To see the other types of publications on this topic, follow the link: Supramolecular sensing.

Journal articles on the topic 'Supramolecular sensing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Supramolecular sensing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hembury, Guy A., Victor V. Borovkov, and Yoshihisa Inoue. "Chirality-Sensing Supramolecular Systems." Chemical Reviews 108, no. 1 (January 2008): 1–73. http://dx.doi.org/10.1021/cr050005k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pinalli, Roberta, and Enrico Dalcanale. "Supramolecular Sensing with Phosphonate Cavitands." Accounts of Chemical Research 46, no. 2 (September 28, 2012): 399–411. http://dx.doi.org/10.1021/ar300178m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hein, Robert, Paul D. Beer, and Jason J. Davis. "Electrochemical Anion Sensing: Supramolecular Approaches." Chemical Reviews 120, no. 3 (January 9, 2020): 1888–935. http://dx.doi.org/10.1021/acs.chemrev.9b00624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dickert, F. L., and R. Sikorski. "Supramolecular strategies in chemical sensing." Materials Science and Engineering: C 10, no. 1-2 (December 1999): 39–46. http://dx.doi.org/10.1016/s0928-4931(99)00100-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sierra, Andrés F., Daniel Hernández-Alonso, Miguel A. Romero, José A. González-Delgado, Uwe Pischel, and Pablo Ballester. "Optical Supramolecular Sensing of Creatinine." Journal of the American Chemical Society 142, no. 9 (February 11, 2020): 4276–84. http://dx.doi.org/10.1021/jacs.9b12071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Xiaolong, and Tony D. James. "Glucose Sensing in Supramolecular Chemistry." Chemical Reviews 115, no. 15 (May 14, 2015): 8001–37. http://dx.doi.org/10.1021/cr500562m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Melegari, Monica, Michele Suman, Laura Pirondini, Davide Moiani, Chiara Massera, Franco Ugozzoli, Elina Kalenius, et al. "Supramolecular Sensing with Phosphonate Cavitands." Chemistry - A European Journal 14, no. 19 (June 27, 2008): 5772–79. http://dx.doi.org/10.1002/chem.200800327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dickert, F. L., U. P. A. Bäumler, and G. K. Zwissler. "Supramolecular structures and chemical sensing." Synthetic Metals 61, no. 1-2 (November 1993): 47–52. http://dx.doi.org/10.1016/0379-6779(93)91198-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Butera, Ester, Agatino Zammataro, Andrea Pappalardo, and Giuseppe Trusso Sfrazzetto. "Supramolecular Sensing of Chemical Warfare Agents." ChemPlusChem 86, no. 4 (April 2021): 681–95. http://dx.doi.org/10.1002/cplu.202100071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Hui, Jiaming Zhuang, Krishna R. Raghupathi, and S. Thayumanavan. "A supramolecular dissociation strategy for protein sensing." Chemical Communications 51, no. 97 (2015): 17265–68. http://dx.doi.org/10.1039/c5cc07408h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Smith, Bradley D. "Smart molecules for imaging, sensing and health (SMITH)." Beilstein Journal of Organic Chemistry 11 (December 10, 2015): 2540–48. http://dx.doi.org/10.3762/bjoc.11.274.

Full text
Abstract:
This autobiographical review provides a personal account of the author’s academic journey in supramolecular chemistry, including brief summaries of research efforts in membrane transport, molecular imaging, ion-pair receptors, rotaxane synthesis, squaraine rotaxanes, and synthtavidin technology. The article concludes with a short perspective of likely future directions in biomedical supramolecular chemistry.
APA, Harvard, Vancouver, ISO, and other styles
12

Xia, Huiyun, Guanyu Liu, Chuan Zhao, Xiaojuan Meng, Fangfang Li, Fengyan Wang, Li Duan, and Huaxin Chen. "Fluorescence sensing of amine vapours based on ZnS-supramolecular organogel hybrid films." RSC Advances 7, no. 28 (2017): 17264–70. http://dx.doi.org/10.1039/c7ra00556c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Qian, Zhao Li, Dan-Dan Tao, Qian Zhang, Peng Zhang, Dai-Ping Guo, and Yun-Bao Jiang. "Supramolecular aggregates as sensory ensembles." Chemical Communications 52, no. 88 (2016): 12929–39. http://dx.doi.org/10.1039/c6cc06075g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tortora, Luca, Giuseppe Pomarico, Sara Nardis, Eugenio Martinelli, Alexandro Catini, Arnaldo D’Amico, Corrado Di Natale, and Roberto Paolesse. "Supramolecular sensing mechanism of corrole thin films." Sensors and Actuators B: Chemical 187 (October 2013): 72–77. http://dx.doi.org/10.1016/j.snb.2012.09.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Massera, Chiara, Tahnee Barboza, Elisa Biavardi, Franco Ugozzoli, and Enrico Dalcanale. "Solid-state molecular recognition for supramolecular sensing." Acta Crystallographica Section A Foundations of Crystallography 69, a1 (August 25, 2013): s235. http://dx.doi.org/10.1107/s0108767313097985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Siering, Carsten, Bernd Beermann, and Siegfried R. Waldvogel. "Supramolecular Approach for Sensing Caffeine by Fluorescence." Supramolecular Chemistry 18, no. 1 (January 1, 2006): 23–27. http://dx.doi.org/10.1080/10610270500310479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kameta, Naohiro, Mitsutoshi Masuda, Go Mizuno, Nahoko Morii, and Toshimi Shimizu. "Supramolecular Nanotubeendo Sensing for a Guest Protein." Small 4, no. 5 (May 2008): 561–65. http://dx.doi.org/10.1002/smll.200700710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xue, Shufang, Liang Wang, Anil D. Naik, Julianna Oláh, Koen Robeyns, Aurelian Rotaru, Yunnan Guo, and Yann Garcia. "Iron(ii) pillared-layer responsive frameworks via “kagomé dual” (kgd) supramolecular tessellations." Inorganic Chemistry Frontiers 8, no. 14 (2021): 3532–46. http://dx.doi.org/10.1039/d1qi00585e.

Full text
Abstract:
FeII supramolecular metal organic framework was constructed by supramolecular tessellation. Guest respiration provides dual channel for optical and magnetic sensing based on allosteric effect.
APA, Harvard, Vancouver, ISO, and other styles
19

Kolesnichenko, Igor V., and Eric V. Anslyn. "Practical applications of supramolecular chemistry." Chemical Society Reviews 46, no. 9 (2017): 2385–90. http://dx.doi.org/10.1039/c7cs00078b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

De Rossi, D., A. Ahluwalia, and M. Mule. "Molecular and supramolecular systems for sensing and actuation." IEEE Engineering in Medicine and Biology Magazine 13, no. 1 (February 1994): 103–11. http://dx.doi.org/10.1109/51.265785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Anslyn, Eric V. "Supramolecular and Chemical Cascade Approaches to Molecular Sensing." Journal of the American Chemical Society 132, no. 45 (November 17, 2010): 15833–35. http://dx.doi.org/10.1021/ja108349y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Jie, Chendong Ji, Baozhong Lü, Maksim Rodin, Jan Paradies, Meizhen Yin, and Dirk Kuckling. "Dually Crosslinked Supramolecular Hydrogel for Cancer Biomarker Sensing." ACS Applied Materials & Interfaces 12, no. 33 (July 23, 2020): 36873–81. http://dx.doi.org/10.1021/acsami.0c08722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mondal, Sahidul, Tamal Kanti Ghosh, Bijit Chowdhury, and Pradyut Ghosh. "Supramolecular Self-Assembly Driven Selective Sensing of Phosphates." Inorganic Chemistry 58, no. 23 (November 8, 2019): 15993–6003. http://dx.doi.org/10.1021/acs.inorgchem.9b02483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

REINHOUDT, D. N., A. M. A. VAN WAGENINGEN, and B. H. HUISMAN. "ChemInform Abstract: Supramolecular Structures for Switching and Sensing." ChemInform 28, no. 17 (August 4, 2010): no. http://dx.doi.org/10.1002/chin.199717276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mallet, Alie M., Yuanli Liu, and Marco Bonizzoni. "An off-the-shelf sensing system for physiological phosphates." Chem. Commun. 50, no. 39 (2014): 5003–6. http://dx.doi.org/10.1039/c4cc01392a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kim, Kahee, Onur Buyukcakir, and Ali Coskun. "Diazapyrenium-based porous cationic polymers for colorimetric amine sensing and capture from CO2 scrubbing conditions." RSC Advances 6, no. 81 (2016): 77406–9. http://dx.doi.org/10.1039/c6ra16714d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Song, Jiang-Feng, Jing-Jing Luo, Ying-Ying Jia, Li-Dong Xin, Zhi-Zhu Lin, and Rui-Sha Zhou. "Solvent-induced construction of two zinc supramolecular isomers: synthesis, framework flexibility, sensing properties, and adsorption of dye molecules." RSC Advances 7, no. 58 (2017): 36575–84. http://dx.doi.org/10.1039/c7ra05049f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hewitt, Sarah H., Georgina Macey, Romain Mailhot, Mark R. J. Elsegood, Fernanda Duarte, Alan M. Kenwright, and Stephen J. Butler. "Tuning the anion binding properties of lanthanide receptors to discriminate nucleoside phosphates in a sensing array." Chemical Science 11, no. 14 (2020): 3619–28. http://dx.doi.org/10.1039/d0sc00343c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Wen, Shuyao Fan, Yong Liang, Shitang He, Yong Pan, Caihong Zhang, and Chuan Dong. "Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film." Sensors 18, no. 10 (September 27, 2018): 3247. http://dx.doi.org/10.3390/s18103247.

Full text
Abstract:
A Love wave-based sensing chip incorporating a supramolecular cryptophane A (CrypA) thin film was proposed for methane gas sensing in this work. The waveguide effect in the structure of SiO2/36° YX LiTaO3 will confine the acoustic wave energy in SiO2 thin-film, which contributes well to improvement of the mass loading sensitivity. The CrypA synthesized from vanillyl alcohol by a double trimerisation method was dropped onto the wave propagation path of the sensing device, and the adsorption to methane gas molecules by supramolecular interactions in CrypA modulates the acoustic wave propagation, and the corresponding frequency shifts were connected as the sensing signal. A theoretical analysis was performed to extract the coupling of modes for sensing devices simulation. Also, the temperature self-compensation of the Love wave devices was also achieved by using reverse polarity of the temperature coefficient in each media in the waveguide structure. The developed CrypA coated Love wave sensing device was connected into the differential oscillation loop, and the corresponding gas sensitive characterization was investigated. High sensitivity, fast response, and excellent temperature stability were successfully achieved.
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Yuan-Yuan, Ye Tian, Xiao-Qin Liu, Zhongwei Niu, Qing-Zheng Yang, Vaidhyanathan Ramamurthy, Chen-Ho Tung, Yu-Zhe Chen, and Li-Zhu Wu. "Luminescent supramolecular polymer nanoparticles for ratiometric hypoxia sensing, imaging and therapy." Materials Chemistry Frontiers 2, no. 10 (2018): 1893–99. http://dx.doi.org/10.1039/c8qm00309b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fang, Haobin, Guangmei Cai, Ya Hu, and Jianyong Zhang. "A tetraphenylethylene-based acylhydrazone gel for selective luminescence sensing." Chemical Communications 54, no. 24 (2018): 3045–48. http://dx.doi.org/10.1039/c8cc00008e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Monti, Donato, Sara Nardis, Manuela Stefanelli, Roberto Paolesse, Corrado Di Natale, and Arnaldo D'Amico. "Porphyrin-Based Nanostructures for Sensing Applications." Journal of Sensors 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/856053.

Full text
Abstract:
The construction of nanosized supramolecular hosts via self-assembly of molecular components is a fascinating field of research. Such intriguing class of architectures, beside their intrinsic intellectual stimuli, is of importance in many fields of chemistry and technology, such as material chemistry, catalysis, and sensor applications. Within this wide scenario, tailored solid films of porphyrin derivatives are structures of great potential for, among others, chemical sensor applications. The formation ofsupramoleculesrelays on noncovalent interactions (electrostatic, hydrogen bond, , or coordinative interactions) driven by the chemical information stored on the assembling molecules, such as shape and functional groups. This allows, for example, the formation of large well-defined porphyrin aggregates in solution that can be spontaneously transferred onto a solid surface, so achieving a solid system with tailored features. These films have been used, covering the bridge between nanostructures and microsystems, for the construction of solid-state sensors for volatiles and metal ion recognition and detection. Moreover, the variation of peripheral substituents of porphyrins, such as, for example, chiral appended functionalities, can result in the formation of porphyrin aggregates featuring high supramolecular chirality. This would allow the achievement of porphyrin layers characterised by different chiroptical and molecular recognition properties.
APA, Harvard, Vancouver, ISO, and other styles
33

Zheng, Debin, Zhengfeng Gao, Tengyan Xu, Chunhui Liang, Yang Shi, Ling Wang, and Zhimou Yang. "Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry." Nanoscale 10, no. 45 (2018): 21459–65. http://dx.doi.org/10.1039/c8nr07534d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yang, Xiaoli, Yejing Liu, Jiaheng Li, Qi Wang, Ming Yang, and Cong Li. "A novel aggregation-induced-emission-active supramolecular organogel for the detection of volatile acid vapors." New Journal of Chemistry 42, no. 21 (2018): 17524–32. http://dx.doi.org/10.1039/c8nj02616e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Pei-yu, Yong Chen, Chang-hui Chen, and Yu Liu. "Multi-charged bis(p-calixarene)/pillararene functionalized gold nanoparticles for ultra-sensitive sensing of butyrylcholinesterase." Soft Matter 15, no. 41 (2019): 8197–200. http://dx.doi.org/10.1039/c9sm01795j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Peveler, William J., Hui Jia, Tiffany Jeen, Kelly Rees, Thomas J. Macdonald, Zhicheng Xia, Weng-I. Katherine Chio, et al. "Cucurbituril-mediated quantum dot aggregates formed by aqueous self-assembly for sensing applications." Chemical Communications 55, no. 38 (2019): 5495–98. http://dx.doi.org/10.1039/c9cc00410f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Minagawa, Shohei, Shoji Fujiwara, Takeshi Hashimoto, and Takashi Hayashita. "Supramolecular Zn(II)-Dipicolylamine-Azobenzene-Aminocyclodextrin-ATP Complex: Design and ATP Recognition in Water." International Journal of Molecular Sciences 22, no. 9 (April 28, 2021): 4683. http://dx.doi.org/10.3390/ijms22094683.

Full text
Abstract:
Cyclodextrins (CyDs) are water-soluble host molecules possessing a nanosized hydrophobic cavity. In the realm of molecular recognition, this cavity is used not only as a recognition site but also as a reaction medium, where a hydrophobic sensor recognizes a guest molecule. Based on the latter concept, we have designed a novel supramolecular sensing system composed of Zn(II)-dipicolylamine metal complex-based azobenzene (1-Zn) and 3A-amino-3A-deoxy-(2AS,3AS)-γ-cyclodextrin (3-NH2-γ-CyD) for sensing adenosine-5′-triphosphate (ATP). 1-Zn showed redshifts in the UV-Vis spectra and induced circular dichroism (ICD) only when both ATP and 3-NH2-γ-CyD were present. Calculations of equilibrium constants indicated that the amino group of 3-NH2-γ-CyD was involved in the formation of supramolecular 1-Zn/3-NH2-γ-CyD/ATP. The Job plot of the ICD spectral response revealed that the stoichiometry of 1-Zn/3-NH2-γ-CyD/ATP was 2:1:1. The pH effect was examined and 1-Zn/3-NH2-γ-CyD/ATP was most stable in the neutral condition. The NOESY spectrum suggested the localization of 1-Zn in the 3-NH2-γ-CyD cavity. Based on the obtained results, the metal coordination interaction of 1-Zn and the electrostatic interaction of 3-NH2-γ-CyD were found to take place for ATP recognition. The “reaction medium approach” enabled us to develop a supramolecular sensing system that undergoes multi-point interactions in water. This study is the first step in the design of a selective sensing system based on a good understanding of supramolecular structures.
APA, Harvard, Vancouver, ISO, and other styles
38

Liao, Hongguang, Shenglong Liao, Xinglei Tao, Chang Liu, and Yapei Wang. "Intrinsically recyclable and self-healable conductive supramolecular polymers for customizable electronic sensors." Journal of Materials Chemistry C 6, no. 47 (2018): 12992–99. http://dx.doi.org/10.1039/c8tc04699a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ariga, Katsuhiko, Gary J. Richards, Shinsuke Ishihara, Hironori Izawa, and Jonathan P. Hill. "Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts." Sensors 10, no. 7 (July 13, 2010): 6796–820. http://dx.doi.org/10.3390/s100706796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shahgaldian, Patrick, and Uwe Pieles. "Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing." Sensors 6, no. 6 (June 22, 2006): 593–615. http://dx.doi.org/10.3390/s6060593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Han, Zheng-Bo, Zi-Zhong Xiao, Miao Hao, Da-Qiang Yuan, Lin Liu, Na Wei, Hui-Meng Yao, and Ming Zhou. "Functional Hydrogen-Bonded Supramolecular Framework for K+ Ion Sensing." Crystal Growth & Design 15, no. 2 (January 13, 2015): 531–33. http://dx.doi.org/10.1021/cg501259g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ikeda, Masato, Tatsuyuki Yoshii, Toshihiro Matsui, Tatsuya Tanida, Harunobu Komatsu, and Itaru Hamachi. "Montmorillonite−Supramolecular Hydrogel Hybrid for Fluorocolorimetric Sensing of Polyamines." Journal of the American Chemical Society 133, no. 6 (February 16, 2011): 1670–73. http://dx.doi.org/10.1021/ja109692z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

You, Lei, Daijun Zha, and Eric V. Anslyn. "Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing." Chemical Reviews 115, no. 15 (February 26, 2015): 7840–92. http://dx.doi.org/10.1021/cr5005524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Miranda, Oscar R., Xiaoning Li, Limary Garcia-Gonzalez, Zheng-Jiang Zhu, Bo Yan, Uwe H. F. Bunz, and Vincent M. Rotello. "Colorimetric Bacteria Sensing Using a Supramolecular Enzyme–Nanoparticle Biosensor." Journal of the American Chemical Society 133, no. 25 (June 29, 2011): 9650–53. http://dx.doi.org/10.1021/ja2021729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Tao, Aline Nonat, Maryline Beyler, Martín Regueiro‐Figueroa, Katia Nchimi Nono, Olivier Jeannin, Franck Camerel, et al. "Supramolecular Luminescent Lanthanide Dimers for Fluoride Sequestering and Sensing." Angewandte Chemie 126, no. 28 (June 6, 2014): 7387–91. http://dx.doi.org/10.1002/ange.201404847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Tao, Aline Nonat, Maryline Beyler, Martín Regueiro‐Figueroa, Katia Nchimi Nono, Olivier Jeannin, Franck Camerel, et al. "Supramolecular Luminescent Lanthanide Dimers for Fluoride Sequestering and Sensing." Angewandte Chemie International Edition 53, no. 28 (July 7, 2014): 7259–63. http://dx.doi.org/10.1002/anie.201404847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fukuhara, Gaku. "Polymer-based supramolecular sensing and application to chiral photochemistry." Polymer Journal 47, no. 10 (July 15, 2015): 649–55. http://dx.doi.org/10.1038/pj.2015.52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fukuhara, Gaku. "Allosteric signal-amplification sensing with polymer-based supramolecular hosts." Journal of Inclusion Phenomena and Macrocyclic Chemistry 93, no. 3-4 (January 21, 2019): 127–43. http://dx.doi.org/10.1007/s10847-019-00881-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sukul, Pradip K., Dines C. Santra, Pradeep K. Singh, Samir K. Maji, and Sudip Malik. "Water soluble perylene bisimide and its turn off/on fluorescence are used to detect cysteine and homocysteine." New Journal of Chemistry 39, no. 7 (2015): 5084–87. http://dx.doi.org/10.1039/c5nj00608b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shu, Zhengning, Yan Chen, Hui Yu, Xiaoyu Liao, Chuanfeng Liu, Haodong Tang, Sicong Li, and Peng Yang. "Supramolecular catalytic synthesis of a novel bis(salicylaldehyde hydrazone) ligand for ratiometric recognition of AT-DNA." Chemical Communications 55, no. 38 (2019): 5491–94. http://dx.doi.org/10.1039/c9cc01436e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography