Journal articles on the topic 'Supported lipid bilayer, ligand/receptor interactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 journal articles for your research on the topic 'Supported lipid bilayer, ligand/receptor interactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Biswas, Kabir H., and Jay T. Groves. "Hybrid Live Cell–Supported Membrane Interfaces for Signaling Studies." Annual Review of Biophysics 48, no. 1 (2019): 537–62. http://dx.doi.org/10.1146/annurev-biophys-070317-033330.
Full textDaniel, Susan, Fernando Albertorio, and Paul S. Cremer. "Making Lipid Membranes Rough, Tough, and Ready to Hit the Road." MRS Bulletin 31, no. 7 (2006): 536–40. http://dx.doi.org/10.1557/mrs2006.139.
Full textDi Iorio, Daniele, Yao Lu, Joris Meulman, and Jurriaan Huskens. "Recruitment of receptors at supported lipid bilayers promoted by the multivalent binding of ligand-modified unilamellar vesicles." Chemical Science 11, no. 12 (2020): 3307–15. http://dx.doi.org/10.1039/d0sc00518e.
Full textAlves, Anna Carolina Schneider, Reinaldo Antonio Dias, Luciano Porto Kagami, et al. "Beyond the "Lock and Key" Paradigm: Targeting Lipid Rafts to Induce the Selective Apoptosis of Cancer Cells." Current Medicinal Chemistry 25, no. 18 (2018): 2082–104. http://dx.doi.org/10.2174/0929867325666180111100601.
Full textGhosh Moulick, R., D. Afanasenkau, S. E. Choi, et al. "Reconstitution of Fusion Proteins in Supported Lipid Bilayers for the Study of Cell Surface Receptor–Ligand Interactions in Cell–Cell Contact." Langmuir 32, no. 14 (2016): 3462–69. http://dx.doi.org/10.1021/acs.langmuir.5b04644.
Full textJönsson, Peter, Jennifer H. Southcombe, Ana Mafalda Santos, et al. "Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions." Proceedings of the National Academy of Sciences 113, no. 20 (2016): 5682–87. http://dx.doi.org/10.1073/pnas.1513918113.
Full textZhang, Yun, Yongzhi Qiu, Aaron T. Blanchard, et al. "Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation." Proceedings of the National Academy of Sciences 115, no. 2 (2017): 325–30. http://dx.doi.org/10.1073/pnas.1710828115.
Full textWang, Li, Xin-Pu Hou, Angelica Ottova, and H. Ti Tien. "Receptor–ligand interactions in a reconstituted bilayer lipid membrane." Electrochemistry Communications 2, no. 5 (2000): 287–89. http://dx.doi.org/10.1016/s1388-2481(00)00008-4.
Full textZhdanov, Vladimir P. "Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer." European Biophysics Journal 49, no. 5 (2020): 395–400. http://dx.doi.org/10.1007/s00249-020-01441-0.
Full textTorres, Manuel, Catalina Ana Rosselló, Paula Fernández-García, Victoria Lladó, Or Kakhlon, and Pablo Vicente Escribá. "The Implications for Cells of the Lipid Switches Driven by Protein–Membrane Interactions and the Development of Membrane Lipid Therapy." International Journal of Molecular Sciences 21, no. 7 (2020): 2322. http://dx.doi.org/10.3390/ijms21072322.
Full textNair, Pradeep M., Heather Flores, Alvin Gogineni, et al. "Enhancing the antitumor efficacy of a cell-surface death ligand by covalent membrane display." Proceedings of the National Academy of Sciences 112, no. 18 (2015): 5679–84. http://dx.doi.org/10.1073/pnas.1418962112.
Full textHigo, Junichi, Kota Kasahara, Mitsuhito Wada, et al. "Free-energy landscape of molecular interactions between endothelin 1 and human endothelin type B receptor: fly-casting mechanism." Protein Engineering, Design and Selection 32, no. 7 (2019): 297–308. http://dx.doi.org/10.1093/protein/gzz029.
Full textMenon, Santosh T., May Han, and Thomas P. Sakmar. "Rhodopsin: Structural Basis of Molecular Physiology." Physiological Reviews 81, no. 4 (2001): 1659–88. http://dx.doi.org/10.1152/physrev.2001.81.4.1659.
Full textWakefield, Devin L., David Holowka та Barbara Baird. "The FcεRI signaling cascade and integrin trafficking converge at patterned ligand surfaces". Molecular Biology of the Cell 28, № 23 (2017): 3383–96. http://dx.doi.org/10.1091/mbc.e17-03-0208.
Full textChen, Zhongwen, Dongmyung Oh, Kabir H. Biswas, Cheng-Han Yu, Ronen Zaidel-Bar, and Jay T. Groves. "Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility." Proceedings of the National Academy of Sciences 115, no. 25 (2018): E5696—E5705. http://dx.doi.org/10.1073/pnas.1719961115.
Full textLoy, Dominik M., Philipp M. Klein, Rafał Krzysztoń, Ulrich Lächelt, Joachim O. Rädler, and Ernst Wagner. "A microfluidic approach for sequential assembly of siRNA polyplexes with a defined structure-activity relationship." PeerJ Materials Science 1 (October 15, 2019): e1. http://dx.doi.org/10.7717/peerj-matsci.1.
Full textJahn, Thomas, Stacie Gooch, Jaqueline Rogerio, and Kenneth Weinberg. "Spatiotemporal Regulation of C-Kit Signaling through Lipid Rafts." Blood 104, no. 11 (2004): 819. http://dx.doi.org/10.1182/blood.v104.11.819.819.
Full textvan Belkum, Alex, Carina Almeida, Benjamin Bardiaux, et al. "Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens." Diagnostics 11, no. 7 (2021): 1259. http://dx.doi.org/10.3390/diagnostics11071259.
Full textLi, Long, Bernd Stumpf, and Ana-Sunčana Smith. "Molecular Biomechanics Controls Protein Mixing and Segregation in Adherent Membranes." International Journal of Molecular Sciences 22, no. 7 (2021): 3699. http://dx.doi.org/10.3390/ijms22073699.
Full textWilmes, Stephan, Maximillian Hafer, Tess A. Stanly, et al. "New Paradigms for the Mechanisms of Thrombopoietin Receptor Activation and Dysregulation By the JAK2V617F Mutation." Blood 134, Supplement_1 (2019): 2962. http://dx.doi.org/10.1182/blood-2019-129234.
Full textSalo-Ahen, Outi M. H., Ida Alanko, Rajendra Bhadane, et al. "Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development." Processes 9, no. 1 (2020): 71. http://dx.doi.org/10.3390/pr9010071.
Full textSaha, Asim, Roddy S. O'Connor, Govindarajan Thangavelu, et al. "Loss of Programmed Death Ligand-1 Expression on Donor T Cells Lessens Acute Graft-Versus-Host Disease Lethality." Blood 126, no. 23 (2015): 147. http://dx.doi.org/10.1182/blood.v126.23.147.147.
Full textLi, Xuerong, Huiqing Chen, Steven S. Oh, and Athar H. Chishti. "A Novel Plasmodium falciparum Microneme Protein Interacts with Host Band 3 during Red Cell Invasion." Blood 108, no. 11 (2006): 539. http://dx.doi.org/10.1182/blood.v108.11.539.539.
Full textLee, Donggeun, Woo Hyuk Jung, Suho Lee, et al. "Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24122-8.
Full textDam, Tommy, Victoria Junghans, Jane Humphrey, Manto Chouliara, and Peter Jönsson. "Calcium Signaling in T Cells Is Induced by Binding to Nickel-Chelating Lipids in Supported Lipid Bilayers." Frontiers in Physiology 11 (January 21, 2021). http://dx.doi.org/10.3389/fphys.2020.613367.
Full textFelce, James H., Lucia Parolini, Erdinc Sezgin, et al. "Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse." Frontiers in Cell and Developmental Biology 8 (January 18, 2021). http://dx.doi.org/10.3389/fcell.2020.608484.
Full textOttova, A. Leitmannova, and H. Ti Tien. "Ligand-Receptor Contact Interactions Using Self-Assembled Bilayer Lipid Membranes." MRS Proceedings 360 (1994). http://dx.doi.org/10.1557/proc-360-339.
Full textLi, Long, Jinglei Hu, Huaping Wu, and Fan Song. "Cis-interaction of ligands on a supported lipid bilayer affects their binding to cell adhesion receptors." Science China Physics, Mechanics & Astronomy 64, no. 10 (2021). http://dx.doi.org/10.1007/s11433-021-1752-0.
Full textLi, Long, Xiaohuan Wang, Helong Wu, Yingfeng Shao, Huaping Wu, and Fan Song. "Interplay Between Receptor-Ligand Binding and Lipid Domain Formation Depends on the Mobility of Ligands in Cell-Substrate Adhesion." Frontiers in Molecular Biosciences 8 (April 12, 2021). http://dx.doi.org/10.3389/fmolb.2021.655662.
Full textBanjade, Sudeep, and Michael K. Rosen. "Phase transitions of multivalent proteins can promote clustering of membrane receptors." eLife 3 (October 16, 2014). http://dx.doi.org/10.7554/elife.04123.
Full text