Dissertations / Theses on the topic 'Surface plasmon resonance spectroscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Surface plasmon resonance spectroscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
隼人, 市橋, and Hayato Ichihashi. "Studies on optical spectroscopy techniques with surface plasmon resonance." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127436/?lang=0, 2020. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127436/?lang=0.
Full textSurface plasmon resonance (SPR) sensor has been expected as a ultrasonic sensor used in high resolution photoacoustic microscopy (PAM). In this thesis, thermoelastic transient responses in SPR sensor were evaluated by a pump probe system with a developed sub-nanosecond pulsed laser. Especially, the mechanism of the transient response to be observed as a reflectivity change of the probe light was studied by two approaches of the experiment and the theoretical estimation. As consequence of these approaches, it was revealed that the transient response was caused by the change of the plasma frequency in a thin metal film of SPR sensor.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
Shinall, Brian Darnell. "Using surface plasmon resonance spectroscopy to characterize thin composite films." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/10157.
Full textMozsolits, Henriette 1971. "Surface plasmon resonance spectroscopy for the study of peptide-membrane interactions." Monash University, Dept. of Biochemistry and Molecular Biology, 2001. http://arrow.monash.edu.au/hdl/1959.1/8123.
Full textBaumeister, Carl Robert. "Electrochemical impedance spectroscopy and surface plasmon resonance for diagnostic antibody detection." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/31495.
Full textDissertation (MSc)--University of Pretoria, 2012.
Biochemistry
MSc
Unrestricted
Watkins, William L. "Study and development of localised surface plasmon resonance based sensors using anisotropic spectroscopy." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS505.pdf.
Full textLocalised surface plasmon resonance (LSPR) is defined as the collective oscillation of the conduction electron cloud induced by an external electric field. In the case of nanoparticles composed of noble metals such as gold, silver, or copper, the resonance is located in the visible or near UV range. The polarisability of a nanoparticle is directly proportional to four key parameters: its volume, its composition, its shape and its surrounding environment. It is these properties that make LSPR useful for sensor applications. In the case of isotropic particles, such as spheres, the LSPR spectrum shows only one absorption peak. In the case of an anisotropic particle, such as an ellipsoid, the absorption spectrum has two or more distinct peaks. If the absorption cross-section is measured with unpolarised light, multiple maxima are obtained. The key point for these type of systems is the possibility to decouple the resonances using polarised light. In this description the anisotropic system is considered microscopic, i.e. it is only made of one or two particles. In the case of a macroscopic sample, such as a colloidal solution of ellipsoids or nanorods, the absorption spectrum will always have multiple absorption maxima, and they cannot be decoupled because the sample is not globally anisotropic.On the other hand, if the sample has a global anisotropy such as aligned nanorods, or nanosphere organised in lines, it is possible to have a plasmon spectrum dependent on the light polarisation. Being able to decouple the resonances of an anisotropic sample makes it possible to measure a differential spectrum by taking the difference of the two absorption spectra. This is experimentally possible by using anisotropic transmission spectroscopy which measures the optical anisotropy. The advantage is to obtain a relative and differential spectrum more stable and reproducible. Moreover, it is now possible to follow the evolution of the optical response of the plasmonic particles no longer by measuring a spectral shift but by measuring the change in intensity of the signal at a fixed wavelength. This method is used on two case studies which are the measurement of the interaction of dihydrogen with gold nanoparticles, as well as the detection of low partial pressure of dihydrogen in a carrier gas (argon, and air) using palladium nanoparticles, for hydrogen sensing applications
Kaya, Abdulaziz. "Studies of polysaccharide adsorption onto model cellulose surfaces and self-assembled monolayers by surface plasmon resonance spectroscopy." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/39296.
Full textPh. D.
Samaimongkol, Panupon. "Surface plasmon resonance study of the purple gold (AuAl2) intermetallic, pH-responsive fluorescence gold nanoparticles, and gold nanosphere assembly." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96549.
Full textPHD
Revell, David Jon. "Self-assembled monolayers : spectroscopic characterisation and molecular recognition." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302080.
Full textOu, Meigui. "Nanostructured gold surfaces as biosensors : surface-enhanced chemiluminescence and double detection by surface plasmon resonance and luminescence." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0057/these.pdf.
Full textCette thèse est consacré à développer deux systèmes pour la détection biologique à la base de la surface d’or pour détecter la liaison entre les molécules de biotine et de streptavidine. Premièrement, nous avons étudié un système de détection multimodal utilisant la résonance des plasmons de surface localisé sur substrats d’or et la luminescence de nanoparticules labellisées de coeur-écorce Gd2O3/SiOx, qui bénéficie de la propriété plasmonic d’or en nanostructure. Deuxièmement, nous avons focalisé sur un système qui se fonde sur le phénomène d’exaltation de chimiluminescence par la surface. La chimiluminescence de luminophore/ peroxyde d’hydrogène (H2O2) est exaltée par nanostructure d’or à proximité, qui bénéficie de la propriété catalytique de nanostructure d’or. Plusieurs paramètres ont été étudiés de manière systématique. Finalement, il est prouvée que le mécanisme de l’exaltation de chimiluminescence est originaire de la propriété catalytique du métal induit par la rugosité
Zhang, Sanjun. "Surface plasmon resonance and its applications to the probing of macromolecules on gold surfaces." Lyon, École normale supérieure (sciences), 2008. http://www.theses.fr/2008ENSL0450.
Full textFenzl, Christoph [Verfasser], and Antje J. [Akademischer Betreuer] Bäumner. "Liposomes as Versatile Tools for Signal Enhancement in Surface Plasmon Resonance Spectroscopy / Christoph Fenzl ; Betreuer: Antje J. Bäumner." Regensburg : Universitätsbibliothek Regensburg, 2016. http://d-nb.info/1118846257/34.
Full textMidelet, Clyde. "Diélectrophorèse de nanoparticules en système microfluidique ˸ étude par vidéo-microscopie numérique et application à l'analyse par spectroscopie optique." Thesis, Rennes, École normale supérieure, 2019. http://www.theses.fr/2019ENSR0019.
Full textThe manipulation of micro- and nano- particles in solution can be achieved through the interactions of these objects with electromagnetic fields. Emitted light, continuous (DC) or alternating (AC) electric fields can be used. In the case of a non-uniform electric field applied between two electrodes separated by a few micrometers, very intense and localized field gradients are created. These field gradients localised close to the electrodes generates a motion of the mass solution (electro-hydrodynamic effects). The charges confined onto particles at the liquid/solid interface are also subjected to motion. Suspended particles undergo an attractive or repulsive force called dielectrophoresis.This force is described in the literature for insulating particles larger than 200 nm. In this study optical detection was used (dark field videomicroscopy or microfluidic spectroscopy) to expand the range of particle size (40-150 nm) and to study their dielectrophoretic responses. Indeed, the dielectrophoresis is dependent on the size of particles, their environment and the parameters of the applied electric field (frequency, amplitude, topology). The dielectrophoresis is in competition with the Brownian motion of these gold nanoparticles. By, knowing the dielectrophoretic response of these particles in solution, it is possible to vary parameters, such as the suspension composition of the particles or the complexity of the systems studied
Zhang, Han. "STUDY OF TRANSMEMBRANE PROTEIN ACTIVITY IN STABILIZED LIPID MEMBRANES AND DEVELOPMENT AND APPLICATIONS OF SURFACE SENSITIVE PLASMON WAVEGUIDE RESONANCE SPECTROSCOPY." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/195280.
Full textShumaker-Parry, Jennifer Sue. "Quantitative aspects of SPR spectroscopy and SPR microscopy, applications in protein binding to immobilized vesicles and dsDNA arrays /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/11600.
Full textSheremet, E., A. G. Milekhin, R. D. Rodriguez, T. Weiss, M. Nesterov, E. E. Rodyakina, O. D. Gordan, et al. "Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-161500.
Full textDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Danilov, Artem. "Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0110/document.
Full textThis thesis consideres novel promissing architechtures of plasmonic metamaterial for biosensing, including: (I) 2D periodic arrays of Au nanoparticles, which can support diffractively coupled surface lattice resonances; (II) 3D periodic arrays based on woodpile-assembly plasmonic crystals, which can support novel delocalized plasmonic modes over 3D structure. A systematic study of conditions of plasmon excitation, properties and sensitivity to local environment is presented. It is shown that such arrays can combine very high spectral sensitivity (400nm/RIU and 2600 nm/RIU, respectively) and exceptionally high phase sensitivity (> 105 deg./RIU) and can be used for the improvement of current state-of-the-art biosensing technology. Finally, a method for probing electric field excited by plasmonic nanostructures (single nanoparticles, dimers) is proposed. It is implied that this method will help to design structures for SERS, which will later be used as an additional informational channel for biosensing
Dorney, Kevin Michael. "A Chemical Free Approach for Increasing the Biochemical Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensing Capabilities of Colloidal Silver Nanoparticles." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401206511.
Full textRodriguez, Kenneth Ralph. "The extraordinary infrared transmission of metal microarrays for enhanced absorption spectroscopy of monolayers, nanocoatings, and catalytic surface reactions." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189549712.
Full textGeist, Brian Lee. "Properties of Nanoscale Biomaterials for Cancer Detection and Other Applications." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/27630.
Full textPh. D.
Rye, Jan-Michael. "Spatial Modulation Spectroscopy Of Single Nano-Objects In A Liquid Environment For Biosensing Applications." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1053/document.
Full textAdvances in the development of rapid, accurate and highly sensitive methods for detecting target analytes in solution will provide crucial tools for research and applications in medicine and molecular biology. One of the currently most promising approaches is the development of nanosensors based on the localized surface plasmon resonance (LSPR) of noble metal nano-objects (MNOs), which is an optical response that depends on their size, shape, composition and local environment. The ability to measure the modification of the reponse of a single MNO in the presence of a target analyte would allow each object to act as an independent probe with increased sensitivity as the signal would be isolated from the averaging effects of ensemble measurements. Furthermore it would allow the development of micrometric, functionalized multiprobe samples for multitarget label-free assays.In this work, a novel experimental setup based on the spatial modulation spectroscopy (SMS) technique has been developed to measure the optical response of individual nano-objects in a liquid environment. In parallel, a new technique has also been developed to elaborate stable probes for measurements with the new setup, with a focus on gold bipyramids due to numerous qualities that make them excellent candidates for biosensing probes. The setup has been used to measure the response of individual objects in environments of different real refractive indices and the detected changes have been shown to be in good agreement with theoretical calculations. Numerical studies have also been performed to investigate the influence on the optical response of numerous factors encountered in the studied systems
Okabayashi, Yohei. "Synthesis of azide- and alkyne-terminated alkane thiols and evaluation of their application in Huisgen 1,3-dipolar cycloaddition ("click") reactions on gold surfaces." Thesis, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20559.
Full textImmobilization of different bio- and organic molecules on solid supports is fundamental within many areas of science. Sometimes, it is desirable to obtain a directed orientation of the molecule in the immobilized state. In this thesis, the copper (I) catalyzed Huisgen 1,3-dipolar cycloaddition, referred to as a “click chemistry” reaction, was explored as a means to perform directed immobilization of small molecule ligands on gold surfaces. The aim was to synthesize alkyne- and azide-terminated alkanethiols that would form well-organized self assembled monolayers (SAMs) on gold from the commercially available substances orthoethylene glycol and bromo alkanoic acid. N-(23-azido-3,6,9,12,15,18,21-heptaoxatricosyl)-n-mercaptododekanamide/hexadecaneamide (n = 12, 16) were successfully synthesized and allowed to form SAMs of different compositions to study how the differences in density of the functional groups on the surface would influence the structure of the monolayer and the click chemistry reaction. The surfaces were characterized by different optical methods: ellipsometry, contact angle goniometry and infrared reflection-absorption spectroscopy (IRAS). The click reaction was found to proceed at very high yields on all investigated surfaces. Finally, the biomolecular interaction between a ligand immobilized by click chemistry on the gold surfaces and a model protein (bovine carbonic anhydrase) was demonstrated by surface plasmon resonance using a Biacore system.
Heer, Joseph Michael. "FDTD Modeling of the Spectroscopy and Resonances of Thin Films and Particles on Plasmonic Nickel Mesh." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293754711.
Full textKholodtsova, Maria. "Spectral, spatial and temporal properties of multilayered epithelial tissue in vivo in presence of metal nanoparticles in multimodal spectroscopy." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0031/document.
Full textThe thesis work is devoted to spatially-, temporally- and spectrally- resolved laser and biological tissue interactions. The aim of the present thesis was to investigate the influence of colloidal nanoparticles embedded into multilayered biological tissues on their optical properties in order to provide deeper and/or more precise probing. To do so, the integral spectroscopic parameters and lifetime of fluorophore in vicinity of metal nanoparticles were analyzed theoretically and experimentally. Another part of the study was to propose new algorithmic solutions for improving the performance of the estimation process of the optical properties values from spatially resolved spectroscopic measurements. The last part of the thesis was the experimental and theoretical modelling of fluorophore’s kinetics in presence of colloidal gold nanoparticles. The ultra-short pico-second component (around 100 ps) was resolved and correlated to strong nanoparticles dipole field which is compensating the molecule’s dipole
Bergström, Anna. "SPR Sensor Surfaces based on Self-Assembled Monolayers." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16664.
Full textThe study and understanding of molecular interactions is fundamentally important in today's field of life sciences and there is a demand for well designed surfaces for biosensor applications. The biosensor has to be able to detect specific molecular interactions, while non-specific binding of other substances to the sensor surface should be kept to a minimum. The objective of this master´s thesis was to design sensor surfaces based on self-assembled monolayers (SAMs) and evaluate their structural characteristics as well as their performance in Biacore systems. By mixing different oligo (ethylene glycol) terminated thiol compounds in the SAMs, the density of functional groups for bimolecular attachment could be controlled. Structural characteristics of the SAMs were studied using Ellipsometry, Contact Angle Goniometry, IRAS and XPS. Surfaces showing promising results were examined further with Surface Plasmon Resonance in Biacore instruments.
Mixed SAM surfaces with a tailored degree of functional COOH groups could be prepared. The surfaces showed promising characteristics in terms of stability, immobilization capacity of biomolecules, non-specific binding and kinetic assay performance, while further work needs to be dedicated to the improvement of their storage stability. In conclusion, the SAM based sensor surfaces studied in this thesis are interesting candidates for Biacore applications.
Du, Xiaosong. "Adsorption Studies of Polysaccharides and Phospholipids Onto Cellulose." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/30161.
Full textPh. D.
Schreiber, Benjamin, Dimitra Gkogkou, Lina Dedelaite, Jochen Kerbusch, René Hübner, Evgeniya Sheremet, Dietrich R. T. Zahn, Arunas Ramanavicius, Stefan Facskoa, and Raul D. Rodriguez. "Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS." Technische Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A23477.
Full textSegervald, Jonas. "Fabrication and Optimization of a Nanoplasmonic Chip for Diagnostics." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163998.
Full textMershin, Andreas. "Tubulin in vitro, in vivo and in silico." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/1635.
Full textGeiss, Frank Andreas [Verfasser]. "Proteo-Lipobeads : a novel platform to investigate strictly oriented membrane proteins in their functionally active form. Bio-UV-SPR: exploring the ultraviolet spectral range for water-bound analytes in surface plasmon resonance spectroscopy / Frank Andreas Geiss." Mainz : Universitätsbibliothek Mainz, 2019. http://d-nb.info/1175027928/34.
Full textNilebäck, Erik. "A novel biotinylated surface designed for QCM-D applications." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19250.
Full text
Control of protein immobilization at sensor surfaces is of great interest within various scientific fields, since it enables studies of specific biomolecular interactions. To achieve this, one must be able to immobilize proteins with retained native structure, while minimizing non-specific protein binding. The high affinity interaction between streptavidin (SA) and biotin is extensively used as a linker between a surface, where SA is immobilized, and the (biotinylated) molecule of interest. Self- assembled monolayers (SAMs) of poly- and oligo ethylene glycol (PEG and OEG) derivatives have been proven in literature to minimize non-specific protein binding, and biotin-exposing SAMs have been shown efficient for immobilization of SA.
The aim of this master's thesis project was to develop biotinylated gold surfaces for quartz crystal microbalance with dissipation monitoring (QCM-D) applications through the self-assembly of mixed monolayers of thiolated OEG (or PEG) derivatives with or without a terminal biotin head group. For this, different thiol compounds were to be compared and evaluated. For the systems under study, the required biotin density for maximum specific SA immobilization was to be established, while keeping the non-specific serum adsorption at a minimum. Model experiments with biotinylated proteins immobilized to the SA-functionalized surfaces were to be performed to evaluate the possibilities for commercialization.
A protocol for the preparation of a novel biotinylated surface was developed based on the immersion of gold substrates in an ethanolic incubation solution of dithiols with OEG chains (SS-OEG and SS-OEG-biotin, 99:1) and found to give reproducible results with respect to low non-specific protein binding and immobilization of a monolayer of SA. The modified surfaces allowed for subsequent immobilization of biotinylated bovine serum albumin (bBSA) and biotinylated plasminogen (bPLG). PLG was the subject of a challenging case study, using a combination of QCM-D and surface plasmon resonance (SPR), where the immobilized protein was subjected to low molecular weight ligands that were believed to induce conformational changes. The high control of the surface chemistry allowed for the interpretation of the increased dissipation shift upon ligand binding in terms of conformational changes.
An obstacle before commercialization of the described biotinylated surfaces is that they do not seem stable for storage > 7 days. The reasons for this have to be investigated further.
Corten, Cathrin Carolin. "Synthese und Charakterisierung dünner Hydrogelschichten mit modulierbaren Eigenschaften." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209463829168-95283.
Full textFreixas, Angel Luis. "Surface plasmon resonance experiments." FIU Digital Commons, 2007. http://digitalcommons.fiu.edu/etd/3417.
Full textAndersson, Olof. "Imaging surface plasmon resonance." Doctoral thesis, Linköpings universitet, Sensorvetenskap och Molekylfysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14923.
Full textYazidi, Senda. "Structure et propriétés optiques de nanoparticules couplées : application à la spectroscopie Raman exaltée de surface." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2279/document.
Full textThe aim of this work is to use nanostructured alumina surfaces to guide the growth and to optimize the organization of metallic particles (Ag, Au and AgxAu1-x), and to test those systems as reusable SERS-active substrates. We used spectrophotometry to characterize the resulting optical properties, spectroscopic ellipsometry for the determination of the optical index and transmission electron microscopy for the structural characterizations. Surfaced-enhanced Raman spectroscopy (SERS) was used for the detection of adsorbed bipyridine molecules on the sample surface, in collaboration with the Institut des Matériaux Jean Rouxel at Nantes. We first study systems consisting of monometallic and bimetallic nanoparticles in order to understand the growth modes of such particle assemblies. A particular attention is paid to the influence of the sequential deposition of Au and Ag on the structural and optical properties. We show that different arrangements of bimetallic nanoparticles are obtained according to the deposition sequence used and that an alloy is obtained after ex situ annealing under vacuum. The near-field and far-field optical properties of AgxAu1-x nanoparticle alloys embedded in an alumina matrix are compared numerically by the finite difference time domain method, with those of pure metal nanoparticles. Our results indicate that pure metal nanoparticles exhibit a greater field enhancement than alloy nanoparticles. Finally, SERS experiments conducted with a dichroic system made of coupled Ag nanoparticles show that an intense SERS signal can be obtained with coated nanoparticles
Juvé, Vincent. "Spectroscopie linéaire et ultra-rapide de nanoparticules métalliques : de l’ensemble au nano-objet individuel." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10163/document.
Full textThe size reduction of metals, from bulk to nanoparticles, induces significant modifications of their properties. For instance, the optical properties evolve and a new resonance, the localized surface plasmon resonance, appears in the optical spectrum and is responsible for the change of colors of metallic nanoparticles. This work is focused on studies of metals’ properties at the nanometric scale. In the first part, the vibrational and thermal properties are studied with a femtosecond spectroscopy technique. It is shown that it is possible to excite and detect optically vibrational frequencies in the terahertz domain by studying platinum nanoparticles formed by less than 100 atoms. The study of the thermal properties of the metallic nanoparticles (gold and silver) has shown that the boundary effect increases. This thermal boundary resistance, known as the Kapitza resistance, plays a dominant role in the heat transfer at the nanometric scale. A correlation between the experimental values of the thermal boundary resistance and the acoustic impedances of the boundary’s materials has been found. We have also shown that the Kapitza resistance is a decreasing function of the temperature in the 70-300K range. In the second part, the effect of the size reduction on the optical properties of non-spherical nanoparticles is observed. The Spatial Modulation Spectroscopy technique is used in order to locate and study individual gold nanorods. It is shown that the two geometrical parameters (the length and the diameter) of the nanorods influence the spectral linewidth of the localized surface plasmon resonance. This effect is not predicted by existing classical or quantum models
Ljungblad, Jonas. "Antibody-conjugated Gold Nanoparticles integrated in a fluorescence based Biochip." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-50619.
Full textGold nanoparticles exhibit remarkable optical properties and could prove useful in sensitive biosensing applications. Upon illumination gold nanoparticles produce localized surface plasmons, which influence nearby fluorophores and an enhancement in their fluorescence intensity can be observed. This property makes gold nanoparticles attractive for enhancing optical signals.
In this project gold nanoparticles were functionalized with an antibody and immobilized to the surface of an existing biochip platform based on fluorescence. The aim was to investigate the possibility of obtaining an increased fluorescence signal from the gold nanoparticles. Two different conjugation procedures were investigated, direct physisorption and covalent attachment of the antibodies to the particles. Activity of bound antibodies was confirmed in both cases.
The on-chip fluorescence intensity produced by the different conjugates was monitored by use a specialized fluorescence reader designed for point-of-care use. AFM and SEM were used to determine the surface concentration of particles. A correlation between the produced fluorescence intensity and the surface concentration could be seen.
Harris, Richard David. "Waveguide surface plasmon resonance biosensor." Thesis, University of Southampton, 1996. https://eprints.soton.ac.uk/398739/.
Full textNakkach, Mohamed. "Imagerie multidimensionnelle en mode de résonance de plasmons de surface de structures de biopuces : expérience et modélisation." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00734650.
Full textJakob, Thomas. "High pressure surface plasmon spectroscopy." [S.l. : s.n.], 2002. http://ArchiMeD.uni-mainz.de/pub/2002/0084/diss.pdf.
Full textNenninger, Garet Glenn. "High-resolution surface plasmon resonance biosensing /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5840.
Full textDu, Yao. "Particle-modified surface plasmon resonance biosensor." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289388.
Full textVukusic, Peter. "Sensing thin layers using surface plasmon resonance." Thesis, University of Exeter, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358142.
Full textChinowsky, Timothy Mark. "Optical multisensors based on surface plasmon resonance /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/5857.
Full textLu, Hongbo. "Surface plasmon resonance biosensors : development and applications /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/8069.
Full textFratzke, Scott B. "INTEGRATION OF MICROFLUIDICS WITH SURFACE PLASMON RESONANCE." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/366.
Full textBoutin, Elodie. "Mécanisme d'inhibition de la fusion membranaire du virus de l'hépatite C par différents composés : l'arbidol, la silymarine et les molécules la composant." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10244.
Full textInfection by the hepatitis C virus (HCV) is a major public health problem since the infection can lead to hepatocellular carcinoma in the current absence of vaccine and effective treatment. It is therefore important to identify new therapeutic targets and to develop novel antiviral drugs. Here we studied the anti-HCV activity of two compounds : arbidol (Arb), the herbal extract silymarin (SM) and molecules therein, including silibinin (SbN). These compounds are already in use in human medicine for several years and have proven safety. They display a broad antiviral spectrum and inhibit several steps of the virus life cycle, including membrane fusion. This step is very interesting to target, since the virus could be blocked upstream the cellular damages it could induce. Using different biophysical strategies, we showed that Arb associates with phospholipids at the membrane interface and interacts with aromatic residues. This suggests that Arb could form during the fusion process a complex between viral glycoprotein(s) and membrane, leading to the inhibition of the conformational changes within the glycoprotein that are required during the fusion process. SM and its components inhibit fusion of HCV pseudoparticles, probably by stabilizing the membranes involved in this process. Finally, we observed different antiviral and anti-inflammatory activities between two different formulations of SbN. Knowledge of these antiviral mechanisms should lead to innovative therapeutic strategies against HCV
Ring, Josh. "Novel fabrication and testing of light confinement devices." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/novel-fabrication-and-testing-of-light-confinement-devices(51572720-0c49-482e-8523-e44ca877117f).html.
Full textPrabhu, G. Radhakrishna. "Studies On Surface Plasmon Resonance And Related Experimental Methods Using Fixed Plasmon Angle." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/205.
Full textVokac, Elizabeth Anne. "Localized surface plasmon resonance spectroscopy of gold and silver nanoparticles and plasmon enhanced fluorescence." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-12-4511.
Full texttext
Fang, Shiping. "Surface enzyme kinetics and enzymatically amplified biosensing of nucleic acid arrays studied by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy." 2006. http://www.library.wisc.edu/databases/connect/dissertations.html.
Full text