Academic literature on the topic 'Surfactant Interaction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Surfactant Interaction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Surfactant Interaction"

1

Cheng, Chao, and Shi-Yong Ran. "Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/863049.

Full text
Abstract:
The interaction betweenλ—DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant’s alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60–110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures.
APA, Harvard, Vancouver, ISO, and other styles
2

Taba, Paulina, Russell F. Howe, and Graine Moran. "FTIR AND NMR STUDIES OF ADSORBED CETHYLTRIMETHYLAMMONIUM CHLORIDE IN MCM-41 MATERIALS." Indonesian Journal of Chemistry 8, no. 1 (2010): 1–6. http://dx.doi.org/10.22146/ijc.21639.

Full text
Abstract:
The high use of surface-active agents (surfactants) by industry and households today leads to environmental pollution, therefore treatments are required to remove such substances from the environment. One of the important and widely used methods for removal of substances from solution is adsorption. In this research, MCM-41 and its modified product of MCM41-TMCS were used to adsorb cationic surfactants, cethyltrimethylammonium chloride, CTAC. FTIR and NMR methods were used to study the interaction between the surfactants and the adsorbents. MCM-41 was synthesized hydrothermally at 100 oC and its modification was conducted by silylation of MCM-41 with trimethylchloro silane (MCM41-TMCS). Both unmodified and modified MCM-41 can adsorb the surfactant. The interaction of CTAC with MCM-41 was mostly the electrostatic interaction between the electropositive end of the surfactant and MCM-41, whereas in modified MCM-41 hydrophobic interactions become more dominant. These hydrophobic interactions appear however to involve the methyl groups on the head group of the surfactant interacting with the modified surface. Keywords: FTIR, NMR, adsorbed CTAC, MCM-41 materials
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Jia, and Rajinder Pal. "Investigation of Surfactant-Polymer Interactions Using Rheology and Surface Tension Measurements." Polymers 12, no. 10 (2020): 2302. http://dx.doi.org/10.3390/polym12102302.

Full text
Abstract:
The interactions between surfactants and a drag-reducing polymer were investigated at a low polymer concentration of 500 ppm, using measurements of the rheology and surface activity of surfactant-polymer solutions. A well-known drag-reducing polymer (anionic sodium carboxymethyl cellulose) and five different surfactants (two anionic, two non-ionic, and one zwitterionic) were selected for the interaction studies. The surfactant-polymer solutions were shear thinning in nature, and they followed the power law model. The interaction between the surfactant and polymer had a strong effect on the consistency index of the solution and a marginal effect on the flow behavior index. The surface tension versus surfactant concentration plots were interpreted in terms of the interactions between surfactant and polymer. The critical aggregation concentration (CAC) of the surfactant was estimated based on the surface tension and rheological data. The CAC values of the same charge surfactants as that of the polymer were found to be significantly higher than other combinations of surfactant and polymer, such as non-ionic surfactant/anionic polymer, and zwitterionic surfactant/anionic polymer.
APA, Harvard, Vancouver, ISO, and other styles
4

Lai, Chiu-Chun, Kuo-Shien Huang, Po-Wei Su, Chang-Mou Wu, and Ching-Nan Huang. "Interactions of modified Gemini surfactants: Interactions with direct dyes and dyeing properties in cotton fabrics." Modern Physics Letters B 33, no. 14n15 (2019): 1940002. http://dx.doi.org/10.1142/s0217984919400025.

Full text
Abstract:
This study investigated dye–surfactant interactions between a series of modified Gemini surfactants and commercial direct dyes in aqueous solution and their corresponding effects on cotton fabric dyeing. A surface tension meter was also used to measure surface activities of compounds containing electrolyte under conditions similar to those in dyeing processes. The surface tension measurements showed lower than normal surface tension in surfactant solutions containing electrolyte. From the UV-Vis spectra, the isosbestic point indicated that dye–surfactant complexes had formed and existed as hydrophilic interaction between direct dyes and modified Gemini surfactants. When dyeing cotton fabric with red dye and orange dye, the presence of these surfactants decreased dye uptake rate but increased for blue dye because the dye–surfactant interaction had formed a hydrophilic complex.
APA, Harvard, Vancouver, ISO, and other styles
5

Ostos, Francisco José, José Antonio Lebrón, María Luisa Moyá, et al. "Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes." International Journal of Molecular Sciences 22, no. 2 (2021): 826. http://dx.doi.org/10.3390/ijms22020826.

Full text
Abstract:
The interaction (adsorption process) of commercial ionic surfactants with non-functionalized and functionalized carbon nanotubes (CNTs) has been studied by potentiometric measurements based on the use of ion-selective electrodes. The goal of this work was to investigate the role of the CNTs’ charge and structure in the CNT/surfactant interactions. Non-functionalized single- (SWCNT) and multi-walled carbon nanotubes (MWCNT), and amine functionalized SWCNT were used. The influence of the surfactant architecture on the CNT/surfactant interactions was also studied. Surfactants with different charge and hydrophobic tail length (sodium dodecyl sulfate (SDS), octyltrimethyl ammonium bromide (OTAB), dodecyltrimethyl ammonium bromide (DoTAB) and hexadecyltrimethyl ammonium bromide (CTAB)) were studied. According to the results, the adsorption process shows a cooperative character, with the hydrophobic interaction contribution playing a key role. This is made evident by the correlation between the free surfactant concentration (at a fixed [CNT]) and the critical micellar concentration, cmc, found for all the CNTs and surfactants investigated. The electrostatic interactions mainly determine the CNT dispersion, although hydrophobic interactions also contribute to this process.
APA, Harvard, Vancouver, ISO, and other styles
6

LIU, HAO-YANG, XIAN-WU ZOU, YIN-QUAN YUAN, and ZHUN-ZHI JIN. "EFFECTS OF INTERACTION WITH SOLVENT AND CHAIN CONFORMATION OF SURFACTANTS ON EMULSIFICATION." Modern Physics Letters B 15, no. 24 (2001): 1061–68. http://dx.doi.org/10.1142/s0217984901002853.

Full text
Abstract:
The details of the emulsification process has been investigated by discontinuous molecular dynamic simulation. The surfactants help to bring about emulsification. The emulsification can be divided crudely into two stages: splitting and uniting process. The splitting and uniting of oil droplets occurs in this position, where surfactants at the interface is rather scarce. The effects of the conformation of surfactant chain and the strength of surfactant–water and surfactant–oil interactions on emulsification were also studied. The surfactants with longer tail and stronger surfactant–water and surfactant–oil interactions promote the emulsification more.
APA, Harvard, Vancouver, ISO, and other styles
7

Hosseinzadeh, Reza, Mohammad Gheshlagi, Rahele Tahmasebi, and Farnaz Hojjati. "Spectrophotometric study of interaction and solubilization of procaine hydrochloride in micellar systems." Open Chemistry 7, no. 1 (2009): 90–95. http://dx.doi.org/10.2478/s11532-008-0078-4.

Full text
Abstract:
AbstractThe interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.
APA, Harvard, Vancouver, ISO, and other styles
8

Tazhibayeva, Sagdat, Kuanyshbek Musabekov, Zhenis Kusainova, Ardak Sapieva, and Nurlan Musabekov. "Complex Formation of Polyacrylic Acid with Surfactants of Different Hydrophobicity." Applied Mechanics and Materials 752-753 (April 2015): 212–16. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.212.

Full text
Abstract:
Complex formation processes of polyelectrolytes with surfactant ions are close model to protein - lipid interactions in living organisms. Furthermore, polymer – surfactant complexes are widely used as stabilizers of industrial dispersions and structurants of soil. When using the polymer-surfactant complexes the hydrophilic-lipophilic balance has the great importance. The interaction of polyacrylic acid with alkylammonium salts of different hydrophobicity: cetyltrimethylammonium bromide, dilaurildimethylammonium bromide and dioctadecyldimethylammonium chloride was studied by potentiometry, spectrophotometry, viscometry and electrophoresis methods. It was established that the complex formation of polyacrylic acid with cationic surfactants is carried out due to the electrostatic interaction between carboxyl groups of the polymer and cations of surfactants, which stabilized by hydrophobic interactions between their non-polar parts. The phenomenon of hysteresis in the change of the reduced viscosity of system surfactant /polyacrylic acid with temperature variation in the range of 20-60 °C was found. The possibility of using the complex formation process for water purification from CTAB has been shown. The degree of purification is 99.6-99.8%.
APA, Harvard, Vancouver, ISO, and other styles
9

Reddy, M. C. Somasekhara, S. M. Sarvar Jahan, K. Sridevi, and G. V. Subba Reddy. "Investigations on Natural Surfactant obtained from Soap-Nuts through Spectrophotometric Interactions with Congo Red and Comparison with Commercial Surfactants." Asian Journal of Chemistry 31, no. 4 (2019): 907–16. http://dx.doi.org/10.14233/ajchem.2019.21849.

Full text
Abstract:
A natural surfactant (NS) of plant-base was obtained from the fruit pericarp of soapnuts by using a simple and economical method. The interaction of this natural surfactant with direct dye, anionic dye, Congo red (CR) was studied spectrophotometrically in sub-micellar and micelle concentration range in aqueous solution. These interactions (CR-NS) were compared with that of CR-CTAB (cationic surfactant-cetyl trimethylammonium bromide, CTAB), CR-SDS (anionic surfactant-sodium dodecyl sulphate, SDS) and CR-TX 100 (neutral surfactant - Triton X-100, TX 100) and were useful to understand the nature of natural surfactant. The mechanism of formation of complex due to interactions between Congo red and natural surfactant was suggested. This spectrophotometric method was used for the determination of critical micelle concentration (CMC), at which the formation of micelles was started. The CMC values obtained spectrophotometrically for the natural surfactant was coincided with the experimental value available in the literature. A definite change in the absorbance maxima of Congo red in the presence of natural surfactant (micelles of natural surfactant) was also observed. The change in maxima was also interpreted in terms of pH and CMC. The equilibrium constant of interaction between Congo red and natural surfactant was calculated on the theoretical model. The stability of the complexes of Congo red with different surfactants like CTAB, SDS, TX 100 and natural surfactant may be written in increasing order as: CR-TX 100 > CR-CTAB > CR-NS > CR-SDS. The biodegradable, non-toxic, inexpensive, environmental friendly, renewable natural surfactant was suggested in place of synthetic surfactants.
APA, Harvard, Vancouver, ISO, and other styles
10

Nazarova, Anastasia, Arthur Khannanov, Artur Boldyrev, Luidmila Yakimova, and Ivan Stoikov. "Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI." International Journal of Molecular Sciences 22, no. 11 (2021): 6038. http://dx.doi.org/10.3390/ijms22116038.

Full text
Abstract:
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host–guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π–π-stacking, cation–π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography