To see the other types of publications on this topic, follow the link: Surfaces de Riemann réelles.

Journal articles on the topic 'Surfaces de Riemann réelles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Surfaces de Riemann réelles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhao, ShengYuan. "Automorphismes loxodromiques de surfaces abéliennes réelles." Annales de la faculté des sciences de Toulouse Mathématiques 28, no. 1 (2019): 109–27. http://dx.doi.org/10.5802/afst.1595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hart, M., Hershel M. Farkas, and Irwin Ira. "Riemann Surfaces." Mathematical Gazette 79, no. 484 (1995): 240. http://dx.doi.org/10.2307/3620121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mangolte, Frédéric. "Cycles algébriques sur les surfaces K3 réelles." Mathematische Zeitschrift 225, no. 4 (1997): 559–76. http://dx.doi.org/10.1007/pl00004321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arnlind, Joakim, Martin Bordemann, Laurent Hofer, Jens Hoppe, and Hidehiko Shimada. "Fuzzy Riemann surfaces." Journal of High Energy Physics 2009, no. 06 (2009): 047. http://dx.doi.org/10.1088/1126-6708/2009/06/047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buser, Peter. "Isospectral Riemann surfaces." Annales de l’institut Fourier 36, no. 2 (1986): 167–92. http://dx.doi.org/10.5802/aif.1054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Batchelor, M., and P. Bryant. "Graded Riemann surfaces." Communications in Mathematical Physics 114, no. 2 (1988): 243–55. http://dx.doi.org/10.1007/bf01225037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fernández, J. L., and J. M. Rodríquez. "The exponent of convergence of Riemann surfaces. Bass Riemann surfaces." Annales Academiae Scientiarum Fennicae Series A I Mathematica 15 (1990): 165–83. http://dx.doi.org/10.5186/aasfm.1990.1510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mangolte, Frédéric. "Surfaces elliptiques réelles et inégalité de Ragsdale-Viro." Mathematische Zeitschrift 235, no. 2 (2000): 213–26. http://dx.doi.org/10.1007/s002090000132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mangolte, F. "Cycles algébriques et topologie des surfaces bielliptiques, réelles." Commentarii Mathematici Helvetici 78, no. 2 (2003): 385–93. http://dx.doi.org/10.1007/s000140300016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cerne, Miran. "Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces." American Journal of Mathematics 126, no. 1 (2004): 65–87. http://dx.doi.org/10.1353/ajm.2004.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ortiz-Rodríguez, Adriana. "Quelques aspects sur la géométrie des surfaces algébriques réelles." Bulletin des Sciences Mathématiques 127, no. 2 (2003): 149–77. http://dx.doi.org/10.1016/s0007-4497(03)00007-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Corless, Robert M., and David J. Jeffrey. "Graphing elementary Riemann surfaces." ACM SIGSAM Bulletin 32, no. 1 (1998): 11–17. http://dx.doi.org/10.1145/294833.294839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jin, Naondo. "On continuable Riemann surfaces." Kodai Mathematical Journal 21, no. 3 (1998): 318–29. http://dx.doi.org/10.2996/kmj/1138043943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Seppala, Mika, and Tuomas Sorvali. "Horocycles on Riemann Surfaces." Proceedings of the American Mathematical Society 118, no. 1 (1993): 109. http://dx.doi.org/10.2307/2160016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jin, Naondo. "On maximal Riemann surfaces." Hiroshima Mathematical Journal 26, no. 2 (1996): 385–404. http://dx.doi.org/10.32917/hmj/1206127369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sakai, Makoto. "Continuations of Riemann Surfaces." Canadian Journal of Mathematics 44, no. 2 (1992): 357–67. http://dx.doi.org/10.4153/cjm-1992-024-1.

Full text
Abstract:
AbstractWe shall show that if a Riemann surface is continuable, then it admits one of three types of continuations. Using this classification of continuations, we construct two nontrivial examples of two-sheeted unlimited covering Riemann surfaces of the unit disk one of which is continuable and the other is not.
APA, Harvard, Vancouver, ISO, and other styles
17

Elser, V. "Crystallography and Riemann surfaces." Discrete & Computational Geometry 25, no. 3 (2001): 445–76. http://dx.doi.org/10.1007/s004540010091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kra, Irwin. "Book Review: Riemann surfaces." Bulletin of the American Mathematical Society 49, no. 3 (2012): 455–63. http://dx.doi.org/10.1090/s0273-0979-2012-01375-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Girondo, Ernesto. "Multiply Quasiplatonic Riemann Surfaces." Experimental Mathematics 12, no. 4 (2003): 463–75. http://dx.doi.org/10.1080/10586458.2003.10504514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hidalgo, Rubén A. "ϒ-hyperelliptic Riemann surfaces". Proyecciones (Antofagasta) 17, № 1 (1998): 77–117. http://dx.doi.org/10.22199/s07160917.1998.0001.00007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Brooks, Robert, Ruth Gornet, and William H. Gustafson. "Mutually Isospectral Riemann Surfaces." Advances in Mathematics 138, no. 2 (1998): 306–22. http://dx.doi.org/10.1006/aima.1998.1750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Krasnov, Kirill. "Holography and Riemann surfaces." Advances in Theoretical and Mathematical Physics 4, no. 4 (2000): 929–79. http://dx.doi.org/10.4310/atmp.2000.v4.n4.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tamagni, Spencer, and Costas Efthimiou. "Electrostatics and Riemann surfaces." European Journal of Physics 42, no. 1 (2020): 015206. http://dx.doi.org/10.1088/1361-6404/abb4ef.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hidalgo, R. A. "HOMOLOGY CLOSED RIEMANN SURFACES." Quarterly Journal of Mathematics 63, no. 4 (2011): 931–52. http://dx.doi.org/10.1093/qmath/har026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sepp{äl{ä, Mika, and Tuomas Sorvali. "Horocycles on Riemann surfaces." Proceedings of the American Mathematical Society 118, no. 1 (1993): 109. http://dx.doi.org/10.1090/s0002-9939-1993-1128730-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schmutz, Paul. "Systoles on Riemann surfaces." Manuscripta Mathematica 85, no. 1 (1994): 429–47. http://dx.doi.org/10.1007/bf02568209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Merkl, Franz. "A Riemann Roch Theorem for infinite genus Riemann surfaces." Inventiones mathematicae 139, no. 2 (2000): 391–437. http://dx.doi.org/10.1007/s002229900031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Câmara, M. C., A. F. dos Santos, and Pedro F. dos Santos. "Matrix Riemann–Hilbert problems and factorization on Riemann surfaces." Journal of Functional Analysis 255, no. 1 (2008): 228–54. http://dx.doi.org/10.1016/j.jfa.2008.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Balazard, Michel, and Oswaldo Velásquez Castañón. "Sur l'infimum des parties réelles des zéros des sommes partielles de la fonction zêta de Riemann." Comptes Rendus Mathematique 347, no. 7-8 (2009): 343–46. http://dx.doi.org/10.1016/j.crma.2009.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cazacu, Cabiria, and Victoria Stanciu. "Quasiconformal homeomorphisms between Riemann surfaces." Banach Center Publications 31, no. 1 (1995): 35–43. http://dx.doi.org/10.4064/-31-1-35-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kato, Takao. "Subspaces of trigonal Riemann surfaces." Kodai Mathematical Journal 12, no. 1 (1989): 72–91. http://dx.doi.org/10.2996/kmj/1138038991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Masumoto, Makoto, and Masakazu Shiba. "Circularizable domains on Riemann surfaces." Kodai Mathematical Journal 28, no. 2 (2005): 280–91. http://dx.doi.org/10.2996/kmj/1123767009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tyszkowska, Ewa. "On pq-hyperelliptic Riemann surfaces." Colloquium Mathematicum 103, no. 1 (2005): 115–20. http://dx.doi.org/10.4064/cm103-1-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aubert, Karl Egil. "Arithmetic on open Riemann surfaces." Annales Academiae Scientiarum Fennicae. Series A. I. Mathematica 10 (1985): 57–65. http://dx.doi.org/10.5186/aasfm.1985.1008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Rodríguez, J. M. "Two remarks on Riemann surfaces." Publicacions Matemàtiques 38 (July 1, 1994): 463–77. http://dx.doi.org/10.5565/publmat_38294_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hidalgo, Rubén A. "Homology coverings of Riemann surfaces." Tohoku Mathematical Journal 45, no. 4 (1993): 499–503. http://dx.doi.org/10.2748/tmj/1178225844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Costa, Antonio F., and Milagros Izquierdo. "On real trigonal Riemann surfaces." MATHEMATICA SCANDINAVICA 98, no. 1 (2006): 53. http://dx.doi.org/10.7146/math.scand.a-14983.

Full text
Abstract:
A closed Riemann surface $X$ which can be realized as a 3-sheeted covering of the Riemann sphere is called trigonal, and such a covering will be called a trigonal morphism. A trigonal Riemann surface $X$ is called real trigonal if there is an anticonformal involution (symmetry) $\sigma$ of $X$ commuting with the trigonal morphism. If the trigonal morphism is a cyclic regular covering the Riemann surface is called real cyclic trigonal. The species of the symmetry $\sigma $ is the number of connected components of the fixed point set $\mathrm{Fix}(\sigma)$ and the orientability of the Klein surf
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Sun-Chul. "Vortex Motion on Riemann Surfaces." Journal of the Korean Physical Society 59, no. 1 (2011): 47–54. http://dx.doi.org/10.3938/jkps.59.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kato, Takao. "Principal transformations between Riemann surfaces." Proceedings of the Japan Academy, Series A, Mathematical Sciences 70, no. 2 (1994): 37–40. http://dx.doi.org/10.3792/pjaa.70.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schaller, Paul Schmutz. "Perfect Non-Extremal Riemann Surfaces." Canadian Mathematical Bulletin 43, no. 1 (2000): 115–25. http://dx.doi.org/10.4153/cmb-2000-018-4.

Full text
Abstract:
AbstractAn infinite family of perfect, non-extremal Riemann surfaces is constructed, the first examples of this type of surfaces. The examples are based on normal subgroups of the modular group PSL(2, ℤ) of level 6. They provide non-Euclidean analogues to the existence of perfect, non-extremal positive definite quadratic forms. The analogy uses the function syst which associates to every Riemann surface M the length of a systole, which is a shortest closed geodesic of M.
APA, Harvard, Vancouver, ISO, and other styles
41

Dugan, Michael J., and Hidenori Sonoda. "Functional determinants on Riemann surfaces." Nuclear Physics B 289 (January 1987): 227–52. http://dx.doi.org/10.1016/0550-3213(87)90378-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bonora, L., and M. Matone. "KdV equation on riemann surfaces." Nuclear Physics B 327, no. 2 (1989): 415–26. http://dx.doi.org/10.1016/0550-3213(89)90277-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Morozov, A., and A. Rosly. "Strings and open riemann surfaces." Nuclear Physics B 326, no. 1 (1989): 205–21. http://dx.doi.org/10.1016/0550-3213(89)90440-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Novikov, S. P. "Riemann Surfaces, Operator Fields, Strings." Progress of Theoretical Physics Supplement 102 (1990): 293–300. http://dx.doi.org/10.1143/ptps.102.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cho, S. "N = 2 Super Riemann Surfaces." Progress of Theoretical Physics 90, no. 2 (1993): 455–63. http://dx.doi.org/10.1143/ptp/90.2.455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Forstnerič, Franc, and Erlend Fornæss Wold. "Bordered Riemann surfaces in C2." Journal de Mathématiques Pures et Appliquées 91, no. 1 (2009): 100–114. http://dx.doi.org/10.1016/j.matpur.2008.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kurokawa, Nobushige, and Masato Wakayama. "Casimir effects on Riemann surfaces." Indagationes Mathematicae 13, no. 1 (2002): 63–75. http://dx.doi.org/10.1016/s0019-3577(02)90006-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bandelloni, G., and S. Lazzarini. "Noncommutative coordinates on Riemann surfaces." Nuclear Physics B 703, no. 3 (2004): 499–517. http://dx.doi.org/10.1016/j.nuclphysb.2004.10.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cohn, J. D. "N = 2 super-Riemann surfaces." Nuclear Physics B 284 (January 1987): 349–64. http://dx.doi.org/10.1016/0550-3213(87)90039-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jones, Gareth, David Singerman, and Paul Watson. "Symmetries of quasiplatonic Riemann surfaces." Revista Matemática Iberoamericana 31, no. 4 (2015): 1403–14. http://dx.doi.org/10.4171/rmi/873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!