109/icicta.2008.134.
Full textDilmen, Erdem, and Selami Beyhan. "Deep recurrent support vector machine for online regression." In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 2017. http://dx.doi.org/10.1109/idap.2017.8090243.
Full textZhang, Hong, and Yongmei Lei. "BSP-based support vector regression machine parallel framework." In 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS). IEEE, 2013. http://dx.doi.org/10.1109/icis.2013.6607862.
Full textTamang, Amrita, and Samiksha Shukla. "Water Demand Prediction Using Support Vector Machine Regression." In 2019 International Conference on Data Science and Communication (IconDSC). IEEE, 2019. http://dx.doi.org/10.1109/icondsc.2019.8816969.
Full textStoean, Ruxandra, D. Dumitrescu, Mike Preuss, and Catalin Stoean. "Evolutionary Support Vector Regression Machines." In 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2006. http://dx.doi.org/10.1109/synasc.2006.39.
Full textKun Fu, You-Hua Wang, Yong-Feng Dong, Xiang-Dan Hou, Xue-Qin Shen, and Wei-Li Yan. "Support vector regression method for boundary value problems." In Proceedings of 2005 International Conference on Machine Learning and Cybernetics. IEEE, 2005. http://dx.doi.org/10.1109/icmlc.2005.1527692.
Full textReports on the topic "Support Vector Machine Regression"
Puttanapong, Nattapong, Arturo M. Martinez Jr, Mildred Addawe, Joseph Bulan, Ron Lester Durante, and Marymell Martillan. Predicting Poverty Using Geospatial Data in Thailand. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200434-2.
Full textGertz, E. M., and J. D. Griffin. Support vector machine classifiers for large data sets. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/881587.
Full textAlali, Ali. Application of Support Vector Machine in Predicting the Market's Monthly Trend Direction. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1495.
Full textArun, Ramaiah, and Shanmugasundaram Singaravelan. Classification of Brain Tumour in Magnetic Resonance Images Using Hybrid Kernel Based Support Vector Machine. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, October 2019. http://dx.doi.org/10.7546/crabs.2019.10.12.
Full textLiu, Y. Support vector machine for the prediction of future trend of Athabasca River (Alberta) flow rate. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/299739.
Full textQi, Yuan. Learning Algorithms for Audio and Video Processing: Independent Component Analysis and Support Vector Machine Based Approaches. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada458739.
Full textLuo, Yuzhou, Rui Wang, Zhongwei Jiang, and Xiqing Zuo. Assessment of the Effect of Health Monitoring System on the Sleep Quality by Using Support Vector Machine. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/crabs.2018.01.16.
Full textLuo, Yuzhou, Rui Wang, Zhongwei Jiang, and Xiqing Zuo. Assessment of the Effect of Health Monitoring System on the Sleep Quality by Using Support Vector Machine. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/grabs2018.1.16.
Full text