Academic literature on the topic 'Surfaces K3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surfaces K3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surfaces K3"

1

Garbagnati, Alice. "On K3 Surface Quotients of K3 or Abelian Surfaces." Canadian Journal of Mathematics 69, no. 02 (April 2017): 338–72. http://dx.doi.org/10.4153/cjm-2015-058-1.

Full text
Abstract:
Abstract The aim of this paper is to prove that a K3 surface is the minimal model of the quotient of an Abelian surface by a group G (respectively of a K3 surface by an Abelian group G) if and only if a certain lattice is primitively embedded in its Néron-Severi group. This allows one to describe the coarse moduli space of the K3 surfaces that are (rationally) G-covered by Abelian or K3 surfaces (in the latter case G is an Abelian group). When G has order 2 or G is cyclic and acts on an Abelian surface, this result is already known; we extend it to the other cases. Moreover, we prove that a K3 surface XG is the minimal model of the quotient of an Abelian surface by a group G if and only if a certain configuration of rational curves is present on XG . Again, this result was known only in some special cases, in particular, if G has order 2 or 3.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Hoil, and Chang-Yeong Lee. "Noncommutative K3 surfaces." Physics Letters B 536, no. 1-2 (May 2002): 154–60. http://dx.doi.org/10.1016/s0370-2693(02)01807-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katsura, Toshiyuki, and Matthias Schütt. "Zariski K3 surfaces." Revista Matemática Iberoamericana 36, no. 3 (November 11, 2019): 869–94. http://dx.doi.org/10.4171/rmi/1152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keum, Jong Hae. "Every algebraic Kummer surface is the K3-cover of an Enriques surface." Nagoya Mathematical Journal 118 (June 1990): 99–110. http://dx.doi.org/10.1017/s0027763000003019.

Full text
Abstract:
A Kummer surface is the minimal desingularization of the surface T/i, where T is a complex torus of dimension 2 and i the involution automorphism on T. T is an abelian surface if and only if its associated Kummer surface is algebraic. Kummer surfaces are among classical examples of K3-surfaces (which are simply-connected smooth surfaces with a nowhere-vanishing holomorphic 2-form), and play a crucial role in the theory of K3-surfaces. In a sense, all Kummer surfaces (resp. algebraic Kummer surfaces) form a 4 (resp. 3)-dimensional subset in the 20 (resp. 19)-dimensional family of K3-surfaces (resp. algebraic K3 surfaces).
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, Taro. "Double cover K3 surfaces of Hirzebruch surfaces." Advances in Geometry 21, no. 2 (April 1, 2021): 221–25. http://dx.doi.org/10.1515/advgeom-2020-0034.

Full text
Abstract:
Abstract General K3 surfaces obtained as double covers of the n-th Hirzebruch surfaces with n = 0, 1, 4 are not double covers of other smooth surfaces. We give a criterion for such a K3 surface to be a double covering of another smooth rational surface based on the branch locus of double covers and fibre spaces of Hirzebruch surfaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Artebani, Michela, Jürgen Hausen, and Antonio Laface. "On Cox rings of K3 surfaces." Compositio Mathematica 146, no. 4 (March 25, 2010): 964–98. http://dx.doi.org/10.1112/s0010437x09004576.

Full text
Abstract:
AbstractWe study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-symplectic involution that have Picard number 2 to 5 or occur as double covers of del Pezzo surfaces.
APA, Harvard, Vancouver, ISO, and other styles
7

Shimada, Ichiro, and De-Qi Zhang. "Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces." Nagoya Mathematical Journal 161 (March 2001): 23–54. http://dx.doi.org/10.1017/s002776300002211x.

Full text
Abstract:
We present a complete list of extremal elliptic K3 surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an ADE-configuration of smooth rational curves on a K3 surface to be trivial (Proposition 4.1 and Theorem 4.3).
APA, Harvard, Vancouver, ISO, and other styles
8

Shimada, Ichiro. "On normal K3 surfaces." Michigan Mathematical Journal 55, no. 2 (August 2007): 395–416. http://dx.doi.org/10.1307/mmj/1187647000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nishiguchi, Kenji. "Degeneration of K3 surfaces." Journal of Mathematics of Kyoto University 28, no. 2 (1988): 267–300. http://dx.doi.org/10.1215/kjm/1250520482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

PARK, B. DOUG. "DOUBLING HOMOTOPY K3 SURFACES." Journal of Knot Theory and Its Ramifications 12, no. 03 (May 2003): 347–54. http://dx.doi.org/10.1142/s0218216503002469.

Full text
Abstract:
We perform certain doubling operation on the homotopy K3 surfaces of R. Fintushel and R. J. Stern to obtain a new family of smooth closed simply-connected irreducible spin 4-manifolds indexed by knots in S3.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Surfaces K3"

1

Ugolini, Matteo. "K3 surfaces." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18774/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Makarova, Svetlana Ph D. Massachusetts Institute of Technology. "Strange duality on elliptic and K3 surfaces." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126929.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 75-77).
The Strange Duality is a conjectural duality between two spaces of global sections of natural line bundles on moduli spaces of sheaves on a fixed variety. It has been proved in full generality on curves by Marian and Oprea, and by Belkale. There have been ongoing work on the Strange Duality on surfaces by various people. In the current paper, we show that the approach of Marian and Oprea to treating elliptic surfaces can be generalized in multiple directions: first, we can prove the Strange Duality in many cases over elliptic surfaces, and then, we extend their moduli construction to the non-ample quasipolarized locus of K3 surfaces.
by Svetlana Makarova.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mathematics
APA, Harvard, Vancouver, ISO, and other styles
3

Fullwood, Joshua Joseph. "Invariant Lattices of Several Elliptic K3 Surfaces." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9188.

Full text
Abstract:
This work is concerned with computing the invariant lattices of purely non-symplectic automorphisms of special elliptic K3 surfaces. Brandhorst gave a collection of K3 surfaces admitting purely non-symplectic automorphisms that are uniquely determined up to isomorphism by certain invariants. For many of these surfaces, the automorphism is also unique or the automorphism group of the surface is finite and with a nice isomorphism class. Understanding the invariant lattices of these automorphisms and surfaces is interesting because of these uniqueness properties and because it is possible to give explicit generators for the Picard and invariant lattices. We use the methods given by Comparin, Priddis and Sarti to describe the Picard lattice in terms of certain special curves from the elliptic fibration of the surface. We use symmetries of the Picard lattice and fixed-point theory to compute the invariant lattices explicitly. This is done for all of Brandhorst's elliptic K3 surfaces having trivial Mordell-Weil group.
APA, Harvard, Vancouver, ISO, and other styles
4

Barros, Ignacio. "K3 surfaces and moduli of holomorphic differentials." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19290.

Full text
Abstract:
In dieser Arbeit behandeln wir die birationale Geometrie verschiedener Modulräume; die Modulräume von Kurven mit einem k-Differential mit vorgeschierbenen Nullen, besser bekannt als Strata von Differenzialen, Moduln von K3 Flächen mit markierten Punkten und Moduln von Kurven. Für bestimmte Geschlechter nennen wir Abschätzungen der Kodaira-Dimension, konstruieren unirationale Parametrisierungen, rationale deckende Kurven und unterschiedliche birationale Modelle. In Kapitel 1 führen wir die zu untersuchenden Objekte ein und geben einen kurzen Überblick ihrer wichtigsten Eigenschaften und offenen Problemen. In Kapitel 2 konstruieren wir einen Hilfsmodulraum, der als Brücke zwischen bestimmten finiten Quotienten von Mgn für kleines g und den Moduln der polarisierten K3 Flächen vom Geschlecht 11 dient. Wir entwickeln die Deformationstheorie, die nötig ist, um die Eigenschaften und die oben genannten Modulräume zu erforschen. In Kapitel 3 bedienen wir uns dieser Werkzeuge, um birationale Modelle für Moduln polarisierter K3 Flächen vom Geschlecht 11 mit markierten Punkten zu konstruieren. Diese nutzen wir, um Resultate über die Kodaira-Dimension herzuleiten. Wir beweisen, dass der Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten unirational ist, falls n<=6, und uniruled, falls n<=7. Wir beweisen auch, dass die Kodaira-Dimension von Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten nicht-negativ ist für n>= 9. Im letzten Kapitel gehen wir noch auf die fehlenden Fälle der Kodaira-Klassifizierung von Mgnbar ein. Schliesslich behandeln wir in Kapitel 4 die birationale Geometrie mit Blick auf die Strata von holomorphen und quadratischen Differentialen. Wir zeigen, dass die Strata holomorpher und quadratischer Differentiale von niedrigem Geschlecht uniruled sind, indem wir rationale Kurven mit pencils auf K3 und del Pezzo Flächen konstruieren. Durch das Beschränken des Geschlechts 3<= g<=6 bilden wir projektive Bündel über rationale Varietäten, die die holomorphe Strata mit maximaler Länge g-1 dominieren. Also zeigen wir auch, dass diese Strata unirational sind.
In this thesis we investigate the birational geometry of various moduli spaces; moduli spaces of curves together with a k-differential of prescribed vanishing, best known as strata of differentials, moduli spaces of K3 surfaces with marked points, and moduli spaces of curves. For particular genera, we give estimates for the Kodaira dimension, construct unirational parameterizations, rational covering curves, and different birational models. In Chapter 1 we introduce the objects of study and give a broad brush stroke about their most important known features and open problems. In Chapter 2 we construct an auxiliary moduli space that serves as a bridge between certain finite quotients of Mgn for small g and the moduli space of polarized K3 surfaces of genus eleven. We develop the deformation theory necessary to study properties of the mentioned moduli space. In Chapter 3 we use this machinery to construct birational models for the moduli spaces of polarized K3 surfaces of genus eleven with marked points and we use this to conclude results about the Kodaira dimension. We prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points is unirational when n<= 6 and uniruled when n<=7. We also prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points has non-negative Kodaira dimension for n>= 9. In the final section, we make a connection with some of the missing cases in the Kodaira classification of Mgnbar. Finally, in Chapter 4 we address the question concerning the birational geometry of strata of holomorphic and quadratic differentials. We show strata of holomorphic and quadratic differentials to be uniruled in small genus by constructing rational curves via pencils on K3 and del Pezzo surfaces respectively. Restricting to genus 3<= g<=6 we construct projective bundles over rational varieties that dominate the holomorphic strata with length at most g-1, hence showing in addition, these strata are unirational.
APA, Harvard, Vancouver, ISO, and other styles
5

Veniani, Davide Cesare [Verfasser]. "Lines on K3 quartic surfaces / Davide Cesare Veniani." Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1112954716/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goluboff, Justin Ross. "Genus Six Curves, K3 Surfaces, and Stable Pairs:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108715.

Full text
Abstract:
Thesis advisor: Maksym Fedorchuk
A general smooth curve of genus six lies on a quintic del Pezzo surface. In [AK11], Artebani and Kondō construct a birational period map for genus six curves by taking ramified double covers of del Pezzo surfaces. The map is not defined for special genus six curves. In this dissertation, we construct a smooth Deligne-Mumford stack P₀ parametrizing certain stable surface-curve pairs which essentially resolves this map. Moreover, we give an explicit description of pairs in P₀ containing special curves
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
7

Tabbaa, Dima al. "On the classification of some automorphisms of K3 surfaces." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2299/document.

Full text
Abstract:
Un automorphisme non-symplectique d'ordre fini n sur une surface X de type K3 est un automorphisme σ ∈ Aut(X) qui satisfait σ*(ω) = λω où λ est une racine primitive n-ième de l'unité et ω est le générateur de H2,0(X). Dans cette thèse on s’intéresse aux automorphismes non-symplectiques d'ordre 8 et 16 sur les surfaces K3. Dans un premier temps, nous classifionsles automorphismes non-symplectiques σ d'ordre 8 quand le lieu fixe de sa quatrième puissance σ⁴ contient une courbe de genre positif, on montre plus précisément que le genre de la courbe fixée par σ est au plus un. Ensuite nous étudions le cas où le lieu fixe de σ contient au moins une courbe et toutes les courbes fixées par sa quatrième puissance σ⁴ sont rationnelles. Enfin nous étudions le cas où σ et son carré σ² agissent trivialement sur le groupe de Néron-Severi. Nous classifions toutes les possibilités pour le lieu fixe de σ et de son carré σ² dans ces trois cas. Nous obtenons la classification complète pour les automorphismes non-symplectiques d'ordre 8 sur les surfaces K3. Dans la deuxième partie de la thèse, nous classifions les surfaces K3 avec automorphisme non-symplectique d'ordre 16 en toute généralité. Nous montrons que le lieu fixe contient seulement courbes rationnelles et points isolés et nous classifions complètement les sept configurations possibles. Si le groupe de Néron-Severi a rang 6, alors il y a deux possibilités et si son rang est 14, il y a cinq possibilités. En particulier si l'action de l'automorphisme est trivial sur le groupe de Néron-Severi, alors nous montrons que son rang est six. Enfin, nous construisons des exemples qui correspondent à plusieurs cas dans la classification des automorphismes non-symplectiques d'ordre 8 et nous donnons des exemples pour chaque cas dans la classification des automorphismes non-symplectiques d'ordre 16
A non-symplectic automorphism of finite order n on a K3 surface X is an automorphism σ ∈ Aut(X) that satisfies σ*(ω) = λω where λ is a primitive n−root of the unity and ω is a generator of H2,0(X). In this thesis we study the non-symplectic automorphisms of order 8 and 16 on K3 surfaces. First we classify the non-symplectic automorphisms σ of order eight when the fixed locus of its fourth power σ⁴ contains a curve of positive genus, we show more precisely that the genus of the fixed curve by σ is at most one. Then we study the case of the fixed locus of σ that contains at least a curve and all the curves fixed by its fourth power σ⁴ are rational. Finally we study the case when σ and its square σ² act trivially on the Néron-Severi group. We classify all the possibilities for the fixed locus of σ and σ² in these three cases. We obtain a complete classifiction for the non-symplectic automorphisms of order 8 on a K3 surfaces.In the second part of the thesis, we classify K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and isolated points and we completely classify the seven possible configurations. If the Néron-Severi group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular ifthe action of the automorphism is trivial on the Néron-Severi group, then we show that its rank is six.Finally, we construct several examples corresponding to several cases in the classification of the non-symplectic automorphisms of order 8 and we give an example for each case in the classification of the non-symplectic automorphisms of order 16
APA, Harvard, Vancouver, ISO, and other styles
8

Comparin, Paola. "Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2281/document.

Full text
Abstract:
Une surface K3 est une surface X complexe compacte projective lisse qui a fibré canonique trivial et h0;1(X) = 0. Dans cette thèse on s'intéresse à deux problèmes pour ces surfaces. D'abord on considère des surfaces K3 obtenues comme recouvrement double de P2 ramifié le long d'une sextique. On classifie les fibrations elliptiques sur ces surfaces et leur groupe de Mordell-Weil, c'est-à-dire le groupe des sections. Vu que une section de 2-torsion définit une involution de la surface (dite involution de van Geemen-Sarti), alors en classifiant les fibrations et les section de 2-torsion on obtient une classification complète des involutions de van Geemen-Sarti sur ce type de surfaces K3. On montre aussi comment calculer l'équation de la fibration et on étudie le quotient par l'involution de van Geemen-Sarti. Ensuite on montre la construction de Berglund-Hübsch-Chiodo-Ruan (BHCR): il s'agit d'une construction miroir qui part d'un polynôme dans un espace projectif à poids et d'un groupe d'automorphismes (avec certaines propriétés) et qui donne, en toute dimension, des paires de variétés Calabi-Yau. Ces deux variétés sont l'une miroir de l'autre en sense classique. On classifie toutes les paires de surfaces K3 obtenues avec cette construction qui aient en plus un automorphisme non{symplectique d'ordre premier p > 3. Pour les surfaces K3 une autre notion de symétrie miroir a été introduite par Dolgachev et Nikulin : la symétrie pour K3 polarisées (LPK3). On montre dans la thèse comment polariser les surfaces obtenues avec la construction BHCR et on preuve que deux surfaces miroir au sense BHCR, dûment polarisées, appartiennent à deux familles miroir LPK3
A K3 surface is a complex compact projective surface X which is smooth and such that its canonical bundle is trivial and h0;1(X) = 0. In this thesis we study two different topics about K3 surfaces. First we consider K3 surfaces obtained as double covering of P2 branched on a sextic curve. For these surfaces we classify elliptic fibrations and their Mordell-Weil group, i.e. the group of sections. A 2-torsion section induces a symplectic involution of the surface, called van Geemen-Sarti involution. The classification of elliptic fibrations and 2-torsion sections allows us to classify all van Geemen-Sarti involutions on the class of K3 surfaces we are considering. Moreover, we give details in order to obtain equations for the elliptic fibrations and their quotient by the van Geemen-Sarti involutions. Then we focus on the mirror construction of Berglund-Hübsch-Chiodo-Ruan (BHCR). This construction starts from a polynomial in a weighted projective space together with a group of diagonal automorphisms (with some properties) and gives a pair of Calabi-Yau varieties which are mirror in the classical sense. The construction works for any dimension. We use this construction to obtain pairs of K3 surfaces which carry a non-symplectic automorphism of prime order p > 3. Dolgachev and Nikulin proposed another notion of mirror symmetry for K3 surfaces: the mirror symmetry for lattice polarized K3 surfaces (LPK3). In this thesis we show how to polarize the K3 surfaces obtained from the BHCR construction and we prove that these surfaces belong to LPK3 mirror families
APA, Harvard, Vancouver, ISO, and other styles
9

Harrache, Titem. "Etude des fibrations elliptiques d'une surface K3." Paris 6, 2009. http://www.theses.fr/2009PA066451.

Full text
Abstract:
Nous exploitons la possibilité pour une surface K3 elliptique d'avoir plusieurs fibrations elliptiques. Dans le cas de la courbe elliptique universelle S, considérée comme surface, sur la courbe modulaire paramétrisant les courbes elliptiques avec un point d'ordre 7, certaines fibrations définies sur les rationnels ont un rang du groupe de Mordell-Weil strictement positif. Ceci permet de construire une infinité de courbes elliptiques sur les rationnels de rang supérieur ou égal à 2. Dans cette thèse on donne 12 exemples de fibrations elliptiques et on précise le groupe de Mordell-Weil de chaque fibration. Le groupe de Néron-Séveri de S, de rang 20 (surface K3 singulière) et défini sur l'ensemble des rationnels joue un rôle essentiel pour cette construction. Ces fibrations sont construites par 3 méthodes : la première à partir du graphe des fibres singulières de S et des sections de 7-torsion, la seconde suivant une méthode donnée par Elkies et la troisième à partir de factorisations des équations. Diverses propriétés des équations sont données
We exploit the possibility of a elliptic K3 surface to have several elliptic fibrations. In the case of the universal elliptic curve S, considered as a surface, on the modular curve parametrizing elliptic curves with a point of order 7, certain fibrations defined on the rationals have a rank group of Mordell-Weill strictly positive. This allos to construct an infinite number of elliptic curves over the rationals of rank higher or equal to 2. In this thesis we give 12 examples of elliptic fibrations and we specify the group of Mordell-Weil each fobration. The Neron-Severi group of S, of rank 20 (singular K3 surface) and defined in all rationalsplays a key role in this construction. These fibrations are constructed by 3 methods : the first comes from the graph of singular fibers of S and sections of 7-torsion, the second follows from a method given by Elkies and the third from factorization equations. Various properties of fibration are given
APA, Harvard, Vancouver, ISO, and other styles
10

Schütt, Matthias. "Hecke eigenforms and the arithmetic of singular K3 surfaces." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981878970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Surfaces K3"

1

Kondō, Shigeyuki. K3 surfaces. Berlin, Germany: European Mathematical Society, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

V, Nikulin V., ed. Del Pezzo and K3 surfaces. Tokyo: Mathematical Society of Japan, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Faber, Carel, Gavril Farkas, and Gerard van der Geer, eds. K3 Surfaces and Their Moduli. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johnsen, Trygve. K3 Projective models in scrolls. Berlin: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johnsen, Trygve. K3 Projective models in scrolls. Berlin: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nikoloudakis, Nikolaos. Special K3 surfaces and Fano 3-folds. [s.l.]: typescript, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

France, Société mathématique de, ed. Géométrie des surfaces K3: Modules et périodes. Paris: Société mathématique de France, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scattone, Francesco. On the compactification of moduli spaces for algebraic K3 surfaces. Providence, R.I: American Mathematical Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laza, Radu, Matthias Schütt, and Noriko Yui, eds. Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6403-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Odaka, Yūji. Collapsing K3 surfaces, tropical geometry and moduli compactifications of Satake, Morgan-Shalen type. Tokyo, Japan: The Mathematical Society of Japan, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Surfaces K3"

1

Silhol, Robert. "Real K3 surfaces." In Lecture Notes in Mathematics, 178–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0088823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barth, Wolf P., Klaus Hulek, Chris A. M. Peters, and Antonius Ven. "K3-Surfaces and Enriques Surfaces." In Compact Complex Surfaces, 307–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-57739-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schütt, Matthias, and Tetsuji Shioda. "Elliptic K3 Surfaces—Basics." In Mordell–Weil Lattices, 287–315. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9301-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Várilly-Alvarado, Anthony. "Arithmetic of K3 Surfaces." In Geometry Over Nonclosed Fields, 197–248. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49763-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kondō, Shigeyuki. "K3 and Enriques Surfaces." In Fields Institute Communications, 3–28. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6403-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kodaira, Kunihiko. "On Homotopy K3 Surfaces." In Kunihiko Kodaira: Collected Works, Volume III, 1596–607. Princeton: Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400869879-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shimada, Ichiro. "The Automorphism Groups of Certain Singular K3 Surfaces and an Enriques Surface." In K3 Surfaces and Their Moduli, 297–343. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gritsenko, V., and K. Hulek. "Moduli of Polarized Enriques Surfaces." In K3 Surfaces and Their Moduli, 55–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bartocci, Claudio, Ugo Bruzzo, and Daniel Hernández Ruipérez. "Fourier-Mukai on K3 surfaces." In Fourier¿Mukai and Nahm Transforms in Geometry and Mathematical Physics, 111–46. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/b11801_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schütt, Matthias, and Tetsuji Shioda. "Elliptic K3 Surfaces—Special Topics." In Mordell–Weil Lattices, 317–53. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9301-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Surfaces K3"

1

Qaddori, Fikrat, and Raid Salman. "Evaluation of Cross-Sectional Designs Impact of Different NiTi Files on Distortion Resistance Using SEM (An-in Vitro Study)." In 5th International Conference on Biomedical and Health Sciences, 470–74. Cihan University-Erbil, 2024. http://dx.doi.org/10.24086/biohs2024/paper.1154.

Full text
Abstract:
Abstract—Background and aims: The aim of this study was to compare the effect of cross-sectional designs of four rotary systems (One Curve, 2Shape, K3-i File, E3 Azure), on distortion resistance of the metal surfaces of these files in simulated resin blocks under controlled conditions with five repeated usages, using scanning electron microscope (SEM). Materials & Methods: Four rotary file systems: (1) One Curve, (2) 2Shape, (3) K3-i File, and (4) E3 Azure, were tested in simulated J-shaped root canal resin blocks with a 45 ̊ angle of curvature. Ten files from each system, each one of the 10 files were used to prepare 5 resin blocks, named R1-R2-R3-R4-R5. All the used files from the 4 systems had tip size 25 diameter, taper (6%), and length (25 mm). Following the manufactural recommendation of each system. All the resin blocks were prepared for Glide Path with manual reamers size 10, and 15, with a fixed working length 16 mm, then all the samples were prepared with a Proglider rotary file from Dentsply (size 16 taper 3%), then finally were prepared with Edge Files (USA), with size 20 and taper 6%, reaching to the step of master preparation with the selected files of the 4 systems. Using a customized device for preparation to ensure fixed vertical force and to exclude any lateral force, preparation was done with EDTA solution as irrigation, with a fixed no. of 5 strokes, the time was controlled by using a Metronome, each stroke duration was 6 seconds. Five parameters were suggested to be evaluated by two observers. These parameters or criteria includes: 1) Apical deformation, 2) Cutting edge deformation, 3) Crack presence, 4) Full spiral deformation, 5) Apical spiral deformation. The data were collected and registered in the Excel sheet for all 44 files (4 instruments as control) and comparison was done between the 4 systems. Visual observation for all the images has been done, and the data registered as a scale from 1 to 4 for the first two criteria, and as present or not for the other three criteria. Results: For the apical deformation parameter, there was a non- significant difference (P > 0.05) (P value = 0.625) among all experimental groups by using the KWT. For the cutting-edge deformation parameter, there was a significant difference at (P < 0.05). For the crack parameter, there was a non-significant difference at P > 0.05 (P value = 1) among all experimental groups by using Fisher's Exact test. Conclusion: The Ni Ti alloys with heat treated technologies showed a high resistance to cutting edge deformation, cracks formation, and instrument fracture, with five repetitions of use.
APA, Harvard, Vancouver, ISO, and other styles
2

Zechmeister, M. J., R. D. Reinheimer, D. P. Jones, and T. M. Damiani. "Thermal Fatigue Testing and Analysis of Stainless Steel Girth Butt Weld Piping." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-58024.

Full text
Abstract:
A piping thermal fatigue test loop has been constructed at the Bettis Laboratory and is being used by the Bechtel Marine Propulsion Corporation (BMPC) to obtain thermal fatigue data on 304 Stainless Steel (304SS) piping and piping girth butt welds. These specimens were subjected to alternating hot and cold forced flow, low oxygenated water every three minutes so that rapid changes in water temperature impart a thermal shock event to the inner wall of the girth butt welds. Thermal and structural piping analyses were conducted using the ASME Boiler and Pressure Vessel Code Section III NB-3600 piping analysis methods and a series of current and proposed design fatigue curves for 304 stainless steel that include water environment effects. These analyses were also used to assess the conservatism in the ASME Code Section III NB K3 thermal stress index for girth butt welds. The results of this thermal fatigue testing and analysis assessment demonstrate that the role of fatigue crack initiation with respect to piping analysis calculations must be considered for systems subjected to high thermal-induced surface stresses. The ASME Code Section III NB-3600 piping design methods with both current and previous austenitic steel air design fatigue curves are potentially unconservative with respect to the estimated cycles to initiation, based on the test results. Use of the design fatigue curves including water environment effects yield more reasonable margins with respect to design cycles to fatigue crack initiation and through-wall leakage. Additionally, the results indicate that the current K3 index is conservative and consideration should be given to a reduction from 1.7 to align the design margins when explicitly considering environment effects.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography