Academic literature on the topic 'Surface plasmon resonance sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface plasmon resonance sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Surface plasmon resonance sensors"
Wang, Xing-Yuan, Yi-Lun Wang, Suo Wang, Bo Li, Xiao-Wei Zhang, Lun Dai, and Ren-Min Ma. "Lasing Enhanced Surface Plasmon Resonance Sensing." Nanophotonics 6, no. 2 (March 1, 2017): 472–78. http://dx.doi.org/10.1515/nanoph-2016-0006.
Full textMayer, Kathryn M., and Jason H. Hafner. "Localized Surface Plasmon Resonance Sensors." Chemical Reviews 111, no. 6 (June 8, 2011): 3828–57. http://dx.doi.org/10.1021/cr100313v.
Full textHomola, Jiřı́, Sinclair S. Yee, and Günter Gauglitz. "Surface plasmon resonance sensors: review." Sensors and Actuators B: Chemical 54, no. 1-2 (January 25, 1999): 3–15. http://dx.doi.org/10.1016/s0925-4005(98)00321-9.
Full textChung, Pei-Yu, Tzung-Hua Lin, Gregory Schultz, Christopher Batich, and Peng Jiang. "Nanopyramid surface plasmon resonance sensors." Applied Physics Letters 96, no. 26 (June 28, 2010): 261108. http://dx.doi.org/10.1063/1.3460273.
Full textHarris, R. D., and J. S. Wilkinson. "Waveguide surface plasmon resonance sensors." Sensors and Actuators B: Chemical 29, no. 1-3 (October 1995): 261–67. http://dx.doi.org/10.1016/0925-4005(95)01692-9.
Full textMrozek, Piotr, Ewa Gorodkiewicz, Paweł Falkowski, and Bogusław Hościło. "Sensitivity Analysis of Single- and Bimetallic Surface Plasmon Resonance Biosensors." Sensors 21, no. 13 (June 25, 2021): 4348. http://dx.doi.org/10.3390/s21134348.
Full textAmarie, Dragos, Nazanin Mosavian, Elijah L. Waters, and Dwayne G. Stupack. "Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors." Sensors 20, no. 17 (August 30, 2020): 4906. http://dx.doi.org/10.3390/s20174906.
Full textNenninger, G. G., P. Tobiška, J. Homola, and S. S. Yee. "Long-range surface plasmons for high-resolution surface plasmon resonance sensors." Sensors and Actuators B: Chemical 74, no. 1-3 (April 2001): 145–51. http://dx.doi.org/10.1016/s0925-4005(00)00724-3.
Full textYang Peng, Yang Peng, Jing Hou Jing Hou, Zhihe Huang Zhihe Huang, Bin Zhang Bin Zhang, and Qisheng Lu Qisheng Lu. "Design of the photonic crystal f iber-based surface plasmon resonance sensors." Chinese Optics Letters 10, s1 (2012): S10607–310610. http://dx.doi.org/10.3788/col201210.s10607.
Full textGryga, Michal, Dalibor Ciprian, and Petr Hlubina. "Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors." Sensors 20, no. 18 (September 8, 2020): 5119. http://dx.doi.org/10.3390/s20185119.
Full textDissertations / Theses on the topic "Surface plasmon resonance sensors"
Vukusic, Peter. "Sensing thin layers using surface plasmon resonance." Thesis, University of Exeter, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358142.
Full textGuo, Jing. "MULTI-MODE SELF-REFERENCING SURFACE PLASMON RESONANCE SENSORS." UKnowledge, 2013. http://uknowledge.uky.edu/ece_etds/13.
Full textNehru, Neha. "Reference Compensation for Localized Surface-Plasmon Resonance Sensors." UKnowledge, 2014. http://uknowledge.uky.edu/ece_etds/41.
Full textBadjatya, Vaibhav. "TUNABLE LASER INTERROGATION OF SURFACE PLASMON RESONANCE SENSORS." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_theses/588.
Full textJohnston, Kyle S. "Planar substrate surface plasmon resonance probe with multivariant calibration /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6069.
Full textJorgenson, Ralph Corleissen. "Surface plasmon resonance based bulk optic and fiber optic sensors /." Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5996.
Full textMatcheswala, Akil Mannan. "GOLD NANOSPHERES AND GOLD NANORODS AS LOCALIZED SURFACE PLASMON RESONANCE SENSORS." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/60.
Full textKeathley, Phillip Donald. "DESIGN AND ANALYSIS OF NANO-GAP ENHANCED SURFACE PLASMON RESONANCE SENSORS." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_theses/643.
Full textSommers, Daniel R. "Design and verification of a surface plasmon resonance biosensor." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/6967.
Full textWatkins, William L. "Study and development of localised surface plasmon resonance based sensors using anisotropic spectroscopy." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS505.pdf.
Full textLocalised surface plasmon resonance (LSPR) is defined as the collective oscillation of the conduction electron cloud induced by an external electric field. In the case of nanoparticles composed of noble metals such as gold, silver, or copper, the resonance is located in the visible or near UV range. The polarisability of a nanoparticle is directly proportional to four key parameters: its volume, its composition, its shape and its surrounding environment. It is these properties that make LSPR useful for sensor applications. In the case of isotropic particles, such as spheres, the LSPR spectrum shows only one absorption peak. In the case of an anisotropic particle, such as an ellipsoid, the absorption spectrum has two or more distinct peaks. If the absorption cross-section is measured with unpolarised light, multiple maxima are obtained. The key point for these type of systems is the possibility to decouple the resonances using polarised light. In this description the anisotropic system is considered microscopic, i.e. it is only made of one or two particles. In the case of a macroscopic sample, such as a colloidal solution of ellipsoids or nanorods, the absorption spectrum will always have multiple absorption maxima, and they cannot be decoupled because the sample is not globally anisotropic.On the other hand, if the sample has a global anisotropy such as aligned nanorods, or nanosphere organised in lines, it is possible to have a plasmon spectrum dependent on the light polarisation. Being able to decouple the resonances of an anisotropic sample makes it possible to measure a differential spectrum by taking the difference of the two absorption spectra. This is experimentally possible by using anisotropic transmission spectroscopy which measures the optical anisotropy. The advantage is to obtain a relative and differential spectrum more stable and reproducible. Moreover, it is now possible to follow the evolution of the optical response of the plasmonic particles no longer by measuring a spectral shift but by measuring the change in intensity of the signal at a fixed wavelength. This method is used on two case studies which are the measurement of the interaction of dihydrogen with gold nanoparticles, as well as the detection of low partial pressure of dihydrogen in a carrier gas (argon, and air) using palladium nanoparticles, for hydrogen sensing applications
Books on the topic "Surface plasmon resonance sensors"
Oliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. Surface Plasmon Resonance Sensors. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14926-4.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. Surface Plasmon Resonance Sensors. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6.
Full textHomola, Jiří, ed. Surface Plasmon Resonance Based Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b100321.
Full textMol, Nico J., and Marcel J. E. Fischer, eds. Surface Plasmon Resonance. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2.
Full textSchasfoort, Richard B. M., ed. Handbook of Surface Plasmon Resonance. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010283.
Full textSchasfoort, Richard B. M., and Anna J. Tudos, eds. Handbook of Surface Plasmon Resonance. Cambridge: Royal Society of Chemistry, 2008. http://dx.doi.org/10.1039/9781847558220.
Full textLong, Yi-Tao, and Chao Jing. Localized Surface Plasmon Resonance Based Nanobiosensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54795-9.
Full textStepanov, Andrey L. Surface plasmon polariton nanooptics. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textZaheer, Sameer Mahmood, and Ramachandraiah Gosu, eds. Methods for Fragments Screening Using Surface Plasmon Resonance. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1536-8.
Full textBook chapters on the topic "Surface plasmon resonance sensors"
Erickson, David. "Surface Plasmon Resonance Sensors." In Encyclopedia of Microfluidics and Nanofluidics, 3123–31. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1504.
Full textErickson, David. "Surface Plasmon Resonance Sensors." In Encyclopedia of Microfluidics and Nanofluidics, 1–9. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1504-2.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Introduction and Background Information." In Surface Plasmon Resonance Sensors, 1–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_1.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Active Metal-Type Compounds." In Surface Plasmon Resonance Sensors, 257–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_10.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Heavy Metals." In Surface Plasmon Resonance Sensors, 273–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_11.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Artificial Metal-Insulator Multi-layer Structures." In Surface Plasmon Resonance Sensors, 285–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_12.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Practical Applications." In Surface Plasmon Resonance Sensors, 289–314. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_13.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Conclusions." In Surface Plasmon Resonance Sensors, 315–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_14.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Physical Features of the Surface Plasmon Polariton." In Surface Plasmon Resonance Sensors, 11–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_2.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Design Features of Surface Plasmon Resonance Sensors." In Surface Plasmon Resonance Sensors, 23–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_3.
Full textConference papers on the topic "Surface plasmon resonance sensors"
Homola, Jirí, Marek Piliarik, and Pavel Kvasnicka. "Surface plasmon resonance biosensors." In Third European Workshop on Optical Fibre Sensors. SPIE, 2007. http://dx.doi.org/10.1117/12.738340.
Full textPollet, Jeroen, Filip Delport, Dinh Tran Thi, Martine Wevers, and Jeroen Lammertyn. "Aptamer-based surface plasmon resonance probe." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716654.
Full textGraham, David J. L., and Lionel R. Watkins. "Surface plasmon resonance imaging with polarisation modulation." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398306.
Full textKim, Jongdeog, and Yo Han Choi. "Differential Angle Scanning Surface Plasmon Resonance Detection." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589578.
Full textŠpašková, Barbora, Nicholas S. Lynn, Jiří Slabý, Markéta Bocková, and Jiří Homola. "Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)." In Optical Sensors, edited by Robert A. Lieberman, Francesco Baldini, and Jiri Homola. SPIE, 2017. http://dx.doi.org/10.1117/12.2268269.
Full textSchuster, Tobias, Niels Neumann, and Christian Schäffer. "A Fiber-Optic Surface-Plasmon-Resonance Bio-Sensor." In Optical Sensors. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/sensors.2010.swb6.
Full textWilson, Denise, and Brian Ferguson. "Optimization of surface plasmon resonance for environmental monitoring." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690814.
Full textJung, Chuck C. "Surface plasmon resonance fiber optic sensors." In Third Pacific Northwest Fiber Optic Sensor Workshop, edited by Eric Udd and Chuck C. Jung. SPIE, 1997. http://dx.doi.org/10.1117/12.285592.
Full textWilkop, Thomas, Anil S. Ramlogan, Ian L. Alberts, Joost D. de Bruijn, and Asim K. Ray. "Surface plasmon resonance imaging for medical and biosensing." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398485.
Full textHarris, R. D., B. J. Luff, J. S. Wilkinson, R. Wilson, D. J. Schiffrin, J. Piehler, A. Brecht, G. Gauglitz, R. A. Abuknesha, and C. Mouvet. "Waveguide Surface Plasmon Resonance Biosensor For Simazine Analysis." In Optical Fiber Sensors. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ofs.1996.th21.
Full textReports on the topic "Surface plasmon resonance sensors"
McWhorter, C. S. Surface Plasmon Resonance Spectroscopy-Based Process Sensors. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815565.
Full textAnderson, B. B. Feasibility Study for the Development of a Surface Plasmon Resonance spectroscopy-based Sensor for the BNFL-Hanford. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/759145.
Full textZheng, Junwei. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754842.
Full textSanchez, Erik. Modeling of the Surface Plasmon Resonance (SPR) Effect for a Metal-Semiconductor (M-S) Junction at Elevated Temperatures. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6508.
Full text