Academic literature on the topic 'Surface plasmon resonance spectroscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface plasmon resonance spectroscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Surface plasmon resonance spectroscopy"
Haes, Amanda J., Shengli Zou, Jing Zhao, George C. Schatz, and Richard P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances." Journal of the American Chemical Society 128, no. 33 (August 2006): 10905–14. http://dx.doi.org/10.1021/ja063575q.
Full textIkehata, Akifumi, Tamitake Itoh, and Yukihiro Ozaki. "Surface Plasmon Resonance Near-Infrared Spectroscopy." Analytical Chemistry 76, no. 21 (November 2004): 6461–69. http://dx.doi.org/10.1021/ac049003a.
Full textTao, N. J., S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese. "High resolution surface plasmon resonance spectroscopy." Review of Scientific Instruments 70, no. 12 (December 1999): 4656–60. http://dx.doi.org/10.1063/1.1150128.
Full textIkehata, Akifumi. "Surface Plasmon Resonance near Infrared Spectroscopy." NIR news 16, no. 1 (February 2005): 10–11. http://dx.doi.org/10.1255/nirn.802.
Full textRheinberger, Timo, Daniel Ohm, Ulmas E. Zhumaev, and Katrin F. Domke. "Extending surface plasmon resonance spectroscopy to platinum surfaces." Electrochimica Acta 314 (August 2019): 96–101. http://dx.doi.org/10.1016/j.electacta.2019.05.063.
Full textLI, Ping, Wei ZHANG, and WeiDong HE. "Surface-enhanced spectroscopy and surface plasmon resonance sensor." Chinese Science Bulletin 56, no. 20 (July 1, 2011): 1585–92. http://dx.doi.org/10.1360/972010-2202.
Full textWillets, Katherine A., and Richard P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy and Sensing." Annual Review of Physical Chemistry 58, no. 1 (May 2007): 267–97. http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607.
Full textChegel, V. I., and Yu M. Shirshov. "SURFACE PLASMON RESONANCE SPECTROSCOPY: POTENTIALITIES AND LIMITATIONS." Sensor Electronics and Microsystem Technologies 1, no. 2 (October 11, 2014): 34–49. http://dx.doi.org/10.18524/1815-7459.2004.2.111890.
Full textSarkar, Diptabhas, and P. Somasundaran. "Overcoming Contamination in Surface Plasmon Resonance Spectroscopy." Langmuir 18, no. 22 (October 2002): 8271–77. http://dx.doi.org/10.1021/la020130g.
Full textBerezhinsky, L. J., L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega. "Polarization modulation spectroscopy of surface plasmon resonance." Optics and Spectroscopy 105, no. 2 (August 2008): 257–64. http://dx.doi.org/10.1134/s0030400x08080146.
Full textDissertations / Theses on the topic "Surface plasmon resonance spectroscopy"
隼人, 市橋, and Hayato Ichihashi. "Studies on optical spectroscopy techniques with surface plasmon resonance." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127436/?lang=0, 2020. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127436/?lang=0.
Full textSurface plasmon resonance (SPR) sensor has been expected as a ultrasonic sensor used in high resolution photoacoustic microscopy (PAM). In this thesis, thermoelastic transient responses in SPR sensor were evaluated by a pump probe system with a developed sub-nanosecond pulsed laser. Especially, the mechanism of the transient response to be observed as a reflectivity change of the probe light was studied by two approaches of the experiment and the theoretical estimation. As consequence of these approaches, it was revealed that the transient response was caused by the change of the plasma frequency in a thin metal film of SPR sensor.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
Shinall, Brian Darnell. "Using surface plasmon resonance spectroscopy to characterize thin composite films." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/10157.
Full textMozsolits, Henriette 1971. "Surface plasmon resonance spectroscopy for the study of peptide-membrane interactions." Monash University, Dept. of Biochemistry and Molecular Biology, 2001. http://arrow.monash.edu.au/hdl/1959.1/8123.
Full textBaumeister, Carl Robert. "Electrochemical impedance spectroscopy and surface plasmon resonance for diagnostic antibody detection." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/31495.
Full textDissertation (MSc)--University of Pretoria, 2012.
Biochemistry
MSc
Unrestricted
Watkins, William L. "Study and development of localised surface plasmon resonance based sensors using anisotropic spectroscopy." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS505.pdf.
Full textLocalised surface plasmon resonance (LSPR) is defined as the collective oscillation of the conduction electron cloud induced by an external electric field. In the case of nanoparticles composed of noble metals such as gold, silver, or copper, the resonance is located in the visible or near UV range. The polarisability of a nanoparticle is directly proportional to four key parameters: its volume, its composition, its shape and its surrounding environment. It is these properties that make LSPR useful for sensor applications. In the case of isotropic particles, such as spheres, the LSPR spectrum shows only one absorption peak. In the case of an anisotropic particle, such as an ellipsoid, the absorption spectrum has two or more distinct peaks. If the absorption cross-section is measured with unpolarised light, multiple maxima are obtained. The key point for these type of systems is the possibility to decouple the resonances using polarised light. In this description the anisotropic system is considered microscopic, i.e. it is only made of one or two particles. In the case of a macroscopic sample, such as a colloidal solution of ellipsoids or nanorods, the absorption spectrum will always have multiple absorption maxima, and they cannot be decoupled because the sample is not globally anisotropic.On the other hand, if the sample has a global anisotropy such as aligned nanorods, or nanosphere organised in lines, it is possible to have a plasmon spectrum dependent on the light polarisation. Being able to decouple the resonances of an anisotropic sample makes it possible to measure a differential spectrum by taking the difference of the two absorption spectra. This is experimentally possible by using anisotropic transmission spectroscopy which measures the optical anisotropy. The advantage is to obtain a relative and differential spectrum more stable and reproducible. Moreover, it is now possible to follow the evolution of the optical response of the plasmonic particles no longer by measuring a spectral shift but by measuring the change in intensity of the signal at a fixed wavelength. This method is used on two case studies which are the measurement of the interaction of dihydrogen with gold nanoparticles, as well as the detection of low partial pressure of dihydrogen in a carrier gas (argon, and air) using palladium nanoparticles, for hydrogen sensing applications
Kaya, Abdulaziz. "Studies of polysaccharide adsorption onto model cellulose surfaces and self-assembled monolayers by surface plasmon resonance spectroscopy." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/39296.
Full textPh. D.
Samaimongkol, Panupon. "Surface plasmon resonance study of the purple gold (AuAl2) intermetallic, pH-responsive fluorescence gold nanoparticles, and gold nanosphere assembly." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96549.
Full textPHD
Revell, David Jon. "Self-assembled monolayers : spectroscopic characterisation and molecular recognition." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302080.
Full textOu, Meigui. "Nanostructured gold surfaces as biosensors : surface-enhanced chemiluminescence and double detection by surface plasmon resonance and luminescence." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0057/these.pdf.
Full textCette thèse est consacré à développer deux systèmes pour la détection biologique à la base de la surface d’or pour détecter la liaison entre les molécules de biotine et de streptavidine. Premièrement, nous avons étudié un système de détection multimodal utilisant la résonance des plasmons de surface localisé sur substrats d’or et la luminescence de nanoparticules labellisées de coeur-écorce Gd2O3/SiOx, qui bénéficie de la propriété plasmonic d’or en nanostructure. Deuxièmement, nous avons focalisé sur un système qui se fonde sur le phénomène d’exaltation de chimiluminescence par la surface. La chimiluminescence de luminophore/ peroxyde d’hydrogène (H2O2) est exaltée par nanostructure d’or à proximité, qui bénéficie de la propriété catalytique de nanostructure d’or. Plusieurs paramètres ont été étudiés de manière systématique. Finalement, il est prouvée que le mécanisme de l’exaltation de chimiluminescence est originaire de la propriété catalytique du métal induit par la rugosité
Zhang, Sanjun. "Surface plasmon resonance and its applications to the probing of macromolecules on gold surfaces." Lyon, École normale supérieure (sciences), 2008. http://www.theses.fr/2008ENSL0450.
Full textBooks on the topic "Surface plasmon resonance spectroscopy"
Serrano Rubio, Aída. Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19402-8.
Full textMol, Nico J., and Marcel J. E. Fischer, eds. Surface Plasmon Resonance. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. Surface Plasmon Resonance Sensors. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14926-4.
Full textOliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. Surface Plasmon Resonance Sensors. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6.
Full textHomola, Jiří, ed. Surface Plasmon Resonance Based Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b100321.
Full textSchasfoort, Richard B. M., ed. Handbook of Surface Plasmon Resonance. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010283.
Full textSchasfoort, Richard B. M., and Anna J. Tudos, eds. Handbook of Surface Plasmon Resonance. Cambridge: Royal Society of Chemistry, 2008. http://dx.doi.org/10.1039/9781847558220.
Full textLong, Yi-Tao, and Chao Jing. Localized Surface Plasmon Resonance Based Nanobiosensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54795-9.
Full textStepanov, Andrey L. Surface plasmon polariton nanooptics. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textBook chapters on the topic "Surface plasmon resonance spectroscopy"
Yuan, Jing, Yinqiu Wu, and Marie-Isabel Aguilar. "Surface Plasmon Resonance Spectroscopy in the Biosciences." In Amino Acids, Peptides and Proteins in Organic Chemistry, 225–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631841.ch7.
Full textCyago, Allan, and Rigoberto Advincula. "Surface Plasmon Resonance Spectroscopy and Molecularly Imprinted Polymer (MIP) Sensors." In Handbook of Spectroscopy, 1229–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654703.ch33.
Full textMuñoz, Eva, and Daniel Ricklin. "Analysis of Molecular Interactions by Surface Plasmon Resonance Spectroscopy." In Structure Elucidation in Organic Chemistry, 361–92. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664610.ch10.
Full textZhang, Lili, Pengpeng Shang, Changbao Chen, Jie Zhou, and Shuhua Zhu. "Surface Plasmon Resonance Spectroscopy for Detection of S-Nitrosylated Proteins." In Methods in Molecular Biology, 103–11. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7695-9_9.
Full textArima, Yusuke, Yuji Teramura, Hiromi Takiguchi, Keiko Kawano, Hidetoshi Kotera, and Hiroo Iwata. "Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopy for Sensitive Detection of Tumor Markers." In Biosensors and Biodetection, 3–20. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-567-5_1.
Full textZhang, Diming, Qian Zhang, Yanli Lu, Yao Yao, Shuang Li, and Qingjun Liu. "Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection." In Biosensors and Biodetection, 89–107. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6848-0_6.
Full textZhou, Ji, and Bin Tang. "In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles." In In-situ Characterization Techniques for Nanomaterials, 107–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56322-9_4.
Full textHall, Kristopher, and Marie-Isabel Aguilar. "Surface Plasmon Resonance Spectroscopy for Studying the Membrane Binding of Antimicrobial Peptides." In Methods in Molecular Biology, 213–23. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2_14.
Full textKomolov, Konstantin E., and Karl-Wilhelm Koch. "Application of Surface Plasmon Resonance Spectroscopy to Study G-Protein Coupled Receptor Signalling." In Methods in Molecular Biology, 249–60. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2_17.
Full textHou, Xu, David H. Small, and Marie-Isabel Aguilar. "Surface Plasmon Resonance Spectroscopy: A New Lead in Studying the Membrane Binding of Amyloidogenic Transthyretin." In Methods in Molecular Biology, 215–28. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60327-223-0_14.
Full textConference papers on the topic "Surface plasmon resonance spectroscopy"
Haes, Amanda J., George C. Schatz, and Richard P. Van Duyne. "Resonant-enhanced localized surface plasmon resonance spectroscopy." In Optics East 2006, edited by Nibir K. Dhar, Achyut K. Dutta, and M. Saif Islam. SPIE, 2006. http://dx.doi.org/10.1117/12.690985.
Full textNotcovich, Ariel G., V. Zhuk, and S. G. Lipson. "Surface Plasmon Resonance Phase Imaging." In Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/bosd.2000.tuf16.
Full textJeppesen, Claus, Daniel N. Lindstedt, Asger V. Laurberg, Anders Kristensen, and N. Asger Mortensen. "Nanometrology using localized surface plasmon resonance spectroscopy." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801236.
Full textHomola, Jiri, Peter Pfeifer, Eduard Brynda, Jiri Skvor, Milan Houska, Guenter Schwotzer, Ines Latka, and Reinhardt Willsch. "Optical biosensing using surface plasmon resonance spectroscopy." In Environmental Sensing III, edited by Robert A. Lieberman. SPIE, 1997. http://dx.doi.org/10.1117/12.276167.
Full textBoysworth, Marc K., Louis A. Obando, and Karl S. Booksh. "Calibration systems for surface plasmon resonance spectroscopy." In Photonics East '99, edited by Ronald E. Shaffer and Radislav A. Potyrailo. SPIE, 1999. http://dx.doi.org/10.1117/12.371305.
Full textSathiyamoorthy, K., James Joseph, Chia Jin Hon, and Murukeshan V. Matham. "Photoacoustic based surface plasmon resonance spectroscopy: an investigation." In International Conference on Applications of Optics and Photonics, edited by Manuel F. Costa. SPIE, 2011. http://dx.doi.org/10.1117/12.894600.
Full textAlom, Azharul, Briliant Adhi Prabowo, Ying-Feng Chang, and Kou-Chen Liu. "Four-Layered Sensor Chip for Wavelength-based Surface Plasmon Resonance Biosensor." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fts.2019.jth2a.34.
Full textSteiner, Gerald, Reiner Salzer, Wolfgang B. Fischer, and Christian Kuhne. "Surface-enhanced FTIR spectroscopy and surface plasmon resonance on biomembranes." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Anita Mahadevan-Jansen and Gerwin J. Puppels. SPIE, 2000. http://dx.doi.org/10.1117/12.384946.
Full textLee, Hyunwoong, and Donghyun Kim. "Segmented wave analysis of surface plasmon resonance on curved surface." In International Conference on Nano-Bio Sensing, Imaging, and Spectroscopy 2017, edited by Jaebum Choo and Seung-Han Park. SPIE, 2017. http://dx.doi.org/10.1117/12.2268423.
Full textXu, Ying, Run-tao Zhuang, Zhe Zhang, Ru-meng Yi, Xiang-dong Guo, and Zhi-mei Qi. "Single-layer graphene-based surface plasmon resonance biosensors for immunization study." In Optical Spectroscopy and Imaging, edited by Jin Yu, Zhe Wang, Mengxia Xie, Yuegang Fu, and Vincenzo Palleschi. SPIE, 2019. http://dx.doi.org/10.1117/12.2547723.
Full textReports on the topic "Surface plasmon resonance spectroscopy"
McWhorter, C. S. Surface Plasmon Resonance Spectroscopy-Based Process Sensors. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815565.
Full textAnderson, B. B. Feasibility Study for the Development of a Surface Plasmon Resonance spectroscopy-based Sensor for the BNFL-Hanford. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/759145.
Full textMulvaney, Paul. High Throughput Spectroscopic Catalyst Screening via Surface Plasmon Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada626615.
Full textZheng, Junwei. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754842.
Full textSanchez, Erik. Modeling of the Surface Plasmon Resonance (SPR) Effect for a Metal-Semiconductor (M-S) Junction at Elevated Temperatures. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6508.
Full text