Journal articles on the topic 'Supramolecular catalysi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Supramolecular catalysi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jansen, Dennis, Johannes Gramüller, Felix Niemeyer, et al. "What is the role of acid–acid interactions in asymmetric phosphoric acid organocatalysis? A detailed mechanistic study using interlocked and non-interlocked catalysts." Chemical Science 11, no. 17 (2020): 4381–90. http://dx.doi.org/10.1039/d0sc01026j.
Full textDydio, Paweł, and Joost N. H. Reek. "Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization." Chem. Sci. 5, no. 6 (2014): 2135–45. http://dx.doi.org/10.1039/c3sc53505c.
Full textLlorente, Nuria, Héctor Fernández-Pérez, José L. Núñez-Rico, et al. "Efficient modular phosphorus-containing ligands for stereoselective catalysis." Pure and Applied Chemistry 91, no. 1 (2019): 3–15. http://dx.doi.org/10.1515/pac-2018-0805.
Full textQi, Miao, Benny Kia Jia Chew, Kwai Ga Yee, Zhong-Xing Zhang, David J. Young, and T. S. Andy Hor. "A catch–release catalysis system based on supramolecular host–guest interactions." RSC Advances 6, no. 28 (2016): 23686–92. http://dx.doi.org/10.1039/c6ra01846g.
Full textChow, Cheuk-Fai, Pui-Yu Ho, Wing-Leung Wong, Yu-Jing Lu, Qian Tang, and Cheng-Bin Gong. "Catalyst displacement assay: a supramolecular approach for the design of smart latent catalysts for pollutant monitoring and removal." Chemical Science 8, no. 5 (2017): 3812–20. http://dx.doi.org/10.1039/c6sc05584b.
Full textSchifferer, Lukas, Martin Stinglhamer, Kirandeep Kaur, and Olga García Macheño. "Halides as versatile anions in asymmetric anion-binding organocatalysis." Beilstein Journal of Organic Chemistry 17 (September 1, 2021): 2270–86. http://dx.doi.org/10.3762/bjoc.17.145.
Full textSchifferer, Lukas, Martin Stinglhamer, Kirandeep Kaur, and Mancheño Olga García. "Halides as versatile anions in asymmetric anion-binding organocatalysis." Beilstein J. Org. Chem. 17 (September 1, 2021): 2270–86. https://doi.org/10.3762/bjoc.17.145.
Full textReek, Joost N. H. "ChemInform Abstract: New Supramolecular Approaches in Transition Metal Catalysis; Template-Ligand Assisted Catalyst Encapsulation, Self-Assembled Ligands and Supramolecular Catalyst Immobilization." ChemInform 41, no. 25 (2010): no. http://dx.doi.org/10.1002/chin.201025226.
Full textFarzinpour, Farzaneh, Ayla Steinhauer, Morgan McKee, Arne Luetzen, and Nikolay Kornienko. "Molecular Cages Accelerate Electrocatalytic NO3 - Reduction to NH3." ECS Meeting Abstracts MA2025-01, no. 52 (2025): 2592. https://doi.org/10.1149/ma2025-01522592mtgabs.
Full textSokolova, Daria, and Konrad Tiefenbacher. "Optimized iminium-catalysed 1,4-reductions inside the resorcinarene capsule: achieving >90% ee with proline as catalyst." RSC Advances 11, no. 40 (2021): 24607–12. http://dx.doi.org/10.1039/d1ra04333a.
Full textLudmila, Matienko, Zhigacheva Irina, Mil Elena, Albantova Anastasia, and Goloshchapov Alexander. "The Dual Function of PhOH Included in the Coordination Sphere of the Nickel Complexes in the Processes of Oxidation with Dioxygen." Molecules 27, no. 11 (2022): 3502. http://dx.doi.org/10.3390/molecules27113502.
Full textDalinger, Alexander I., Sabina F. Mamedova, Julia V. Burykina, Evgeniy O. Pentsak та Sergey Z. Vatsadze. "Reaction of β-Nitrostyrene with Diethyl Malonate in the Presence of Bispidines: The Unusual Role of the Organocatalyst". Chemistry 6, № 3 (2024): 387–406. http://dx.doi.org/10.3390/chemistry6030023.
Full textYan, Haotian. "Supramolecular catalysts: A critical review." Applied and Computational Engineering 84, no. 1 (2024): 124–33. http://dx.doi.org/10.54254/2755-2721/84/20240790.
Full textPappalardo, Puglisi, and Trusso Sfrazzetto. "Catalysis inside Supramolecular Capsules: Recent Developments." Catalysts 9, no. 7 (2019): 630. http://dx.doi.org/10.3390/catal9070630.
Full textTrausel, Fanny, Frank Versluis, Chandan Maity, et al. "Catalysis of Supramolecular Hydrogelation." Accounts of Chemical Research 49, no. 7 (2016): 1440–47. http://dx.doi.org/10.1021/acs.accounts.6b00137.
Full textDeraedt, Christophe, and Didier Astruc. "Supramolecular nanoreactors for catalysis." Coordination Chemistry Reviews 324 (October 2016): 106–22. http://dx.doi.org/10.1016/j.ccr.2016.07.007.
Full textSanders, Jeremy K. M. "Supramolecular Catalysis in Transition." Chemistry - A European Journal 4, no. 8 (1998): 1378–83. http://dx.doi.org/10.1002/(sici)1521-3765(19980807)4:8<1378::aid-chem1378>3.0.co;2-3.
Full textRix, Diane, and Jérôme Lacour. "Charged-Assisted Supramolecular Catalysis." Angewandte Chemie International Edition 49, no. 11 (2010): 1918–20. http://dx.doi.org/10.1002/anie.200906392.
Full textLehn, J. M. "Supramolecular reactivity and catalysis." Applied Catalysis A: General 113, no. 2 (1994): 105–14. http://dx.doi.org/10.1016/0926-860x(94)80017-0.
Full textFEITERS, M. C. "ChemInform Abstract: Supramolecular Catalysis." ChemInform 28, no. 4 (2010): no. http://dx.doi.org/10.1002/chin.199704323.
Full textHowlader, Prodip, and Michael Schmittel. "Heteroleptic metallosupramolecular aggregates/complexation for supramolecular catalysis." Beilstein Journal of Organic Chemistry 18 (May 27, 2022): 597–630. http://dx.doi.org/10.3762/bjoc.18.62.
Full textYang, Hui, and Ming Wah Wong. "Application of Halogen Bonding to Organocatalysis: A Theoretical Perspective." Molecules 25, no. 5 (2020): 1045. http://dx.doi.org/10.3390/molecules25051045.
Full textKoshti, Vijay S., Anirban Sen, Dinesh Shinde, and Samir H. Chikkali. "Self-assembly of P-chiral supramolecular phosphines on rhodium and direct evidence for Rh-catalyst-substrate interactions." Dalton Trans. 46, no. 40 (2017): 13966–73. http://dx.doi.org/10.1039/c7dt02923c.
Full textLeclercq, Loïc, Grégory Douyère, and Véronique Nardello-Rataj. "Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis." Catalysts 9, no. 2 (2019): 163. http://dx.doi.org/10.3390/catal9020163.
Full textVaquero, Mónica, Laura Rovira, and Anton Vidal-Ferran. "Supramolecularly fine-regulated enantioselective catalysts." Chemical Communications 52, no. 74 (2016): 11038–51. http://dx.doi.org/10.1039/c6cc04474c.
Full textNoyori, Ryoji, Christian A. Sandoval, Kilian Muñiz, and Takeshi Ohkuma. "Metal–ligand bifunctional catalysis for asymmetric hydrogenation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1829 (2005): 901–12. http://dx.doi.org/10.1098/rsta.2004.1536.
Full textRosamilia, Anthony E., Christopher R. Strauss, and Janet L. Scott. "Distillable ionic liquids for a new multicomponent reaction." Pure and Applied Chemistry 79, no. 11 (2007): 1869–77. http://dx.doi.org/10.1351/pac200779111869.
Full textWu, Yuzhe, Yuntong Li, Jie Mao, et al. "Metallosupramolecular Polymer Precursor Design for Multi-Element Co-Doped Carbon Shells with Improved Oxygen Reduction Reaction Catalytic Activity." Catalysts 9, no. 1 (2019): 102. http://dx.doi.org/10.3390/catal9010102.
Full textKadokawa, Jun-ichi, Takuya Shoji, and Kazuya Yamamoto. "Preparation of Amylose-Carboxymethyl Cellulose Conjugated Supramolecular Networks by Phosphorylase-Catalyzed Enzymatic Polymerization." Catalysts 9, no. 3 (2019): 211. http://dx.doi.org/10.3390/catal9030211.
Full textHaynes, Cally J. E., and Larissa K. S. von Krbek. "Hopping protons in supramolecular catalysis." Nature Chemistry 14, no. 9 (2022): 969–71. http://dx.doi.org/10.1038/s41557-022-01024-w.
Full textKlöck, Cornelius, Roy N. Dsouza, and Werner M. Nau. "Cucurbituril-Mediated Supramolecular Acid Catalysis." Organic Letters 11, no. 12 (2009): 2595–98. http://dx.doi.org/10.1021/ol900920p.
Full textLehn, Jean-Marie. "Supramolecular Catalysis of Phosphoryl Transfer." Phosphorus, Sulfur, and Silicon and the Related Elements 75, no. 1-4 (1993): 1. http://dx.doi.org/10.1080/10426509308037349.
Full textMeeuwissen, Jurjen, and Joost N. H. Reek. "Supramolecular catalysis beyond enzyme mimics." Nature Chemistry 2, no. 8 (2010): 615–21. http://dx.doi.org/10.1038/nchem.744.
Full textDawn, Arnab. "Supramolecular Gel as the Template for Catalysis, Inorganic Superstructure, and Pharmaceutical Crystallization." International Journal of Molecular Sciences 20, no. 3 (2019): 781. http://dx.doi.org/10.3390/ijms20030781.
Full textBernar, Ivan, Floris Rutjes, Johannes Elemans, and Roeland Nolte. "Aerobic Epoxidation of Low-Molecular-Weight and Polymeric Olefins by a Supramolecular Manganese Porphyrin Catalyst." Catalysts 9, no. 2 (2019): 195. http://dx.doi.org/10.3390/catal9020195.
Full textBilyachenko, Alexey N., Ivan S. Arteev, Victor N. Khrustalev, et al. "Cagelike Octacopper Methylsilsesquioxanes: Self-Assembly in The Focus of Alkaline Metal Ion Influence—Synthesis, Structure, and Catalytic Activity." Molecules 28, no. 3 (2023): 1211. http://dx.doi.org/10.3390/molecules28031211.
Full textChai, Lan-Qin, Yu-Li Zhang, Jun-Feng Tong, and Gang Liu. "Synthesis, Crystal Structure and Fluorescence Behavior of 2,6- Di(thiophen-2-yl)-benzo[1,2-d:4,5-d´]bisoxazole." Zeitschrift für Naturforschung B 68, no. 3 (2013): 239–44. http://dx.doi.org/10.5560/znb.2013-2301.
Full textFriščić, Tomislav, and Jean-Louis Do. "Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry." Synlett 28, no. 16 (2017): 2066–92. http://dx.doi.org/10.1055/s-0036-1590854.
Full textNurttila, Sandra S., Riccardo Zaffaroni, Simon Mathew, and Joost N. H. Reek. "Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere." Chemical Communications 55, no. 21 (2019): 3081–84. http://dx.doi.org/10.1039/c9cc00901a.
Full textHarraz, Deiaa M., and Jeffery T. Davis. "A self-assembled peroxidase from 5′-GMP and heme." Chemical Communications 54, no. 13 (2018): 1587–90. http://dx.doi.org/10.1039/c7cc09900b.
Full textMatienko, L. I., V. I. Binyukov, E. M. Mil, and G. E. Zaikov. "Supramolecular Macrostructures in the Mechanisms of Catalysis with Nickel or Iron Heteroligand Complexes." Current Organocatalysis 6, no. 1 (2019): 36–43. http://dx.doi.org/10.2174/2213337206666181231120410.
Full textMatienko, Ludmila, Mil Elena Mickhailovna, Binyukov Vladimir Ivanovich, and Goloshchapov Alexandr Nikolaevich. "AFM Research in Catalysis and Medicine." Current Organocatalysis 7, no. 3 (2020): 248–55. http://dx.doi.org/10.2174/2213337207999200717171645.
Full textFeng, Zhaoqianqi, Tengfei Zhang, Huaimin Wang, and Bing Xu. "Supramolecular catalysis and dynamic assemblies for medicine." Chemical Society Reviews 46, no. 21 (2017): 6470–79. http://dx.doi.org/10.1039/c7cs00472a.
Full textShome, Anshupriya. "Applications of Supramolecular Materials in Real World: A Mini Review." Asian Journal of Chemistry 35, no. 2 (2023): 305–15. http://dx.doi.org/10.14233/ajchem.2023.26952.
Full textGuo, Xiaojun, Xinyu Jia, Qin He, et al. "Supramolecular Double-Helical Polymers: Supramolecular Chiral Induction and Asymmetric Catalysis." Molecules 30, no. 7 (2025): 1517. https://doi.org/10.3390/molecules30071517.
Full textWennemers, Helma. "Peptides – Molecular Allrounders." CHIMIA International Journal for Chemistry 75, no. 6 (2021): 525–29. http://dx.doi.org/10.2533/chimia.2021.525.
Full textMatienko, Ludmila, Vladimir Binyukov, Larisa Mosolova, Elena Mil, and Gennady Zaikov. "Some Supramolecular Nanostructures Based on Catalytic Active Nickel and Iron Heteroligand Complexes. Functional Models of Ni(Fe) Dioxygenases." Chemistry & Chemical Technology 8, no. 3 (2014): 339–48. http://dx.doi.org/10.23939/chcht08.03.339.
Full textRen, Yufeng, Wei Zhang, Jun Lu, Kai Gao, Xiali Liao, and Xiaozhen Chen. "One-pot synthesis of tetrahydro-4H-chromenes by supramolecular catalysis in water." RSC Advances 5, no. 97 (2015): 79405–12. http://dx.doi.org/10.1039/c5ra14385c.
Full textBérubé, Christopher, Xavier Barbeau, Patrick Lagüe, and Normand Voyer. "Revisiting the Juliá–Colonna enantioselective epoxidation: supramolecular catalysis in water." Chemical Communications 53, no. 37 (2017): 5099–102. http://dx.doi.org/10.1039/c7cc01168g.
Full textAleman Garcia, Miguel Angel, Yuwei Hu, and Itamar Willner. "Switchable supramolecular catalysis using DNA-templated scaffolds." Chemical Communications 52, no. 10 (2016): 2153–56. http://dx.doi.org/10.1039/c5cc08873a.
Full text