To see the other types of publications on this topic, follow the link: Surface-enhanced Raman spectroscopy.

Dissertations / Theses on the topic 'Surface-enhanced Raman spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Surface-enhanced Raman spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Scherzer, Ryan D. "Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates." UNF Digital Commons, 2017. http://digitalcommons.unf.edu/etd/760.

Full text
Abstract:
Raman spectroscopy is employed by NASA, and many others, to detect trace amounts of substances. Unfortunately, the Raman signal is generally too weak to detect when very small, but non-trivial, amounts of molecules are present. One way around this weak signal is to use surface enhanced Raman spectroscopy (SERS). When used as substrates for SERS, metallic nanorods grown using physical vapor deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 1012. However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation as a function of time and expo
APA, Harvard, Vancouver, ISO, and other styles
2

Xie, Yu-Tao. "Surface-enhanced hyper raman and surface-enhanced raman scattering : novel substrates, surface probing molecules and chemical applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202007%20XIE.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gant, Virgil Alexander. "Detection of integrins using surface enhanced raman spectroscopy." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/2304.

Full text
Abstract:
Integrins are transmembrane heterodimer protein receptors that mediate adherence to both the intracellular cytoskeleton and extracellular matrix. They play a major role in cellular adhesion and the breadth of their importance in biology is only recently being understood. The ability to detect concentrations of integrins on the cell surface, spatially resolve them, and study the dynamics of their behavior would be a significant advance in this field. Ultimately, the ability to detect dynamic changes of integrins on the surface of a cell maybe possible by developing a combined device such as an
APA, Harvard, Vancouver, ISO, and other styles
4

Cunningham, Dale. "Fundamental studies of surface enhanced resonance Raman spectroscopy." Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sockalingum, Dhruvananda. "Surface enhanced Raman spectroscopy in the near-infrared." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sharma, Narayan. "Solution Processable Surface Enhanced Raman Spectroscopy (SERS) Substrate." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434375587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsoutsi, Dionysia. "Inorganic Ions Sensing by surface-enhanced Raman scattering spectroscopy." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/288213.

Full text
Abstract:
En aquest projecte de tesi s'ha aconseguit desenvolupar un sistema de detecció, identificació i quantificació independent d'ions inorgànics. La detecció dels ions es basa en la diferent afinitat cap a diferents lligands orgànics mitjançant l'espectroscòpia de dispersió Raman augmentada per superfícies (surface-enhanced Raman scattering, SERS). En resum, com a substrat s'utilitzaran nanopartícules de plata o microesferes nanoestructurades que es prepararan mitjançant l'adsorció de nanopartícules d'or sobre la superfície de microesferes de sílice a partir del protocol de capa per capa i el seu p
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Mingwei. "In Situ Arsenic Speciation using Surface-enhanced Raman Spectroscopy." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3387.

Full text
Abstract:
Arsenic (As) undergoes extensive metabolism in biological systems involving numerous metabolites with varying toxicities. It is important to obtain reliable information on arsenic speciation for understanding toxicity and relevant modes of action. Currently, popular arsenic speciation techniques, such as chromatographic/electrophoretic separation following extraction of biological samples, may induce the alternation of arsenic species during sample preparation. The present study was aimed to develop novel arsenic speciation methods for biological matrices using surface-enhanced Raman spectrosc
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Qunjian. "Surface-enhanced raman scattering and surface-enhanced hyper raman scattering : a systematic study of various probing molecules on novel substrates /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202003%20HUANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

He, Lili Lin Mengshi. "Application of surface enhanced Raman spectroscopy to food safety issues." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6859.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 23, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Mengshi Lin. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
11

SACCO, ALESSIO. "Metrological Approach to Tip-enhanced Raman Spectroscopy." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2827709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kier, Ruth. "Flow systems for use in surface enhanced resonance raman spectroscopy." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Marshall, Addison Robert Lee. "Surface enhanced Raman spectroscopy for single molecule detection and biosensing." Thesis, University of Hull, 2017. http://hydra.hull.ac.uk/resources/hull:16553.

Full text
Abstract:
The aim of this thesis is to design plasmonic nano-gaps capable of detecting materials down to sufficiently low concentrations such that single molecule characteristics are observed. We begin first, by discussing the theory of plasmonics. Then, we assess the recent literature on the subject to develop an understanding in the field of plasmonics and to describe the fundamental concepts behind how plasmonic nano-sensors operate. Also, this allows us to show where our research fits in. The aim of this thesis is to design plasmonic nano-gaps capable of detecting materials down to sufficiently low
APA, Harvard, Vancouver, ISO, and other styles
14

Nicolson, Fay. "Through barrier detection using surface enhanced spatially offset Raman spectroscopy." Thesis, University of Strathclyde, 2018. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=30290.

Full text
Abstract:
In the fields of security and biomedical imaging there is a significant need to non-invasively probe through barriers, e.g. plastic, glass or tissue. Raman spectroscopy provides a means to solving this challenge since it provides a unique chemical fingerprint without the need to destroy the sample. In spite of this, conventional Raman can be limited by sample volume and thickness, often failing to probe beneath the surface or through samples obscured by an opaque barrier. Spatially offset Raman spectroscopy provides a means of overcoming the limitation associated with conventional Raman spectr
APA, Harvard, Vancouver, ISO, and other styles
15

Panagoulia, Danai. "Surface enhanced Raman spectroscopy of the ionic liquid-metal interface." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/422133/.

Full text
Abstract:
When a charge is applied to an electrode in the metal – Ionic Liquid (IL) interface, an electrochemical double layer is expected to form due to the arrangement of ions to counter the charge on the electrode surface. However, this arrangement of ions in ILs can be complicated by effects such as specific adsorption, ion re-orientation and superoxide ion and Au oxide formation. Traditional techniques used in the study of metal-IL interfaces, have provided a good indication of underlying processes. However, additional proof from new methods is required, as interpretations of the results sometimes
APA, Harvard, Vancouver, ISO, and other styles
16

Wei, Haoran. "Surface-Enhanced Raman Spectroscopy for Environmental Analysis: Optimization and Quantitation." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/93204.

Full text
Abstract:
Fast, sensitive, quantitative, and low-cost analysis of environmental pollutants is highly valuable for environmental monitoring. Due to its single-molecule sensitivity and fingerprint specificity, surface-enhanced Raman spectroscopy (SERS) has been widely employed for heavy metal, organic compound, and pathogen detection. However, SERS quantitation is challenging because 1) analytes do not stay in the strongest enhancing region ("hot spots") and 2) SERS reproducibility is poor. In this dissertation, gold nanoparticle/bacterial cellulose (AuNP/BC) substrates were developed to improve SERS sens
APA, Harvard, Vancouver, ISO, and other styles
17

Hansson, Freja. "Detection of Contaminants in Water Using Surface Enhanced Raman Spectroscopy." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85943.

Full text
Abstract:
Due to deteriorating water quality and the world’s increasing demand for clean water, the need for cheap, easy and portable techniques to characterize and quantify pollutants in waters is urgent. Hence, surface-enhanced Raman spectroscopy (SERS) have gained considerable attention in this field. Atrazine and bentazon are two of the most occurring pesticides causing pollution in Sweden, and where therefore examined in this study, along with 4-mercaptopyridine (mpy) as a reference molecule. In this project, silver and gold nanoparticles where synthesised and used as SERS substrates for detection
APA, Harvard, Vancouver, ISO, and other styles
18

Touzalin, Thomas. "Tip-enhanced Raman spectroscopy on electrochemical systems." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS364.

Full text
Abstract:
L'analyse in situ d'interfaces électrochimiques à l'échelle nanométriques est un enjeu majeur pour la compréhension des mécanismes de transferts de charges et d'électrons dans les domaines du stockage d'énergie ou de l'électrocatalyse. Ce travail a permis le développement de la spectroscopie Raman exaltée de pointe (TERS) en milieu liquide et en conditions électrochimiques. Le TERS permet l'analyse de la structure de molécules ou de matériaux à l'échelle nanométrique du fait de l'exaltation localisée du champ électrique à l'extrémité d'une sonde de microscope à effet tunnel (STM) en or ou en a
APA, Harvard, Vancouver, ISO, and other styles
19

Boddu, Naresh Kumar. "Trace analysis of biological compounds by surface enhanced Raman scattering (SERS) spectroscopy /." Connect to resource online, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1229542206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Coyle, Candace Mikki. "Surface-enhanced Raman spectroscopic studies of organonitriles on copper colloids." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=919.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 1999.<br>Title from document title page. Document formatted into pages; contains xvii, 169 p. : ill. Vita. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
21

Chowdhury, Mustafa Habib. "The use of Surface Enhanced Raman Spectroscopy (SERS) for biomedical applications." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4816.

Full text
Abstract:
Recent advances in nanotechnology and the biotechnology revolution have created an immense opportunity for the use of noble metal nanoparticles as Surface Enhanced Raman Spectroscopy (SERS) substrates for biological sensing and diagnostics. This is because SERS enhances the intensity of the Raman scattered signal from an analyte by orders of 106 or more. This dissertation deals with the different aspects involved in the application of SERS for biosensing. It discusses initial studies performed using traditional chemically reduced silver colloidal nanoparticles for the SERS detection of a myria
APA, Harvard, Vancouver, ISO, and other styles
22

Syed, Azfar A. "Surface enhanced Raman spectroscopy for ultra-sensitive detection of energetic materials." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4644.

Full text
Abstract:
The prospect of ultra-sensitive detection of molecular species, particularly those of energetic materials, has prompted the present research initiative. The combination of metal surface nano-technology and Raman spectroscopy has given rise to ‘Surface Enhanced Raman Spectroscopy’ (SERS). This is a very sensitive technique and has proved to be capable of detecting a single molecule. SERS was demonstrated by recording Raman spectra of the sample molecules adsorbed on various specially prepared SER-active surfaces both in the form of a colloidal suspension and on the solid roughened surfaces. Usi
APA, Harvard, Vancouver, ISO, and other styles
23

Wigginton, Krista Rule. "Surface Enhanced Raman Spectroscopy as a Tool for Waterborne Pathogen Testing." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/29330.

Full text
Abstract:
The development of a waterborne pathogen detection method that is rapid, multiplex, sensitive, and specific, would be of great assistance for water treatment facilities and would help protect water consumers from harmful pathogens. Here we have utilized surface enhanced Raman spectroscopy (SERS) in a sensitive multiplex pathogen detection method. Two strategies are proposed herein, one that utilizes SERS antibody labels and one that measures the intrinsic SERS signal of organisms. For the SERS label strategy, gold nanoparticles are conjugated with antibodies specific to Cryptosporidium parvum
APA, Harvard, Vancouver, ISO, and other styles
24

Jain, Ishan. "Paper-Based Sensors for Contaminant Detection Using Surface Enhanced Raman Spectroscopy." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/53946.

Full text
Abstract:
Surface enhanced Raman spectroscopy (SERS) is highly promising analytical technique for trace detection of analytes. It is particularly well suited for environmental analyses due to its high sensitivity, specificity, ease of operation and rapidity. The detection and characterization of environmental contaminants, using SERS is highly related to the uniformity, activity and reproducibility of the SERS substrate. In this thesis, SERS substrates were produced by gold nanoparticle formation on wax patterned chromatography paper. In situ reduction of hydrogen tetrachloroaurate (gold precursor) b
APA, Harvard, Vancouver, ISO, and other styles
25

Shadi, Iqbal Tahear. "Surface enhanced resonance Raman spectroscopy of dyes : semi-quantitative trace analysis." Thesis, University of Greenwich, 2005. http://gala.gre.ac.uk/6296/.

Full text
Abstract:
Herein analysis of dye molecules has been carried out by means of surface enhanced Raman spectroscopy (SERS) and/or surface enhanced resonance Raman spectroscopy (SERRS) using citrate- and/or borohydride-reduced silver colloids employing laser exciting wavelengths equal to 514.5 and/or 632.8 nm. SERS and/or SERRS spectra are reported using, as model system probes, eight dye molecules which belong to several distinct chemical structural classes. Experimental protocols were developed and subsequently modified, as required, for each dye molecule examined. Vibrational spectroscopic profiles were o
APA, Harvard, Vancouver, ISO, and other styles
26

Syed, A. A. "Surface enhanced raman spectroscopy for ultra-sensitive detection of energetic materials." Thesis, Department of Materials and Applied Science, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4644.

Full text
Abstract:
The prospect of ultra-sensitive detection of molecular species, particularly those of energetic materials, has prompted the present research initiative. The combination of metal surface nano-technology and Raman spectroscopy has given rise to ‘Surface Enhanced Raman Spectroscopy’ (SERS). This is a very sensitive technique and has proved to be capable of detecting a single molecule. SERS was demonstrated by recording Raman spectra of the sample molecules adsorbed on various specially prepared SER-active surfaces both in the form of a colloidal suspension and on the solid roughened surfaces. Usi
APA, Harvard, Vancouver, ISO, and other styles
27

Israelsen, Nathan. "Surface-Enhanced Raman Spectroscopy-Based Biomarker Detection for B-Cell Malignancies." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4605.

Full text
Abstract:
This thesis presents a light scattering-based method for biomarker detection, which could potentially be used for the quantification of multiple biomarkers specific to B-cell malignancies. This method uses fabricated gold nanoparticle probes to amplify inelastic light scattering in a process referred to as surface-enhanced Raman scattering. These gold nanoparticle probes were conjugated to antibodies for specific and targeted molecular binding. The spectrum of the amplified inelastic light scattering was detected using a spectrometer and a detector. To detect the light scattering signal from t
APA, Harvard, Vancouver, ISO, and other styles
28

CARA, ELEONORA. "Tailored fabrication of nanostructured substrates for surface-enhanced Raman spectroscopy applications." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2735516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Willner, Marjorie Rose. "Environmental Analysis at the Nanoscale: From Sensor Development to Full Scale Data Processing." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/94644.

Full text
Abstract:
Raman spectroscopy is an extremely versatile technique with molecular sensitivity and fingerprint specificity. However, the translation of this tool into a deployable technology has been stymied by irreproducibility in sample preparation and the lack of complex data analysis tools. In this dissertation, a droplet microfluidic platform was prototyped to address both sample-to-sample variation and to introduce a level of quantitation to surface enhanced Raman spectroscopy (SERS). Shifting the SERS workflow from a cell-to-cell mapping routine to the mapping of tens to hundreds of cells demanded
APA, Harvard, Vancouver, ISO, and other styles
30

Sheremet, E., A. G. Milekhin, R. D. Rodriguez, et al. "Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-161500.

Full text
Abstract:
Surface- and tip-enhanced resonant Raman scattering (resonant SERS and TERS) by optical phonons in a monolayer of CdSe quantum dots (QDs) is demonstrated. The SERS enhancement was achieved by employing plasmonically active substrates consisting of gold arrays with varying nanocluster diameters prepared by electron-beam lithography. The magnitude of the SERS enhancement depends on the localized surface plasmon resonance (LSPR) energy, which is determined by the structural parameters. The LSPR positions as a function of nanocluster diameter were experimentally determined from spectroscopic micro
APA, Harvard, Vancouver, ISO, and other styles
31

Mabbott, Samuel. "Optimisation of solid-state and solution-based SERS systems for use in the detection of analytes of chemical and biological significance." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/optimisation-of-solidstate-and-solutionbased-sers-systems-for-use-in-the-detection-of-analytes-of-chemical-and-biological-significance(de70094c-8da0-4326-bfb2-6adf00b86af9).html.

Full text
Abstract:
Surface enhanced Raman scattering (SERS) has achieved much attention since its conception in 1974. The analytical technique overcomes many difficulties associated with conventional Raman whilst also increasing sensitivity. However, the increased interest and work in the field has also identified flaws, many of which are centred on the irreproducibility of the SERS enhancement effect. The majority of the work described in this thesis focusses on the ‘optimisation’ of solid-state and solution based SERS systems. Optimisation plays a crucial role in maximising both enhancement effects and reprodu
APA, Harvard, Vancouver, ISO, and other styles
32

Doherty, Matthew David. "Plasmonic nano-antenna arrays for surface enhanced Raman spectroscopy and other applications." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601361.

Full text
Abstract:
On sub-wavelength scales, photon-matter interactions are limited by diffraction. Electromagnetic radiation propagating in free space - or far-field radiation - can be coupled into the surface plasmonpolaritons of nanostructured metallic surfaces in order to overcome this limitation. The distribution of electromagnetic energy in the near-field of these structures can be controlled by altering their geometry, dielectric environment and composition. Hence, surface plasmon polaritons allow electromagnetic radiation to be effectively utilized and controlled on the nanoscale. In this thesis a detail
APA, Harvard, Vancouver, ISO, and other styles
33

Sirimuthu, Narayana M. S. "Increasing the range and reproducibility of quantitative surface-enhanced Raman spectroscopy (SERS)." Thesis, Queen's University Belfast, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mallinder, Benjamin. "Detection of deoxyribonucleic acid by surface enhanced resonance Raman scattering spectroscopy (SERRS)." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Boddu, Naresh K. "Trace Analysis of Biological Compounds by Surface Enhanced Raman Scattering (SERS) Spectroscopy." Youngstown State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1229542206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

De, Jesus Jenny Padua. "HEAVY METAL DETECTION IN AQUEOUS ENVIRONMENTS USING SURFACE ENHANCED RAMAN SPECTROSCOPY (SERS)." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1513185193940902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Papadopoulou, Evanthia. "Detection of DNA components and DNA sequences by surface-enhanced Raman spectroscopy." Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Frano, Kristen A. "Surface-Enhanced Raman and Single-Molecule Spectroscopy Studies of Fugitive Artists' Pigments." W&M ScholarWorks, 2015. https://scholarworks.wm.edu/etd/1539791830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Carneiro, Leandro de Bispo. "Detecção do peptídeo p17 (HIV) baseado em SERS (Surface-enhanced Raman Spectroscopy) /." Araraquara, 2015. http://hdl.handle.net/11449/138424.

Full text
Abstract:
Orientador: Sidney José Lima Ribeiro<br>Banca: Marcelo Nalin<br>Banca: Antonio Aparecido Pupim Ferreira<br>Banca: Gustavo Fernandes Souza Andrade<br>Banca: Airton Abrahan Martin<br>Resumo: A espectroscopia de Raman intensificada por superfície (SERS, termo em inglês Surfaceenhanced Raman Spectroscopy) é uma técnica promissora que mostra a sensibilidade para a detecção da interação de biomoléculas que são importantes para detecção precoce de doenças. O vírus da imunodeficiência humana (HIV) têm sido um grande problema por várias décadas. Existem vários métodos de deteção baseados na interação e
APA, Harvard, Vancouver, ISO, and other styles
40

Ohlhaver, Christopher M. "Use of Surface Enhanced Raman Spectroscopy for the Detection of Bioactive Lipids." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5551.

Full text
Abstract:
The detection and analysis of lipids in biological matrices for clinical applications poses many challenges, but rapid and reliable detection will prove invaluable for clinical diagnosis. Herein, we report the application of drop-casted Ag nanoplatelets as surface enhanced Raman scattering (SERS) substrates for qualitative detection of 20-hydroxyeicosatetraenoic acid (20-HETE), which is a potential biomarker for diagnosis of hypertensive disorders. Biomarker peaks of 20-HETE can be reliably detected and differentiated from those of the structurally similar lipids (arachidonic acid, eicosapent
APA, Harvard, Vancouver, ISO, and other styles
41

Grytsyk, Natalia. "Development of the surface-enhanced infrared spectroscopic approach and surface-enhanced Raman spectroscopy coupled with electrochemistry to study reaction mechanism of membrane proteins." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF057/document.

Full text
Abstract:
Cette thèse concerne le développement d’approches spectroscopiques infrarouge et Raman exaltées de surface: la spectroscopie infrarouge exaltée de surface (SEIRAS) combinée avec une cellule de perfusion et la spectroscopie Raman exaltée de surface (SERS) couplée avec l’électrochimie. Dans le cadre du premier projet, différentes protéines ont été étudiées : lactose perméase (LacY), complexe I et IM30. Nous avons déterminé le pKa de Glu325 dans LacY sauvage et dans différents mutants portant des mutations dans le centre actif de translocation des protons. Sauvage complexe I a été oxydé avec diff
APA, Harvard, Vancouver, ISO, and other styles
42

White, Daniel Joshua. "Nanostructured optical fibre for use as miniature surface-enhanced raman scattering sensors." Swinburne Research Bank, 2008. http://hdl.handle.net/1959.3/42062.

Full text
Abstract:
Thesis (PhD) - Swinburne University of Technology, Centre for Atom Optics and Ultrafast Spectroscopy, 2007.<br>Thesis submitted in fulfilment for the degree of Doctor of Philosophy, Centre for Atom Optics and Ultrafast Spectroscopy, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2008. Typescript. Bibliography: p. 151-160.
APA, Harvard, Vancouver, ISO, and other styles
43

bhardwaj, vinay. "Label-free surface-enhanced Raman spectroscopy-linked immunosensor assay (SLISA) for environmental surveillance." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2321.

Full text
Abstract:
The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression
APA, Harvard, Vancouver, ISO, and other styles
44

Sutton, C. P. "Application of surface enhanced raman spectroscopy to measurements of diffusion through silastic membranes." Thesis, University of Kent, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lin, Yung-Chun. "Electrochemical surface enhanced Raman spectroscopy of a beacon probe immobilized on Au electrodes." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/422134/.

Full text
Abstract:
The aim of this thesis is to investigate the factors, and possible mechanisms, involved in the electrochemical SER response of a reporter dye attached to an immobilized oligonucleotide on the negatively charged Au surface. This work used a 5’-thiol anchored beacon and a partial self-pairing oligonucleotide, instead of a linear strand probe, to study the sensing process. The observation of the SERS intensity of the 3’-labelled dye at the negatively charged Au surface is similar to that of the hybridized duplex of the linear probe at low surface coverage. By competitive adsorption of mercaptohex
APA, Harvard, Vancouver, ISO, and other styles
46

Rodriguez, Raul D., Evgeniya Sheremet, Tanja Deckert-Gaudig, et al. "Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-168045.

Full text
Abstract:
Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm−1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (1
APA, Harvard, Vancouver, ISO, and other styles
47

GURIAN, ELISA. "Biomedical applications of Surface Enhanced Raman Spectroscopy - a step forward to clinical practice." Doctoral thesis, Università degli Studi di Trieste, 2019. http://hdl.handle.net/11368/2936825.

Full text
Abstract:
Lo scopo di questo progetto di dottorato è quello di utilizzare delle superfici metalliche nanostrutturate come substrati per la spettroscopia Raman amplificata da superfici (SERS) per l’analisi di biofluidi. Questa tecnica analitica restituisce l’impronta digitale vibrazionale del campione grazie alla presenza della nanostruttura metallica. Queste caratteristiche anticipano le potenzialità della spettroscopia SERS in campo bioanalitico che ha visto un aumento esponenziale delle sue applicazioni nell’ultimo decennio. In particolare, la SERS richiede la fabbricazione di substrati metallici nano
APA, Harvard, Vancouver, ISO, and other styles
48

Weber, Verena. "Plasmonic nanostructures for the realization of sensor based on surface enhanced Raman spectroscopy." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423838.

Full text
Abstract:
The field of Plasmonics deals with interaction processes between an electromagnetic radiation of appropriate wavelength and the conduction electrons of a metal. The induced collective oscillation of the electrons is called Plasmon Resonance. The Localized Surface Plasmon Resonance (LSPR) occur when the excitation involves surface electrons of nanostructures with dimensions less or comparable to the excitation wavelength. The excitation causes a strong enhancement of the local field around the metal nanostructure, which, combined with Raman Spectroscopy, could be very interesting for molecular
APA, Harvard, Vancouver, ISO, and other styles
49

Stewart, Shona Diane. "Surface enhanced Raman scattering on electrochemically prepared silver surfaces." Thesis, Queensland University of Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nergui, Navchtsetseg, and 倪娜. "Raman and Surface-Enhanced Raman Spectroscopy of Purine Derivatives." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/89694890714554310529.

Full text
Abstract:
博士<br>國立臺灣大學<br>化學研究所<br>104<br>The thesis proves an experimental basis for the featured characteristics of adenine and demonstrates the conditions for excitation wavelength dependency on vibrational modes to observe the spectral contributions by relative intensities. Purine derivative, adenine is the most ubiquitous of all the heterocyclic compounds in nature. Raman spectroscopy, which provides the signature of molecular vibrational fingerprints, is an emergent method to help identify a substrate and to examine compounds in nature. Raman spectra of adenine powder were acquired using excitat
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!