Academic literature on the topic 'Surface plasmon resonance spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surface plasmon resonance spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surface plasmon resonance spectroscopy"

1

Haes, Amanda J., Shengli Zou, Jing Zhao, George C. Schatz, and Richard P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances." Journal of the American Chemical Society 128, no. 33 (August 2006): 10905–14. http://dx.doi.org/10.1021/ja063575q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ikehata, Akifumi, Tamitake Itoh, and Yukihiro Ozaki. "Surface Plasmon Resonance Near-Infrared Spectroscopy." Analytical Chemistry 76, no. 21 (November 2004): 6461–69. http://dx.doi.org/10.1021/ac049003a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, N. J., S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D’Agnese. "High resolution surface plasmon resonance spectroscopy." Review of Scientific Instruments 70, no. 12 (December 1999): 4656–60. http://dx.doi.org/10.1063/1.1150128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ikehata, Akifumi. "Surface Plasmon Resonance near Infrared Spectroscopy." NIR news 16, no. 1 (February 2005): 10–11. http://dx.doi.org/10.1255/nirn.802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rheinberger, Timo, Daniel Ohm, Ulmas E. Zhumaev, and Katrin F. Domke. "Extending surface plasmon resonance spectroscopy to platinum surfaces." Electrochimica Acta 314 (August 2019): 96–101. http://dx.doi.org/10.1016/j.electacta.2019.05.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LI, Ping, Wei ZHANG, and WeiDong HE. "Surface-enhanced spectroscopy and surface plasmon resonance sensor." Chinese Science Bulletin 56, no. 20 (July 1, 2011): 1585–92. http://dx.doi.org/10.1360/972010-2202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Willets, Katherine A., and Richard P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy and Sensing." Annual Review of Physical Chemistry 58, no. 1 (May 2007): 267–97. http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chegel, V. I., and Yu M. Shirshov. "SURFACE PLASMON RESONANCE SPECTROSCOPY: POTENTIALITIES AND LIMITATIONS." Sensor Electronics and Microsystem Technologies 1, no. 2 (October 11, 2014): 34–49. http://dx.doi.org/10.18524/1815-7459.2004.2.111890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sarkar, Diptabhas, and P. Somasundaran. "Overcoming Contamination in Surface Plasmon Resonance Spectroscopy." Langmuir 18, no. 22 (October 2002): 8271–77. http://dx.doi.org/10.1021/la020130g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berezhinsky, L. J., L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega. "Polarization modulation spectroscopy of surface plasmon resonance." Optics and Spectroscopy 105, no. 2 (August 2008): 257–64. http://dx.doi.org/10.1134/s0030400x08080146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Surface plasmon resonance spectroscopy"

1

隼人, 市橋, and Hayato Ichihashi. "Studies on optical spectroscopy techniques with surface plasmon resonance." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127436/?lang=0, 2020. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127436/?lang=0.

Full text
Abstract:
表面プラズモン共鳴型超音波センサは高分解能な光音響顕微鏡用超音波受波器として期待されている.本研究では,サブナノ秒パルスレーザを利用したポンププローブシステムを構築してサブナノ秒域における表面プラズモン共鳴センサの熱・弾性的な過渡応答を光学的に評価した。特にプローブ光の反射率変化として観測される過渡応答の発生メカニズムについて,実験と理論の両方のアプローチから検討しており,観測される過渡応答は金属薄膜のプラズマ周波数の変化に起因することを明らかにした。
Surface plasmon resonance (SPR) sensor has been expected as a ultrasonic sensor used in high resolution photoacoustic microscopy (PAM). In this thesis, thermoelastic transient responses in SPR sensor were evaluated by a pump probe system with a developed sub-nanosecond pulsed laser. Especially, the mechanism of the transient response to be observed as a reflectivity change of the probe light was studied by two approaches of the experiment and the theoretical estimation. As consequence of these approaches, it was revealed that the transient response was caused by the change of the plasma frequency in a thin metal film of SPR sensor.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
APA, Harvard, Vancouver, ISO, and other styles
2

Shinall, Brian Darnell. "Using surface plasmon resonance spectroscopy to characterize thin composite films." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/10157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mozsolits, Henriette 1971. "Surface plasmon resonance spectroscopy for the study of peptide-membrane interactions." Monash University, Dept. of Biochemistry and Molecular Biology, 2001. http://arrow.monash.edu.au/hdl/1959.1/8123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baumeister, Carl Robert. "Electrochemical impedance spectroscopy and surface plasmon resonance for diagnostic antibody detection." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/31495.

Full text
Abstract:
The successful use of biomarker antibody detection for disease diagnosis is currently restricted to cases where the antibody affinity and specificity of interaction with antigen is high. Evanescent field biosensing, e.g. Surface Plasmon Resonance (SPR), and electrochemical detection, in particular Electrochemical Impedance Spectroscopy (EIS), have been shown viable for detection of lower affinity antibodies, based on the principle that these technologies allow the measurement of antibody binding to immobilized antigen, i.e. without the need to wash away excess, non-bound antibodies or using labelled antibodies. Proof of principle for this in the case of detection of biomarker anti-mycolic acid antibodies for TB diagnosis has been provided in the Mycolic acid Antibody Real-Time Inhibition assay (MARTI) by our research group. Although already patented and published, MARTI is not yet a feasible diagnostic test due to slow sample turn-around time, affordability and technical vulnerability associated with unstable lipid antigen surface chemistry and the difficulty of standardization of liposome carriers of mycolic acids used for measuring the binding inhibition of serum antibodies to immobilized antigen. Here, these challenges were addressed by investigating the use of a magnetic field for more stable lipid antigen immobilization, new phospholipid compositions to generate more stable liposome carriers for lipid antigen in solution and the use of screen-printed electrodes (SPE) in EIS to address affordability of diagnosis and improve sample turn-around time. The latter approach appeared quite promising in distinguishing a TB positive and a TB negative patient serum and is amenable to automation by means of a flow injection system.
Dissertation (MSc)--University of Pretoria, 2012.
Biochemistry
MSc
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
5

Watkins, William L. "Study and development of localised surface plasmon resonance based sensors using anisotropic spectroscopy." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS505.pdf.

Full text
Abstract:
La résonance de plasmon de surface localisée (LSPR) est définie comme l’oscillation collective du nuage d’électrons de conduction induite par un champ électrique externe. Dans le cas de nanoparticules composé de métaux nobles tels que l’or, l’argent, ou le cuivre,la résonance est localisée dans le visible ou le proche UV. La polarisabilité d’une nanoparticule est directement proportionnelle à quatre paramètres clefs : son volume, sa composition, sa forme et son milieu environnant. Ce sont ces propriétés qui font que la LSPR peut être utilisée à des fin de capteur. Dans le cas d’une particule isotrope, tel que la sphère, le spectre LSPR montre un seul pic d’absorption. Dans le cas d’une particule anisotrope, tel qu’une ellipsoïde, le spectre d’absorption a deux maxima distincts. Si on calcule la section efficace d’absorption en considérant une lumière non polarisée, on obtient deux maxima. Le point clef de ce type de système est la possibilité de découpler les deux résonances en utilisant une lumière polarisée. Dans cette description le système anisotrope est considéré comme microscopique, c’est à dire qu’il ne s’agit que d’une ou deux particules. Dans le cas d’un échantillon macroscopique, tel qu’une solution colloïdale d’ellipsoïdes ou nanotiges, le spectre d’absorption aura toujours deux maxima d’absorption, mais ceux-ci ne pourront pas être découplés car l’échantillon n’est pas globalement anisotrope. En revanche, si l’échantillon présente une anisotropie globale telle que des nanotiges alignés, ou des nanosphères organisées en ligne, il est possible d’avoir un spectre de plasmon dépendant de la polarisation de la lumière. Être capable de découpler les résonances d’un échantillon anisotrope permet de mesurer un spectre différentiel en prenant la différence des deux spectres d’absorption. Cela est expérimentalement possible en utilisant la spectroscopie de transmis- sion anisotrope qui permet la mesure de l’anisotropie optique. L’avantage est d’obtenir un spectre relative et différentiel donc plus stable et reproductible. De plus il est maintenant possible de suivre l’évolution de la réponse optique des particules plasmoniques, non plus en mesurant un déplacement spectral, mais en mesurant le changement d’intensité du signal à une longueur d’onde fixe. Cette méthode est utilisée pour deux cas d’études qui sont la mesure de l’interaction du dihydrogène avec des nanoparticules d’or, ainsi que la détection de faible pression partielle de dihydrogène dans un gaz porteur (argon, et air) à l’aide de palladium, pour des applications de capteur d’hydrogène
Localised surface plasmon resonance (LSPR) is defined as the collective oscillation of the conduction electron cloud induced by an external electric field. In the case of nanoparticles composed of noble metals such as gold, silver, or copper, the resonance is located in the visible or near UV range. The polarisability of a nanoparticle is directly proportional to four key parameters: its volume, its composition, its shape and its surrounding environment. It is these properties that make LSPR useful for sensor applications. In the case of isotropic particles, such as spheres, the LSPR spectrum shows only one absorption peak. In the case of an anisotropic particle, such as an ellipsoid, the absorption spectrum has two or more distinct peaks. If the absorption cross-section is measured with unpolarised light, multiple maxima are obtained. The key point for these type of systems is the possibility to decouple the resonances using polarised light. In this description the anisotropic system is considered microscopic, i.e. it is only made of one or two particles. In the case of a macroscopic sample, such as a colloidal solution of ellipsoids or nanorods, the absorption spectrum will always have multiple absorption maxima, and they cannot be decoupled because the sample is not globally anisotropic.On the other hand, if the sample has a global anisotropy such as aligned nanorods, or nanosphere organised in lines, it is possible to have a plasmon spectrum dependent on the light polarisation. Being able to decouple the resonances of an anisotropic sample makes it possible to measure a differential spectrum by taking the difference of the two absorption spectra. This is experimentally possible by using anisotropic transmission spectroscopy which measures the optical anisotropy. The advantage is to obtain a relative and differential spectrum more stable and reproducible. Moreover, it is now possible to follow the evolution of the optical response of the plasmonic particles no longer by measuring a spectral shift but by measuring the change in intensity of the signal at a fixed wavelength. This method is used on two case studies which are the measurement of the interaction of dihydrogen with gold nanoparticles, as well as the detection of low partial pressure of dihydrogen in a carrier gas (argon, and air) using palladium nanoparticles, for hydrogen sensing applications
APA, Harvard, Vancouver, ISO, and other styles
6

Kaya, Abdulaziz. "Studies of polysaccharide adsorption onto model cellulose surfaces and self-assembled monolayers by surface plasmon resonance spectroscopy." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/39296.

Full text
Abstract:
Throughout the study of polymer adsorption at the air/water and solid/water interfaces, surface tension measurements and surface plasmon resonance (SPR) spectroscopy have been identified as key methods for the acquisition of structural and thermodynamic information. These techniques were used to determine air/water and cellulose/water interfacial properties of pullulan (P) and pullulan cinnamates (PCs), 2-hydroxypropyltrimethylammonium xylans (HPMAXs), and hydroxypropyl xylans (HPXs). Hydrophobic modification of pullulan with cinnamate groups promoted adsorption onto model surfaces of regenerated cellulose. In order to understand the relative contributions of hydrophilic and hydrophobic interactions towards PC adsorption, PC adsorption onto self-assembled monolayers (SAMs) with different functional groups was also studied. As the degree of cinnamate substitution increased, greater adsorption onto cellulose, methyl-terminated SAMs (SAM-CH3), and hydroxyl-terminated SAMs (SAM-OH) was observed. This study showed that hydrogen bonding alone could not provide a complete explanation for PC adsorption onto cellulose. The adsorption of cationic 2-hydroxypropyltrimethylammonium (HPMA) xylans with different degrees of substitution (DS) onto SAMs and regenerated cellulose was studied by SPR. Surface concentration (Р) exhibited a maximum (Рmax) for HPMAX adsorption onto carboxylic acid-terminated SAMs (SAM-COOH) at an intermediate HPMA DS of 0.10. This observation was indicative of a relatively flat conformation for adsorbed HPMAXs with higher HPMA DS because of higher linear charge densities along the polymer backbone. Рobserved for HPMAX adsorption onto regenerated cellulose and SAM-OH surfaces was relatively low compared to HPMAX adsorption onto SAM-COOH surfaces. Surface tension measurements for aqueous solutions of HPX by the Wilhelmy plate technique showed that surface tension changes ("γ = γwater " γHPX(aq)) increased and critical aggregation concentrations generally decreased with increasing hydroxypropyl (HP) DS. Hence, even though HP substitution was necessary to induce aqueous solubility, excessive hydroxypropylation promoted aggregation in water. SPR studies indicated that HPXs did not adsorb significantly onto regenerated cellulose or SAM-OH surfaces (submonolayer coverage). In contrast, HPX did adsorb (~monolayer coverage) onto SAM-CH3 surfaces. Collectively, these studies showed natural polymers could be chemically modified to produce surface modifying agents with sufficient chemical control, whereby the surface properties of the resulting systems could be explained in terms of chemical structure and intermolecular interactions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Samaimongkol, Panupon. "Surface plasmon resonance study of the purple gold (AuAl2) intermetallic, pH-responsive fluorescence gold nanoparticles, and gold nanosphere assembly." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96549.

Full text
Abstract:
In this dissertation, I have verified that the striking purple color of the intermetallic compound AuAl2, also known as purple gold, originates from surface plasmons (SPs). This contrasts to a previous assumption that this color is due to an interband absorption transition. The existence of SPs was demonstrated by launching them in thin AuAl2 films in the Kretschmann configuration, which enables us to measure the SP dispersion relation. I observed that the SP energy in thin films of purple gold is around 2.1 eV, comparable to previous work on the dielectric function of this material. Furthermore, SP sensing using AuAl2 also shows the ability to measure the change in the refractive index of standard sucrose solution. AuAl2 in nanoparticle form is also discussed in terms of plasmonic applications, where Mie scattering theory predicts that the particle bears nearly uniform absorption over the entire visible spectrum with an order magnitude higher than a lightabsorbing carbonaceous particle. The second topic of this dissertation focuses on plasmon enhanced fluorescence in gold nanoparticles (Au NPs). Here, I investigated the distance-dependent fluorescence emission of rhodamine green 110 fluorophores from Au NPs with tunable spacers. These spacers consist of polyelectrolyte multilayers (PEMs) consisting of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at pH 8.4. The distance between Au NPs and fluorophores was varied by changing the ambient pH from 3 to 10 and back, which causes the swelling and deswelling of PEM spacer. Maximum fluorescence intensity with 4.0-fold enhancement was observed with 7-layer coated Au NPs at ambient pH 10 referenced to pH 3. The last topic of this dissertation examines a novel approach to assemble nanoparticles, in particular, dimers of gold nanospheres (NSs). 16 nm and 60 nm diameter NSs were connected using photocleavable molecules as linkers. I showed that the orientation of the dimers can be controlled with the polarization of UV illumination that cleaves the linkers, making dipolar patches. This type of assembly provides a simple method with potential applications in multiple contexts, such as biomedicine and nanorobotics.
PHD
APA, Harvard, Vancouver, ISO, and other styles
8

Revell, David Jon. "Self-assembled monolayers : spectroscopic characterisation and molecular recognition." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ou, Meigui. "Nanostructured gold surfaces as biosensors : surface-enhanced chemiluminescence and double detection by surface plasmon resonance and luminescence." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0057/these.pdf.

Full text
Abstract:
This thesis is devoted to develop two biological detection systems based on nanostructured gold surfaces to detect the binding of streptavidin/biotin. In the first part, we have studied a multimodal detection system using local surface plasmon resonance of the gold substrate and the luminescence of labelling core-shell Gd2O3/SiOx nanoparticles, which profits from the plasmonic property of nanostructure gold. In a second part, we have focused in a surface-enhanced chemiluminescence system based on chemiluminescence of luminal/hydrogen peroxide (H2O2) enhanced by gold nanostructures in the vicinity, which benefits from the catalytic property of nanostructure gold. Several parameters influencing the chemiluminescence of luminal were investigated. Enhancing mechanism of luminal chemiluminescence was proved to be not related to Plasmon-assisted process but originates from catalytic properties of the metal induced by corrugation
Cette thèse est consacré à développer deux systèmes pour la détection biologique à la base de la surface d’or pour détecter la liaison entre les molécules de biotine et de streptavidine. Premièrement, nous avons étudié un système de détection multimodal utilisant la résonance des plasmons de surface localisé sur substrats d’or et la luminescence de nanoparticules labellisées de coeur-écorce Gd2O3/SiOx, qui bénéficie de la propriété plasmonic d’or en nanostructure. Deuxièmement, nous avons focalisé sur un système qui se fonde sur le phénomène d’exaltation de chimiluminescence par la surface. La chimiluminescence de luminophore/ peroxyde d’hydrogène (H2O2) est exaltée par nanostructure d’or à proximité, qui bénéficie de la propriété catalytique de nanostructure d’or. Plusieurs paramètres ont été étudiés de manière systématique. Finalement, il est prouvée que le mécanisme de l’exaltation de chimiluminescence est originaire de la propriété catalytique du métal induit par la rugosité
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Sanjun. "Surface plasmon resonance and its applications to the probing of macromolecules on gold surfaces." Lyon, École normale supérieure (sciences), 2008. http://www.theses.fr/2008ENSL0450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Surface plasmon resonance spectroscopy"

1

Serrano Rubio, Aída. Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19402-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mol, Nico J., and Marcel J. E. Fischer, eds. Surface Plasmon Resonance. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. Surface Plasmon Resonance Sensors. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14926-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. Surface Plasmon Resonance Sensors. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Homola, Jiří, ed. Surface Plasmon Resonance Based Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b100321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schasfoort, Richard B. M., ed. Handbook of Surface Plasmon Resonance. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schasfoort, Richard B. M., and Anna J. Tudos, eds. Handbook of Surface Plasmon Resonance. Cambridge: Royal Society of Chemistry, 2008. http://dx.doi.org/10.1039/9781847558220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Surface plasmon resonance: Methods and protocols. New York: Humana Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Long, Yi-Tao, and Chao Jing. Localized Surface Plasmon Resonance Based Nanobiosensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54795-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stepanov, Andrey L. Surface plasmon polariton nanooptics. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Surface plasmon resonance spectroscopy"

1

Yuan, Jing, Yinqiu Wu, and Marie-Isabel Aguilar. "Surface Plasmon Resonance Spectroscopy in the Biosciences." In Amino Acids, Peptides and Proteins in Organic Chemistry, 225–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631841.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cyago, Allan, and Rigoberto Advincula. "Surface Plasmon Resonance Spectroscopy and Molecularly Imprinted Polymer (MIP) Sensors." In Handbook of Spectroscopy, 1229–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654703.ch33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muñoz, Eva, and Daniel Ricklin. "Analysis of Molecular Interactions by Surface Plasmon Resonance Spectroscopy." In Structure Elucidation in Organic Chemistry, 361–92. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664610.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Lili, Pengpeng Shang, Changbao Chen, Jie Zhou, and Shuhua Zhu. "Surface Plasmon Resonance Spectroscopy for Detection of S-Nitrosylated Proteins." In Methods in Molecular Biology, 103–11. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7695-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arima, Yusuke, Yuji Teramura, Hiromi Takiguchi, Keiko Kawano, Hidetoshi Kotera, and Hiroo Iwata. "Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopy for Sensitive Detection of Tumor Markers." In Biosensors and Biodetection, 3–20. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-567-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Diming, Qian Zhang, Yanli Lu, Yao Yao, Shuang Li, and Qingjun Liu. "Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection." In Biosensors and Biodetection, 89–107. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6848-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Ji, and Bin Tang. "In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles." In In-situ Characterization Techniques for Nanomaterials, 107–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56322-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hall, Kristopher, and Marie-Isabel Aguilar. "Surface Plasmon Resonance Spectroscopy for Studying the Membrane Binding of Antimicrobial Peptides." In Methods in Molecular Biology, 213–23. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Komolov, Konstantin E., and Karl-Wilhelm Koch. "Application of Surface Plasmon Resonance Spectroscopy to Study G-Protein Coupled Receptor Signalling." In Methods in Molecular Biology, 249–60. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hou, Xu, David H. Small, and Marie-Isabel Aguilar. "Surface Plasmon Resonance Spectroscopy: A New Lead in Studying the Membrane Binding of Amyloidogenic Transthyretin." In Methods in Molecular Biology, 215–28. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60327-223-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Surface plasmon resonance spectroscopy"

1

Haes, Amanda J., George C. Schatz, and Richard P. Van Duyne. "Resonant-enhanced localized surface plasmon resonance spectroscopy." In Optics East 2006, edited by Nibir K. Dhar, Achyut K. Dutta, and M. Saif Islam. SPIE, 2006. http://dx.doi.org/10.1117/12.690985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Notcovich, Ariel G., V. Zhuk, and S. G. Lipson. "Surface Plasmon Resonance Phase Imaging." In Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/bosd.2000.tuf16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeppesen, Claus, Daniel N. Lindstedt, Asger V. Laurberg, Anders Kristensen, and N. Asger Mortensen. "Nanometrology using localized surface plasmon resonance spectroscopy." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Homola, Jiri, Peter Pfeifer, Eduard Brynda, Jiri Skvor, Milan Houska, Guenter Schwotzer, Ines Latka, and Reinhardt Willsch. "Optical biosensing using surface plasmon resonance spectroscopy." In Environmental Sensing III, edited by Robert A. Lieberman. SPIE, 1997. http://dx.doi.org/10.1117/12.276167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boysworth, Marc K., Louis A. Obando, and Karl S. Booksh. "Calibration systems for surface plasmon resonance spectroscopy." In Photonics East '99, edited by Ronald E. Shaffer and Radislav A. Potyrailo. SPIE, 1999. http://dx.doi.org/10.1117/12.371305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sathiyamoorthy, K., James Joseph, Chia Jin Hon, and Murukeshan V. Matham. "Photoacoustic based surface plasmon resonance spectroscopy: an investigation." In International Conference on Applications of Optics and Photonics, edited by Manuel F. Costa. SPIE, 2011. http://dx.doi.org/10.1117/12.894600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alom, Azharul, Briliant Adhi Prabowo, Ying-Feng Chang, and Kou-Chen Liu. "Four-Layered Sensor Chip for Wavelength-based Surface Plasmon Resonance Biosensor." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fts.2019.jth2a.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Steiner, Gerald, Reiner Salzer, Wolfgang B. Fischer, and Christian Kuhne. "Surface-enhanced FTIR spectroscopy and surface plasmon resonance on biomembranes." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Anita Mahadevan-Jansen and Gerwin J. Puppels. SPIE, 2000. http://dx.doi.org/10.1117/12.384946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Hyunwoong, and Donghyun Kim. "Segmented wave analysis of surface plasmon resonance on curved surface." In International Conference on Nano-Bio Sensing, Imaging, and Spectroscopy 2017, edited by Jaebum Choo and Seung-Han Park. SPIE, 2017. http://dx.doi.org/10.1117/12.2268423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Ying, Run-tao Zhuang, Zhe Zhang, Ru-meng Yi, Xiang-dong Guo, and Zhi-mei Qi. "Single-layer graphene-based surface plasmon resonance biosensors for immunization study." In Optical Spectroscopy and Imaging, edited by Jin Yu, Zhe Wang, Mengxia Xie, Yuegang Fu, and Vincenzo Palleschi. SPIE, 2019. http://dx.doi.org/10.1117/12.2547723.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Surface plasmon resonance spectroscopy"

1

McWhorter, C. S. Surface Plasmon Resonance Spectroscopy-Based Process Sensors. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, B. B. Feasibility Study for the Development of a Surface Plasmon Resonance spectroscopy-based Sensor for the BNFL-Hanford. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/759145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mulvaney, Paul. High Throughput Spectroscopic Catalyst Screening via Surface Plasmon Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada626615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Junwei. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sanchez, Erik. Modeling of the Surface Plasmon Resonance (SPR) Effect for a Metal-Semiconductor (M-S) Junction at Elevated Temperatures. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography