To see the other types of publications on this topic, follow the link: Supported iron.

Journal articles on the topic 'Supported iron'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Supported iron.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Groot, C. K., A. M. van Der Kraan, V. H. J. De Beer, and R. Prins. "Carbon-Supported Iron Sulfide Catalysts." Bulletin des Sociétés Chimiques Belges 93, no. 8-9 (September 1, 2010): 707–18. http://dx.doi.org/10.1002/bscb.19840930812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nath, N., H. C. Pradhan, T. Maharana, and A. K. Sutar. "Polymer Supported Schiff Base Iron Complex for Epoxidation of Trans-stilbene." International Journal of Chemical Engineering and Applications 8, no. 2 (April 2017): 127–30. http://dx.doi.org/10.18178/ijcea.2017.8.2.643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morrow, B. A., M. I. Baraton, and J. L. Roustan. "Trinitrosyl species on supported iron catalysts." Journal of the American Chemical Society 109, no. 24 (November 1987): 7541–43. http://dx.doi.org/10.1021/ja00258a055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spojakina, A., E. Kraleva, K. Jiratova, and L. Petrov. "TiO2-supported iron–molybdenum hydrodesulfurization catalysts." Applied Catalysis A: General 288, no. 1-2 (July 2005): 10–17. http://dx.doi.org/10.1016/j.apcata.2005.02.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guerrero-Ruiz, A., A. Sepúlveda-Escribano, and I. Rodríguez-Ramos. "Carbon supported bimetallic catalysts containing iron." Applied Catalysis A: General 81, no. 1 (January 1992): 81–100. http://dx.doi.org/10.1016/0926-860x(92)80262-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guerrero-Ruiz, A., A. Sepúlveda-Escribano, and I. Rodríguez-Ramos. "Carbon-supported bimetallic catalysts containing iron." Applied Catalysis A: General 81, no. 1 (January 1992): 101–12. http://dx.doi.org/10.1016/0926-860x(92)80263-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramselaar, W. L. T. M., M. W. J. Crajé, R. H. Hadders, E. Gerkema, V. H. J. de Beer, and A. M. van der Kraan. "Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts." Applied Catalysis 65, no. 1 (October 1990): 69–84. http://dx.doi.org/10.1016/s0166-9834(00)81589-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pop, Grigore, Gavril Musca, Ecaterina Pop, Pavel Tomi, Adrian Sarǎu, and Ioana Ilie. "Iron complexes used for the preparation of zeolites supported iron catalysts." Applied Catalysis 56, no. 1 (January 1989): L1—L7. http://dx.doi.org/10.1016/s0166-9834(00)80149-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Noskova, N. F., A. R. Brodskii, S. R. Savel'ev, and A. I. Kazimova. "Iron stearate-based organometallic catalysts supported on iron and nickel hydroxides." Journal of Molecular Catalysis 55, no. 1 (November 1989): 94–100. http://dx.doi.org/10.1016/0304-5102(89)80245-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Johnston, P., G. J. Hutchings, N. J. Coville, K. P. Finch, and J. R. Moss. "CO hydrogenation using supported iron carbonyl complexes." Applied Catalysis A: General 186, no. 1-2 (October 1999): 245–53. http://dx.doi.org/10.1016/s0926-860x(99)00147-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Šljivančanin, Ž., and Alfredo Pasquarello. "Nitrogen adsorption on a supported iron nanocluster." Vacuum 74, no. 2 (May 2004): 173–77. http://dx.doi.org/10.1016/j.vacuum.2003.12.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ye, Rong, Franco F. Faucher, and Gabor A. Somorjai. "Supported iron catalysts for Michael addition reactions." Molecular Catalysis 447 (March 2018): 65–71. http://dx.doi.org/10.1016/j.mcat.2017.12.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ramselaar, W. L. T. M., R. H. Hadders, E. Gerkema, V. H. J. De Beer, E. M. Van Oers, and A. M. Van Der Kraan*. "Sulfidation of carbon-supported iron oxide catalysts." Applied Catalysis 51, no. 1 (June 1989): 263–83. http://dx.doi.org/10.1016/s0166-9834(00)80211-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tomašević, Andjelka, Goran Bošković, Dušan Mijin, and Ernő E. Kiss. "Decomposition of methomyl over supported iron catalysts." Reaction Kinetics and Catalysis Letters 91, no. 1 (June 2007): 53–59. http://dx.doi.org/10.1007/s11144-007-5094-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

PHADKE, M. "CO hydrogenation over niobia-supported iron catalysts." Journal of Catalysis 100, no. 2 (August 1986): 503–6. http://dx.doi.org/10.1016/0021-9517(86)90119-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Berry, Frank J., and Simon Jobson. "An iron-57 Mössbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts." Hyperfine Interactions 69, no. 1-4 (April 1992): 775–78. http://dx.doi.org/10.1007/bf02401941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sepehri, S., M. Heidarpour, and J. Abedi-Koupai. "Nitrate removal from aqueous solution using natural zeolite-supported zero-valent iron nanoparticles." Soil and Water Research 9, No. 4 (November 10, 2014): 224–32. http://dx.doi.org/10.17221/11/2014-swr.

Full text
Abstract:
A report on the synthesis and characterization of nanoscale zero-valent iron in the presence of natural zeolite as a stabilizer is presented. This novel adsorbent (Ze-nZVI) was synthesized by the sodium borohydride reduction method. The scanning electron microscopy (SEM) images revealed that the stabilized nZVI particles were uniformly dispersed across the zeolite surface without obvious aggregation. The synthesized Ze-nZVI material was then tested for the removal of nitrate from aqueous solution. The effect of various parameters on the removal process, such as initial concentration of nitrate, contact time, initial pH, and Ze-nZVI dosage, was studied. Batch experiments revealed that the supported nZVI materials generally have great flexibility and high activity for nitrate removal from aqueous solution. The nitrogen mass balance calculation showed that ammonium was the major product of nitrate reduction by Ze-nZVI (more than 84% of the nitrate reduced); subsequently the natural zeolite in Ze-nZVI removed it completely via adsorption. The kinetic experiments indicated that the removal of nitrate followed the pseudo-second-order kinetic model. The removal efficiency for nitrate decreased continuously with an increase in the initial solution pH value and Ze-nZVI dosage but increased with the increase in the initial concentration of nitrate. The overall results indicated the potential efficacy of Ze-nZVI for environmental remediation application.
APA, Harvard, Vancouver, ISO, and other styles
18

Cheng, Rong, Xiang Zheng, Guan Qing Li, and Jian Long Wang. "Supported Iron Nanoparticles for Removal of Pentachlorophenol in Water." Advanced Materials Research 772 (September 2013): 359–64. http://dx.doi.org/10.4028/www.scientific.net/amr.772.359.

Full text
Abstract:
Two kinds of supported iron nanoparticles by activated carbon/carbon nanotubes were synthesized under ambient condition in this study. And their performance for pentachlorophenol (PCP) removal in water was examined. The SEM images showed that the nanoparticles supported by carbon nanotubes (Fe-CNTs) were of better dispersibility and smaller particle size than that by activated carbon (Fe-C). And the iron content in both of Fe-CNTs and Fe-C system measured by EDS was similar to each other. But the removal rate of PCP in the former system was obviously lower than the latter. It might be due to the more excellent adsorption capacity of activated carbon. And another main reason could be the reduction of adsorption sites due to the occupation of iron nanoparticles. The removal of PCP from the solution was the result of both of the activated carbon/carbon nanotubes adsorption and iron degradation. And the adsorption process was prior to the degradation by iron nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Jyh-Fu, Min-Dar Lee, and Poh-Kun Tseng. "Fischer-Tropsch synthesis on supported iron catalysts prepared from iron(III) chloride." Applied Catalysis 52, no. 1 (January 1989): 193–209. http://dx.doi.org/10.1016/s0166-9834(00)83384-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Carneiro, O. C., P. E. Anderson, N. M. Rodriguez, and R. T. K. Baker. "Decomposition of CO−H2over Graphite Nanofiber-Supported Iron and Iron−Copper Catalysts." Journal of Physical Chemistry B 108, no. 35 (September 2004): 13307–14. http://dx.doi.org/10.1021/jp031235a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pang, Zhi Hua, Xiao Shan Jia, Kai Liu, Zhen Xing Wang, Qi Jing Luo, and Jun Luo. "Preparation, Characterization and their Performance of the Supported Nanoscale Zero-Valent Iron Materials with Different Iron Contents." Advanced Materials Research 573-574 (October 2012): 155–62. http://dx.doi.org/10.4028/www.scientific.net/amr.573-574.155.

Full text
Abstract:
Taking the organic modified montmorillonite as a carrier and dispersant, the supported nanoscale zero-valent iron materials with different iron contents were synthesized through the ferrous sulfate (FeSO4) and the sodium borohydride (NaBH4) in it. The structure and morphology of the materials were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Finally, the performances of the supported nanoscale zero-valent iron were studied by high-performance liquid chromatography to determine the adsorption and degradation of 4-chlorophenol. The results indicate that the supported nanoscale zero-valent iron was well dispersed,different iron dosages imposed a visible effect on the morphology and particle diameter of iron;the degradation of 4-chlorophenol resulted from adsorption and degradation processes. Materials with different iron contents exhibited significantly different performance levels in terms of 4-chlorophenol adsorption and degradation.
APA, Harvard, Vancouver, ISO, and other styles
22

Ramselaar, W. L. T. M., M. W. J. Crajé, E. Gerkema, V. H. J. De Beer, and A. M. Van Der Kraan. "Sulphidation of carbon-supported iron-molybdemum oxide catalysts." Applied Catalysis 54, no. 1 (September 1989): 217–39. http://dx.doi.org/10.1016/s0166-9834(00)82366-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Prat, Jacob R., Carlo A. Gaggioli, Ryan C. Cammarota, Eckhard Bill, Laura Gagliardi, and Connie C. Lu. "Bioinspired Nickel Complexes Supported by an Iron Metalloligand." Inorganic Chemistry 59, no. 19 (September 21, 2020): 14251–62. http://dx.doi.org/10.1021/acs.inorgchem.0c02041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Eshelman, Lyn M., and W. Nicholas Delgass. "Acetonitrile synthesis over potassium-promoted, supported iron catalysts." Catalysis Today 21, no. 1 (August 30, 1994): 229–42. http://dx.doi.org/10.1016/0920-5861(94)80046-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pommier, B., J. P. Reymond, and S. J. Teichner. "Fischer-Tropsch Synthesis on Oxidized Supported Iron Catalysts." Zeitschrift für Physikalische Chemie 144, no. 144 (January 1985): 203–22. http://dx.doi.org/10.1524/zpch.1985.144.144.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Das, Taraknath, and Goutam Deo. "Promotion of Alumina Supported Cobalt Catalysts by Iron." Journal of Physical Chemistry C 116, no. 39 (September 19, 2012): 20812–19. http://dx.doi.org/10.1021/jp3007206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Groot, C. K., P. J. G. D. van De Gender, W. S. Niedžwiedž, A. M. van Der Kraan, V. H. J. De Beer, and R. Prins. "Carbon-, alumina-, and silica-supported iron sulfide catalysts." Bulletin des Sociétés Chimiques Belges 97, no. 3 (September 1, 2010): 167–76. http://dx.doi.org/10.1002/bscb.19880970301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Raróg-Pilecka, W., A. Jedynak-Koczuk, J. Petryk, E. Miśkiewicz, S. Jodzis, Z. Kaszkur, and Z. Kowalczyk. "Carbon-supported cobalt–iron catalysts for ammonia synthesis." Applied Catalysis A: General 300, no. 2 (January 2006): 181–85. http://dx.doi.org/10.1016/j.apcata.2005.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bartholomew, Calvin H. "Hydrogen adsorption on supported cobalt, iron, and nickel." Catalysis Letters 7, no. 1-4 (1991): 27–51. http://dx.doi.org/10.1007/bf00764490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tasfy, S. F. H., N. A. M. Zabidi, and D. Subbarao. "Comparison of Synthesis Techniques for Supported Iron Nanocatalysts." Journal of Applied Sciences 11, no. 7 (March 15, 2011): 1150–56. http://dx.doi.org/10.3923/jas.2011.1150.1156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Xiao-Li, Jia-Xiu Guo, Ying-Hao Chu, De-Ming Luo, Hua-Qiang Yin, Ming-Chao Sun, and Reha Yavuz. "Desulfurization performance of iron supported on activated carbon." Fuel 123 (May 2014): 93–100. http://dx.doi.org/10.1016/j.fuel.2014.01.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Beguin, François, and Elżbieta Frackowiak. "Electrochemical synthesis of iron supported on exfoliated graphite." Journal of Physics and Chemistry of Solids 57, no. 6-8 (June 1996): 841–47. http://dx.doi.org/10.1016/0022-3697(95)00360-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

van de Loosdrecht, J., A. M. van der Kraan, A. J. van Dillen, and J. W. Geus. "Metal-support interaction: titania-supported nickel-iron catalysts." Catalysis Letters 41, no. 1-2 (March 1996): 27–34. http://dx.doi.org/10.1007/bf00811708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kastner, James R., Sudhagar Mani, and Ankita Juneja. "Catalytic decomposition of tar using iron supported biochar." Fuel Processing Technology 130 (February 2015): 31–37. http://dx.doi.org/10.1016/j.fuproc.2014.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hendriksen, P. V., F. Bødker, and S. Mørup. "Vibrations of carbon-supported ultrafine iron oxide particles." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 76, no. 1-4 (April 1993): 221–22. http://dx.doi.org/10.1016/0168-583x(93)95187-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

van Thien Duc, Nguyen, Suriati Sufian, Nurlidia Mansor, and Noorhana Yahya. "Investigation of Carbon Nanofiber Supported Iron Catalyst Preparation by Deposition Precipitation." Advanced Materials Research 1043 (October 2014): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amr.1043.71.

Full text
Abstract:
An ammonia synthesis using magnetic field to replace Haber-Bosch’s ammonia production is great technological challenge in novel magnetized catalysts area. The carbon nanofiber supported iron catalyst was prepared by modifying carbon nanofiber support surface and later using urea to precipitate iron nitrate by deposition precipitation. It was found that the particle size was in a range of 5-50nm and well dispersion of iron was shown by transmission electron microscopy. This was strongly influenced by alteration of carbon nanofiber surface from hydrophobic to hydrophilic and with high adsorption sites as oxygen functional groups and defects. The lower iron loading between 5 and 40%wt, the lower iron accumulation and the narrower the particle size distribution of 10-20nm. The result suggests that the iron particles are in a good size range for iron catalyst activity for ammonia synthesis as reported by Morawski et.al and Figurski et.al authors.
APA, Harvard, Vancouver, ISO, and other styles
37

Krishnankutty, Nalini, Laxman N. Mulay, and M. Albert Vannice. "Magnetic characterization of carbon-supported iron, iron-manganese, potassium-iron, and potassium-iron-manganese catalysts prepared from carbonyl clusters." Journal of Physical Chemistry 96, no. 24 (November 1992): 9944–51. http://dx.doi.org/10.1021/j100203a067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Alotaibi, Khalid M., Lewis Shiels, Laure Lacaze, Tanya A. Peshkur, Peter Anderson, Libor Machala, Kevin Critchley, Siddharth V. Patwardhan, and Lorraine T. Gibson. "Iron supported on bioinspired green silica for water remediation." Chemical Science 8, no. 1 (2017): 567–76. http://dx.doi.org/10.1039/c6sc02937j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Berry, F. J., and S. Jobson. "Iron-57 and iridium-193 Mössbauer spectroscopic studies of supported iron-iridium catalysts." Hyperfine Interactions 41, no. 1 (December 1988): 611–16. http://dx.doi.org/10.1007/bf02400465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rodríguez-Reinoso, F., I. Rodríguez-Ramos, A. Guerrero-Ruiz, and J. D. López-González. "Hydrogenation of CO on carbon-supported iron catalysts prepared from iron penta-carbonyl." Applied Catalysis 21, no. 2 (March 1986): 251–61. http://dx.doi.org/10.1016/s0166-9834(00)81358-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zwart, Jaap, and Jef Vink. "Fischer-tropsch synthesis using zeolite-supported iron catalysts derived from iron carbonyl complexes." Applied Catalysis 33, no. 2 (September 1987): 383–93. http://dx.doi.org/10.1016/s0166-9834(00)83069-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Leonard, Daniel P., William F. Stickle, and Xiulei Ji. "Carbon-Supported Iron Phosphides: Highest Intrinsic Oxygen Evolution Activity of the Iron Triad." ACS Applied Energy Materials 1, no. 8 (July 16, 2018): 3593–97. http://dx.doi.org/10.1021/acsaem.8b00861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sakthivel, R., B. Das, B. Satpati, and B. K. Mishra. "Gold supported iron oxide–hydroxide derived from iron ore tailings for CO oxidation." Applied Surface Science 255, no. 13-14 (April 2009): 6577–81. http://dx.doi.org/10.1016/j.apsusc.2009.02.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Malek, Nur Hanina, Mohammad Asadullah, and Arina Sauki. "Tar Elimination from Producer Gas by Using In Situ Catalytic Reforming of Tar." Advanced Materials Research 1113 (July 2015): 459–64. http://dx.doi.org/10.4028/www.scientific.net/amr.1113.459.

Full text
Abstract:
Tar removal from producer gas was investigated using activated carbon supported iron catalyst. Activated carbon was derived from jute stick biomass. The catalyst surface areas and pore volume were characterized by using iodiometric titration which shows that as the iron loading percentage increased, the adsorption capability was also increased which represents the increment of pore volume of the catalyst. Based on XRD pattern, the iron species formed on the activated carbon surface is mostly amorphous magnetite (Fe3O4) species coexisted with the reduced irons (α-Fe and γ-Fe). The reduced iron on catalyst surface justify the active phase which enhances the tar reforming during biomass gasification.
APA, Harvard, Vancouver, ISO, and other styles
45

Angasa, Eka, Sal Prima Yudha, Evi Maryanti, and Taupik Rahman. "SINTESIS MATERIAL BESI BERPENDUKUNG ZnAl2O4 (Fe/ZnAl2O4) DAN KARAKTERISASINYA." Jurnal Riset Kimia 4, no. 2 (February 11, 2015): 26. http://dx.doi.org/10.25077/jrk.v4i2.125.

Full text
Abstract:
ABSTRACT The aims of this work was to synthesize ZnAl2O4-supported iron material (Fe/ZnAl2O4). The Fe/ZnAl2O4 materials were prepared by impregnation of iron ions (FeCl3 and (NH4)2Fe(SO4)2 precursors) in solution to ZnAl2O4. Characterization of products using XRD shows that difractogram of Fe/ZnAl2O4 formed was similar to difractogram of Fe/ZnAl2O4 standard. This mean that ZnAl2O4-supported iron material has been successfully synthesized. Keywords: Iron, ZnAl2O4, impregnation
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Siyuan, Chengchao Liu, Yao Chen, Jingping Hong, Yanxi Zhao, Yuhua Zhang, and Jinlin Li. "The effect of Mn on the performance of MCF-supported highly dispersed iron catalysts for Fischer–Tropsch synthesis." Catalysis Science & Technology 10, no. 2 (2020): 502–9. http://dx.doi.org/10.1039/c9cy02140j.

Full text
Abstract:
MCF supported iron catalysts with high loading (30%) and high dispersion were prepared. The Mn promoter influenced the reducibility and carbonization of supported iron catalysts. Higher C5+ selectivity was achieved by appropriate Mn promotion.
APA, Harvard, Vancouver, ISO, and other styles
47

Ordomsky, V. V., B. Legras, K. Cheng, S. Paul, and A. Y. Khodakov. "The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis." Catalysis Science & Technology 5, no. 3 (2015): 1433–37. http://dx.doi.org/10.1039/c4cy01631a.

Full text
Abstract:
High reactivity of iron carbides enhances the Fischer–Tropsch reaction rate on supported iron catalysts. Carbon atoms in iron carbide are involved in the initiation of chain growth in Fischer–Tropsch synthesis.
APA, Harvard, Vancouver, ISO, and other styles
48

IGARASHI, Naoko Y., Sanchwan LI, Sayaka ISHII, Aiki IWASA, Taishi HASEGAWA, Anawat KETCONG, Katsutoshi YAMAMOTO, Kenji ASAMI, and Kaoru FUJIMOTO. "Mesoporous Carbon-supported Iron Catalyst for Fischer-Tropsch Synthesis." Journal of the Japan Petroleum Institute 64, no. 1 (January 1, 2021): 17–21. http://dx.doi.org/10.1627/jpi.64.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yang, Jinghe, Bo Zhao, Huabo Zhao, Anhui Lu, and Ding Ma. "Graphene-supported Iron Phosphide Nanoparticles for Fischer-Tropsch Synthesis." Acta Chimica Sinica 71, no. 10 (2013): 1365. http://dx.doi.org/10.6023/a13060591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lawrinenko, Michael, Zhuangji Wang, Robert Horton, Deyny Mendivelso-Perez, Emily A. Smith, Terry E. Webster, David A. Laird, and J. Hans van Leeuwen. "Macroporous Carbon Supported Zerovalent Iron for Remediation of Trichloroethylene." ACS Sustainable Chemistry & Engineering 5, no. 2 (January 9, 2017): 1586–93. http://dx.doi.org/10.1021/acssuschemeng.6b02375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography