Academic literature on the topic 'Support vector regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Support vector regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Support vector regression"
Sabzekar, Mostafa, and Seyed Mohammad Hossein Hasheminejad. "Robust regression using support vector regressions." Chaos, Solitons & Fractals 144 (March 2021): 110738. http://dx.doi.org/10.1016/j.chaos.2021.110738.
Full textJun, Sung-Hae. "An Outlier Data Analysis using Support Vector Regression." Journal of Korean Institute of Intelligent Systems 18, no. 6 (December 25, 2008): 876–80. http://dx.doi.org/10.5391/jkiis.2008.18.6.876.
Full textJun, Sung-Hae, Jung-Eun Park, and Kyung-Whan Oh. "A Sparse Data Preprocessing Using Support Vector Regression." Journal of Korean Institute of Intelligent Systems 14, no. 6 (October 1, 2004): 789–92. http://dx.doi.org/10.5391/jkiis.2004.14.6.789.
Full textLee, Hyoung-Ro, and Hyun-Jung Shin. "Electricity Demand Forecasting based on Support Vector Regression." IE interfaces 24, no. 4 (December 1, 2011): 351–61. http://dx.doi.org/10.7232/ieif.2011.24.4.351.
Full textKenesei, Tamás, and János Abonyi. "Interpretable support vector regression." Artificial Intelligence Research 1, no. 2 (October 9, 2012): 11. http://dx.doi.org/10.5430/air.v1n2p11.
Full textLv, Yuan, and Zhong Gan. "Robustε-Support Vector Regression." Mathematical Problems in Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/373571.
Full textLingras, P., and C. J. Butz. "Rough support vector regression." European Journal of Operational Research 206, no. 2 (October 2010): 445–55. http://dx.doi.org/10.1016/j.ejor.2009.10.023.
Full textChu, Wei, and S. Sathiya Keerthi. "Support Vector Ordinal Regression." Neural Computation 19, no. 3 (March 2007): 792–815. http://dx.doi.org/10.1162/neco.2007.19.3.792.
Full textHarrington, Peter de B. "Automated support vector regression." Journal of Chemometrics 31, no. 4 (December 28, 2016): e2867. http://dx.doi.org/10.1002/cem.2867.
Full textPanagopoulos, Orestis P., Petros Xanthopoulos, Talayeh Razzaghi, and Onur Şeref. "Relaxed support vector regression." Annals of Operations Research 276, no. 1-2 (April 11, 2018): 191–210. http://dx.doi.org/10.1007/s10479-018-2847-6.
Full textDissertations / Theses on the topic "Support vector regression"
Shah, Rohan Shiloh. "Support vector machines for classification and regression." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100247.
Full textLee, Keun Joo. "Geometric Tolerancing of Cylindricity Utilizing Support Vector Regression." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/233.
Full textNayeri, Negin. "Option strategies using hybrid Support Vector Regression - ARIMA." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275719.
Full textI denna uppsats utvärderas användningen av maskininlärning i optionsstrategier med fokus på S&P 500 Index. Den första delen av uppsatsen fokuserar på att testa prognos kraften av Support Vector Regression (SVR) metoden för den realiserade volatiliteten med ett fönster på 20 dagar. Prognos kommer att ske för 1 månad framåt (20 trading dagar). Den andra delen av uppsatsen fokuserar på att skapa en ARIMA-modell som prognostiserar nästa värdet i tidsserien som baseras på skillnaden mellan de erhållna prognoserna samt sanna värdena. Detta görs för att skapa en hybrid SVR-ARIMA-modell. Den nya modellen består nu av ett realiserat volatilitetsvärde härrörande från SVR samt den error som erhållits från ARIMA- modellen. Avslutningsvis kommer de två metoderna, det vill säga SVR och hybrid SVR-ARIMA, jämföras och den modell med bäst resultat användas inom två options strategier. Resultaten visar den lovande prognotiseringsförmågan för SVR-metoden som för denna dataset hade en noggrannhetsnivå på 67 % för realiserad volatiliteten. ARIMA- modellen visar också en framgångsrik prognosförmåga för nästa punkt i tidsserien. Dock överträffar Hybrid SVR-ARIMA-modellen SVR-modellen för detta dataset. Det kan diskuteras ifall framgången med dessa metoder kan bero på att denna dataset täcker åren mellan 2010-2018 och det mycket volatila tiden under finanskrisen 2008 är uteslutet. Detta kan ifrågasätta modellernas prognotiseringsförmåga på högre volatilitetsmarknader. Dock ger användningen av hybrid-SVR-ARIMA-modellen som används inom de två option strategierna en genomsnittlig avkastning på 0,37 % och 1,68 %. Det bör dock noteras att de tillkommande kostnaderna för att handla optioner samt premiekostnaden som skall betalas i samband med köp av optioner inte ingår i avkastningen då dessa kostnader varierar beroende på plats av köp. Denna uppsats har gjorts i samarbete med Crescit Asset Management i Stockholm.
Ericson, Johan. "Lastprediktering : Med Neuralt Nätverk och Support Vector Regression." Thesis, Karlstads universitet, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-73371.
Full textWu, Zhili. "Regularization methods for support vector machines." HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/912.
Full textYaohao, Peng. "Support Vector Regression aplicado à previsão de taxas de câmbio." reponame:Repositório Institucional da UnB, 2016. http://repositorio.unb.br/handle/10482/23270.
Full textSubmitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2017-03-29T16:54:14Z No. of bitstreams: 1 2016_PengYaohao.pdf: 1180450 bytes, checksum: ef8f0884103e32b6a4dac98a1c9dd880 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-04-13T20:57:38Z (GMT) No. of bitstreams: 1 2016_PengYaohao.pdf: 1180450 bytes, checksum: ef8f0884103e32b6a4dac98a1c9dd880 (MD5)
Made available in DSpace on 2017-04-13T20:57:38Z (GMT). No. of bitstreams: 1 2016_PengYaohao.pdf: 1180450 bytes, checksum: ef8f0884103e32b6a4dac98a1c9dd880 (MD5)
O presente estudo realizou a previsão da taxa spot de 15 pares de câmbio mediante a aplicação de um algoritmo de aprendizado de máquinas – Support Vector Regression – com base em um modelo fundamentalista composto por 13 variáveis explicativas. Para a estimação das previsões, foram consideradas 9 funções Kernel extraídas da literatura científica, totalizando assim 135 modelos verificados. As previsões foram comparadas com o benchmark Random Walke avaliadas em relação à taxa de acerto direcional do câmbio e às métricas de erro RMSE (raiz quadrada do erro quadrático médio) e MAE (erro absoluto médio). A significância estatística do incremento de poder explicativo dos modelos SVR em relação ao Random Walk foi verificada mediante a aplicação do Reality Check Test de White (2000). Os resultados mostram que os modelos SVR obtiveram desempenho preditivo satisfatório em relação ao benchmark, com vários dos modelos propostos apresentando forte significância estatística de superioridade preditiva.Por outro lado, observou-se que várias funções Kernel comumente utilizadas na literatura científica não lograram êxito em superar o Random Walk, apontando para uma possível lacuna no estado da arte de aprendizado de máquinas aplicada à previsão de taxas de câmbio. Por fim, discutiu-se acerca das implicações dos resultados obtidos para o desenvolvimento futuro da agenda de pesquisa correlata.
This paper aims to forecast the spot exchange rate of 15 currency pairs by applying a machinelearning algorithm – Support Vector Regression – based on a fundamentalist model composedof 13 explanatory variables. The predictions’ estimation were obtained by applying 9different Kernel functions extracted from the scientific literature, resulting in a total of 135 modelsverified. The predictions were compared to the Random Walk benchmark and evaluated for directionalaccuracy rate of exchange pradictions and error performance indices RMSE (root meansquare error) and MAE (mean absolute error). The statistical significance of the explanatorypower gain via SVR models with respect to the Random Walk was checked by applying White(2000)’s Reality Check Test. The results show that SVR models achieved satisfactory predictiveperformance relative to the benchmark, with several of the proposed models showing strong statisticalsignificance of predictive superiority. Furthermore, the results showed that mainstreamKernel functions commonly used in the scientific literature failed to outperform the RandomWalk,indicating a possible gap in the state of art of machine learning methods applications to exchangerates forecasting. Finally, the paper presents a discussion about the implications of the obtainedresults for the future development of related research agendas.
Beltrami, Monica. "Precificação de opções sobre ações por modelos de Support Vector Regression." reponame:Repositório Institucional da UFPR, 2012. http://hdl.handle.net/1884/27334.
Full textWise, John Nathaniel. "Optimization of a low speed wind turbine using support vector regression." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2737.
Full textNUMERICAL design optimization provides a powerful tool that assists designers in improving their products. Design optimization automatically modifies important design parameters to obtain the best product that satisfies all the design requirements. This thesis explores the use of Support Vector Regression (SVR) and demonstrates its usefulness in the numerical optimization of a low-speed wind turbine for the power coe cient, Cp. The optimization design problem is the three-dimensional optimization of a wind turbine blade by making use of four two-dimensional radial stations. The candidate airfoils at these stations are selected from the 4-digit NACA range. A metamodel of the lift and drag coe cients of the NACA 4-digit series is created with SVR by using training points evaluated with XFOIL software. These SVR approximations are used in conjunction with the Blade Element Momentum theory to calculate and optimize the Cp value for the entire blade. The high accuracy attained with the SVR metamodels makes it a viable alternative to using XFOIL directly, as it has the advantages of being faster and easier to couple with the optimizer. The technique developed allows the optimization procedure the freedom to select profiles, angles of attack and chord length from the 4-digit NACA series to find an optimal Cp value. As a result of every radial blade station consisting of a NACA 4-digit series, the same lift and drag metamodels are used for each station. This technique also makes it simple to evaluate the entire blade as one set of design variables. The thesis contains a detailed description of the design and optimization problem, the implementation of the SVR algorithm, the creation of the lift and drag metamodels with SVR and an alternative methodology, the BEM theory and a summary of the results.
Hasanov, Ilgar <1996>. "A Comparison between Support Vector Machines and Logistic Regression for Classification." Master's Degree Thesis, Università Ca' Foscari Venezia, 2022. http://hdl.handle.net/10579/20753.
Full textShen, Judong. "Fusing support vector machines and soft computing for pattern recognition and regression /." Search for this dissertation online, 2005. http://wwwlib.umi.com/cr/ksu/main.
Full textBooks on the topic "Support vector regression"
Drezet, P. Directly optimized support vector machines for classification and regression. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1998.
Find full textO. Görgülü and A. Akilli. Egg production curve fitting using least square support vector machines and nonlinear regression analysis. Verlag Eugen Ulmer, 2018. http://dx.doi.org/10.1399/eps.2018.235.
Full textPerez, C. STATISTICS and DATA ANALYSIS with MATLAB. SUPPORT VECTOR MACHINE, LOGISTIC REGRESSION, DISCRIMINANT ANALYSIS, and DECISION TREES. Independently Published, 2019.
Find full textMejía, Julián Andrés Buriticá. Modelo Black-Litterman con Support Vector Regression: Una Alternativa para Los Fondos de Pensiones Obligatorios Colombianos. Independently Published, 2021.
Find full textLópez, César Pérez. DATA MINING and MACHINE LEARNING. PREDICTIVE TECHNIQUES : REGRESSION, GENERALIZED LINEAR MODELS, SUPPORT VECTOR MACHINE and NEURAL NETWORKS: Examples with MATLAB. Lulu Press, Inc., 2021.
Find full textDATA MINING and MACHINE LEARNING. CLASSIFICATION PREDICTIVE TECHNIQUES : SUPPORT VECTOR MACHINE, LOGISTIC REGRESSION, DISCRIMINANT ANALYSIS and DECISION TREES: Examples with MATLAB. Lulu Press, Inc., 2021.
Find full textBook chapters on the topic "Support vector regression"
Awad, Mariette, and Rahul Khanna. "Support Vector Regression." In Efficient Learning Machines, 67–80. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4302-5990-9_4.
Full textMontesinos López, Osval Antonio, Abelardo Montesinos López, and Jose Crossa. "Support Vector Machines and Support Vector Regression." In Multivariate Statistical Machine Learning Methods for Genomic Prediction, 337–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_9.
Full textBerk, Richard A. "Support Vector Machines." In Statistical Learning from a Regression Perspective, 291–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44048-4_7.
Full textBerk, Richard A. "Support Vector Machines." In Statistical Learning from a Regression Perspective, 339–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40189-4_7.
Full textOrchel, Marcin. "Balanced Support Vector Regression." In Artificial Intelligence and Soft Computing, 727–38. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19369-4_64.
Full textZhu, Wentao, Jun Miao, and Laiyun Qing. "Extreme Support Vector Regression." In Adaptation, Learning, and Optimization, 25–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04741-6_3.
Full textBellocchio, Francesco, N. Alberto Borghese, Stefano Ferrari, and Vincenzo Piuri. "Hierarchical Support Vector Regression." In 3D Surface Reconstruction, 111–42. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5632-2_6.
Full textJiang, Haochuan, Kaizhu Huang, and Rui Zhang. "Field Support Vector Regression." In Neural Information Processing, 699–708. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70087-8_72.
Full textSchleif, Frank-Michael. "Indefinite Support Vector Regression." In Artificial Neural Networks and Machine Learning – ICANN 2017, 313–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68612-7_36.
Full textJayadeva, Reshma Khemchandani, and Suresh Chandra. "TWSVR: Twin Support Vector Machine Based Regression." In Twin Support Vector Machines, 63–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46186-1_4.
Full textConference papers on the topic "Support vector regression"
Jap, Dirmanto, Marc Stöttinger, and Shivam Bhasin. "Support vector regression." In ISCA '15: The 42nd Annual International Symposium on Computer Architecture. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2768566.2768568.
Full textBrudnak, M. "Vector-Valued Support Vector Regression." In The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/ijcnn.2006.246619.
Full textForghani, Yahya, Reza Sigari Tabrizi, Hadi Sadoghi Yazdi, and Mohammad-R. Akbarzadeh-T. "Fuzzy support vector regression." In 2011 International eConference on Computer and Knowledge Engineering (ICCKE). IEEE, 2011. http://dx.doi.org/10.1109/iccke.2011.6413319.
Full textBouboulis, Pantelis, Sergios Theodoridis, and Charalampos Mavroforakis. "Complex support vector regression." In 2012 3rd International Workshop on Cognitive Information Processing (CIP). IEEE, 2012. http://dx.doi.org/10.1109/cip.2012.6232895.
Full textEleuteri, A. "Support vector survival regression." In 4th IET International Conference on Advances in Medical, Signal and Information Processing (MEDSIP 2008). IEE, 2008. http://dx.doi.org/10.1049/cp:20080436.
Full textGeorge, Jose, and K. Rajeev. "Hybrid wavelet Support Vector Regression." In 2008 7th IEEE International Conference on Cybernetic Intelligent Systems (CIS). IEEE, 2008. http://dx.doi.org/10.1109/ukricis.2008.4798920.
Full textSu, Wei-Han, and Chih-Hung Wu. "Support Vector Regression for GDOP." In 2008 Eighth International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2008. http://dx.doi.org/10.1109/isda.2008.196.
Full textStoean, Ruxandra, D. Dumitrescu, Mike Preuss, and Catalin Stoean. "Evolutionary Support Vector Regression Machines." In 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2006. http://dx.doi.org/10.1109/synasc.2006.39.
Full textFerrari, Stefano, Francesco Bellocchio, Vincenzo Piuri, and N. Alberto Borghese. "Multi-scale Support Vector Regression." In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596630.
Full textRuta, Dymitr, Ling Cen, and Quang Hieu Vu. "Greedy Incremental Support Vector Regression." In 2019 Federated Conference on Computer Science and Information Systems. IEEE, 2019. http://dx.doi.org/10.15439/2019f364.
Full textReports on the topic "Support vector regression"
Puttanapong, Nattapong, Arturo M. Martinez Jr, Mildred Addawe, Joseph Bulan, Ron Lester Durante, and Marymell Martillan. Predicting Poverty Using Geospatial Data in Thailand. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200434-2.
Full textAlwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, December 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Full text