Academic literature on the topic 'Sustainable future'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sustainable future.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sustainable future"
Patnaik, Dr Susanta Kumar. "Sustainable Leadership: Key to Sustainable Future in Indian Organizations." Global Journal For Research Analysis 3, no. 2 (June 15, 2012): 96–97. http://dx.doi.org/10.15373/22778160/february2014/32.
Full textCsigéné Nagypál, Noémi, Georgina Görög, Piroska Harazin, and Rita Péterné Baranyi. "„Future Generations“ and Sustainable Consumption." ECONOMICS & SOCIOLOGY 8, no. 4 (December 20, 2015): 207–24. http://dx.doi.org/10.14254/2071-789x.2015/8-4/15.
Full textDriessen, Paul. "The “Sustainable Future” Isn'T Sustainable." Energy & Environment 22, no. 6 (August 2011): 757–59. http://dx.doi.org/10.1260/0958-305x.22.6.757.
Full textU.J Phatak, U. J. Phatak, Nivedita Kaushik Nivedita Kaushik, Lintu Abraham, Sudeep Mitra, and Sagar Dalal. "Intelligent Transport System: A Sustainable Future Prospect." International Journal of Scientific Research 3, no. 4 (June 1, 2012): 157–58. http://dx.doi.org/10.15373/22778179/apr2014/54.
Full textCHURIKANOVA, Olena, and Oksana DENYSENKO. "CIRCULAR ECONOMY – THE FUTURE OF SUSTAINABLE DEVELOPMENT." Herald of Khmelnytskyi National University. Economic sciences 312, no. 6(1) (December 29, 2022): 202–7. http://dx.doi.org/10.31891/2307-5740-2022-312-6(1)-30.
Full textQuick, Julie. "A sustainable future." Journal of Perioperative Practice 31, no. 12 (December 2021): 439. http://dx.doi.org/10.1177/17504589211061214.
Full textMaughan, Daniel. "A sustainable future." Mental Health Practice 17, no. 4 (December 2013): 13. http://dx.doi.org/10.7748/mhp2013.12.17.4.13.s16.
Full textGrundy, Paul. "A Sustainable Future?" Structural Engineering International 13, no. 2 (May 2003): 89. http://dx.doi.org/10.2749/101686603777964801.
Full textOstrikov, Kostya. "Sustainable Nanoscience for a Sustainable Future." IEEE Transactions on Plasma Science 41, no. 4 (April 2013): 716–24. http://dx.doi.org/10.1109/tps.2012.2232670.
Full textLonghurst, James W. S., Stephen A. Dalton, and David C. Gibbs. "Towards a sustainable future: promoting sustainable development." Environmentalist 15, no. 4 (December 1995): 231–32. http://dx.doi.org/10.1007/bf01902242.
Full textDissertations / Theses on the topic "Sustainable future"
Іщенко, Наталія Володимирівна, Наталия Владимировна Ищенко, and Nataliia Volodymyrivna Ishchenko. "Solar energy in sustainable future." Thesis, Вид-во СумДУ, 2007. http://essuir.sumdu.edu.ua/handle/123456789/17432.
Full textSegalàs, Jordi. "Engineering education for a sustainable future." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5926.
Full textnostra societat està contribuint al col∙lapse del planeta, " és necessari un nou tipus d'enginyer, un enginyer que
sigui plenament conscient del que està succeint a la societat i que tingui les habilitats necessàries per fer front
als aspectes socials de les tecnologies "(De Graaff et al., 2001).
L'educació superior és un instrument essencial per superar els reptes del món actual amb èxit i per formar
ciutadans capaços de construir una societat més justa i oberta (Álvarez, 2000). Per tant, les institucions
d'educació superior tenen la responsabilitat d'educar els futurs titulats amb la finalitat que adquireixin una
visió moral i ètica i assoleixin els coneixements tècnics necessaris per assegurar la qualitat de vida per a les
generacions futures (Corcoran et al, 2002).
Amb l'objectiu d'assegurar que els futurs titulats siguin enginyers sostenibles, tres qüestions fonamentals han
guiat aquesta investigació:
Quines competències en sostenibilitat ha d'adquirir un enginyer a la universitat?
Com poden aquestes competències ser adquirides d'una manera eficient?
Quina estructura educacional és més eficaç per facilitar els processos d'aprenentatge requerits?
La primera pregunta es refereix a "Què?", és a dir, a quines competències relacionades amb la sostenibilitat
(coneixements, habilitats i actituds) ha de tenir un enginyer que es gradua en el segle 21. La segona qüestió es
refereix a "Com?" i es centra en com els processos educatius poden fer possible l'aprenentatge de les
competències en sostenibilitat a través de les estratègies pedagògiques adequades. L'última pregunta es
refereix a "On?" des de la perspectiva de quin pla d'estudis i quina estructura organitzativa són necessaris per
poder aplicar la didàctica més òptima per graduar enginyers amb competències en sostenibilitat.
Aquesta recerca s'ha enfocat des d'una vessant teòrico‐pràctica en què tant les estratègies pedagògiques com
les competències en sostenibilitat s'han estudiat en paral∙lel. Amb aquesta orientació, s'ha dissenyat una eina
d'avaluació que mesura aquests dos aspectes i la seva relació, i que s'ha aplicat a 10 casos d'estudi formats per
cursos de sostenibilitat de 5 universitats tecnològiques europees, en els quals hi han participat, en total, més
de 500 estudiants.
Per completar l'estudi, s'ha analitzat la introducció de la sostenibilitat en els plans d'estudi
de 17 universitats tecnològiques, i s'han entrevistat 45 experts en educació de sostenibilitat en l'enginyeria.
En relació a les preguntes clau, els resultats de la investigació han estat els següents:
En el moment de titular‐se, l'estudiantat d'enginyeria hauria d'haver adquirit les competències següents:
pensament crític, pensament sistèmic, ser capaços de treballar en un entorn transdisciplinari, i tenir valors en
consonància amb el paradigma de la sostenibilitat. D'altra banda, d'acord amb els requisits de l'EEES, també cal
establir un marc comú per definir, descriure i avaluar les competències en sostenibilitat a nivell europeu.
Després d'haver realitzat un curs en sostenibilitat, la majoria de l'estudiantat segueix prioritzant el rol
tecnològic de la sostenibilitat, pel que fa a la tecnologia com la solució als problemes ambientals, sense gairebé
considerar els aspectes socials. Per tant, els cursos sobre sostenibilitat han d'emfatitzar més la part social i
institucional de la sostenibilitat.
Existeix una relació directa entre l'aprenentatge de la transdisciplinarietat i el pensament sistèmic.
L'aprenentatge cognitiu de l'estudiantat augmenta, a mida que s'aplica una pedagogia més orientada a la
comunitat i més constructiva. Així, l'aprenentatge cognitiu de la sostenibilitat també millora a través d'una
l''educació activa, experiencial i multimetodològica. A més a més, en l'aprenentatge de la sostenibilitat, el
paper del professorat és molt important pel que fa a l'aprenentatge implícit de valors, principis i pensament
crític associats a la sostenibilitat
Les universitats tecnològiques actualment implementen l'educació en sostenibilitat a través de quatre
estratègies principals: un curs específic, una especialització en sostenibilitat, un màster en sostenibilitat o en
tecnologies sostenibles, i la integració del desenvolupament sostenible en tots els cursos. No obstant això, la
principal barrera per a la integració de la sostenibilitat en tots els cursos és la manca de comprensió del terme
per part del professorat. L'"enfocament individual" (Peet et al., 2004) ha demostrat ser un bon sistema per
superar aquesta barrera.
Hi ha una necessitat clara de lideratge per part de l'equip de govern de les universitats en el procés de canvi
cap a una educació en sostenibilitat. Aquest lideratge ha de promoure l'enfocament de baix a dalt.
Els processos d'educació en sostenibilitat es reforcen quan aquests no només integren l'educació, sinó també
totes les altres àrees clau d'activitat de la universitat: recerca, gestió i relació amb la societat.
En breu, l'estructura d'aquesta tesi és la següent. El capítol 1 introdueix el plantejament de la recerca. El
capítol 2 revisa l'estat de l'art i la literatura en relació a les competències que els enginyers han de tenir quan
es graduen, A continuació, el capítol 3 descriu les estratègies pedagògiques per al desenvolupament sostenible
i les analitza des d'un punt de vista teòric i metodològic presentant els avantatges i desavantatges de les més
utilitzades en l'ensenyament d'enginyeria El capítol 4 presenta les estructures curriculars que han de catalitzar
el procés d'aprenentatge en sostenibilitat. El capítol 5 desenvolupa el marc conceptual de la recerca, les
propostes metodològiques de la investigació i els casos d'estudi analitzats. El capítol 6 avalua
comparativament les competències en sostenibilitat definides en tres universitats tecnològiques que són líders
europeus en sostenibilitat. El Capítol 7 introdueix el marc metodològic per a l'avaluació de l'aprenentatge
cognitiu en sostenibilitat del estudiantat. Aquesta metodologia s'aplica en el capítol 8 als 10 cursos de
sostenibilitat impartits en 5 universitats tecnològiques europees, que conformen els casos d'estudi d'aquesta
recerca. A partir de les 45 entrevistes realitzades a experts en sostenibilitat provinents de 17 universitats
tecnològiques europees, el capítol 9 estudia les millors pràctiques en pedagogia per a l'aprenentatge de la
sostenibilitat i el capítol 10 examina l'estructura curricular que més facilita l'aprenentatge en sostenibilitat a
les universitats tecnològiques. En el Capítol 11 es comparen els resultats obtinguts en els diferents casos
d'estudi i s'avaluen les propostes plantejades en el capítol 1. Finalment, el capítol 12 planteja les conclusions
de la recerca i algunes recomanacions per a les institucions d'educació superior tecnològiques.
In today's world social context, in which a considerable number of contrasting signs reveal that our society is currently contributing to the planet's collapse, "a new kind of engineer is needed, an engineer who is fully aware of what is going on in society and who has the skills to deal with societal aspects of technologies" (De
Graaff et al., 2001).
Higher education is the essential instrument to overcome the current world challenges and to train citizens able to build a more fair and open society (Alvarez, 2000). Thus higher education institutions have the responsibility to educate graduates who have achieved an ethical moral vision and the necessary technical knowledge to ensure the quality of life for future generations (Corcoran et al, 2002).
In relation to graduating sustainable engineers, three main questions have been developed to guide this research:
1. Which Sustainability (SD) competences must an engineer obtain at university?
2. How can these competences be acquired efficiently?
3. Which education structure is more effective for the required learning processes?
The first main question is a "What" question, and focuses on which competences (knowledge/understanding, skills/abilities and attitudes) an engineer graduating in the 21st century should have in relation to SD.
The second main question is a "How" question and focuses on how can the education processes make this learning achievable through the proper pedagogical strategies. The last main question is a "Where" question and looks
at the perspective of the curriculum and the organizational structure needed to apply the optimal didactics to achieve the goal of graduating sustainable engineers.
The focus of this research requires a theoretical‐practical approach in which both pedagogical strategies and SD competences are studied in parallel.
An assessment tool that measures the two subjects and their relationship is developed and case studies are run in 10 SD courses at 5 European technological universities, where nearly 500 students have participated. Moreover, the different approaches to introduce SD in the
curriculum of 17 technological universities are analysed, and 45 experts on teaching SD to engineering students have been interviewed.
In relation to the key questions, the findings of this research are the following.
When graduating the engineering students should have acquired the following SD competences: critical thinking, systemic thinking, an ability to work in transdisciplinary frameworks, and to have values consistent with the sustainability paradigm. Moreover, following the requirements of the EHEA, a common framework to define, describe and evaluate SD competences at European level is needed.
Most students, after taking a course on SD, highlight the technological role of sustainability in terms of technology as the solution to environmental problems. Therefore SD courses need to place more emphasis on the social/institutional side of sustainability.
There is a direct relationship between transdisciplinary and systemic thinking learning.
Students achieve better cognitive learning as more community‐oriented and constructive‐learning pedagogies are applied. Multi‐methodological experiential active learning education increases cognitive learning of sustainability.
In addition, the role of the teacher is very important for SD learning in terms of implicit learning of sustainability values, principles and critical thinking.
There are four main strategies to increase EESD in universities: a specific SD course, a minor/specialization in SD, a Master on SD or Sustainable Technologies and the embedment of SD in all courses. Nevertheless the main barrier to embedding SD in all courses is the lack of comprehension to SD within the faculty. The
individual approach (Peet et al., 2004) has shown to be successful to overcome this barrier.
There is a need of clear top‐down leadership in the ESD process, which must promote the bottom‐up
approach. Additionally, ESD processes are reinforced when they encompass not only education but also all the key areas of the university: research, management, and society outreach.
This thesis is organised as follows. The introduction in chapter 1 is followed by the state of the art and literature review in competences that engineers should have when graduating in chapter 2. Chapter 3 introduces the pedagogical strategies for SD and develops a theoretical and methodological exploration of
these strategies, which presents the pros & cons and learning outcomes of the most common pedagogical strategies in engineering. Chapter 4 describes the curriculum structures that catalyse the process of sustainable education. Chapter 5 presents the development of the conceptual research framework,
propositions and case studies research methodologies. A comparative SD competence analysis of three European leading SD technological universities is presented in chapter 6. Chapter 7 introduces the methodology framework to evaluate the knowledge on SD acquired by students; this methodology is later
applied in chapter 8 to 10 case studies related to SD courses taught in 5 European technological universities.
From the results of the interviews with 45 experts from 17 European technological universities, chapter 9 analyses the best pedagogical practices for SD learning and chapter 10 analyses the curriculum structure that
most facilitates the introduction of SD learning in technological universities. Chapter 11 compares the different cases analyzed and evaluates the propositions developed in chapter 1. Finally, in chapter 12 conclusions are drawn and recommendations for technological higher education institutions are provided.
Rodrigues, Ana Carolina, Joshua Cubista, and Rowan Simonsen. "Designing Labs for a Sustainable Future." Thesis, Blekinge Tekniska Högskola, Institutionen för strategisk hållbar utveckling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3011.
Full textSegalàs, Coral Jordi. "Engineering education for a sustainable future." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5926.
Full textIn today's world social context, in which a considerable number of contrasting signs reveal that our society is currently contributing to the planet's collapse, "a new kind of engineer is needed, an engineer who is fully aware of what is going on in society and who has the skills to deal with societal aspects of technologies" (DeGraaff et al., 2001).Higher education is the essential instrument to overcome the current world challenges and to train citizens able to build a more fair and open society (Alvarez, 2000). Thus higher education institutions have the responsibility to educate graduates who have achieved an ethical moral vision and the necessary technical knowledge to ensure the quality of life for future generations (Corcoran et al, 2002).In relation to graduating sustainable engineers, three main questions have been developed to guide this research:1. Which Sustainability (SD) competences must an engineer obtain at university?2. How can these competences be acquired efficiently?3. Which education structure is more effective for the required learning processes?The first main question is a "What" question, and focuses on which competences (knowledge/understanding, skills/abilities and attitudes) an engineer graduating in the 21st century should have in relation to SD. The second main question is a "How" question and focuses on how can the education processes make this learning achievable through the proper pedagogical strategies. The last main question is a "Where" question and looksat the perspective of the curriculum and the organizational structure needed to apply the optimal didactics to achieve the goal of graduating sustainable engineers.The focus of this research requires a theoretical‐practical approach in which both pedagogical strategies and SD competences are studied in parallel. An assessment tool that measures the two subjects and their relationship is developed and case studies are run in 10 SD courses at 5 European technological universities, where nearly 500 students have participated. Moreover, the different approaches to introduce SD in thecurriculum of 17 technological universities are analysed, and 45 experts on teaching SD to engineering students have been interviewed.In relation to the key questions, the findings of this research are the following.When graduating the engineering students should have acquired the following SD competences: critical thinking, systemic thinking, an ability to work in transdisciplinary frameworks, and to have values consistent with the sustainability paradigm. Moreover, following the requirements of the EHEA, a common framework to define, describe and evaluate SD competences at European level is needed.Most students, after taking a course on SD, highlight the technological role of sustainability in terms of technology as the solution to environmental problems. Therefore SD courses need to place more emphasis on the social/institutional side of sustainability.There is a direct relationship between transdisciplinary and systemic thinking learning.Students achieve better cognitive learning as more community‐oriented and constructive‐learning pedagogies are applied. Multi‐methodological experiential active learning education increases cognitive learning of sustainability. In addition, the role of the teacher is very important for SD learning in terms of implicit learning of sustainability values, principles and critical thinking.There are four main strategies to increase EESD in universities: a specific SD course, a minor/specialization in SD, a Master on SD or Sustainable Technologies and the embedment of SD in all courses. Nevertheless the main barrier to embedding SD in all courses is the lack of comprehension to SD within the faculty. Theindividual approach (Peet et al., 2004) has shown to be successful to overcome this barrier.There is a need of clear top‐down leadership in the ESD process, which must promote the bottom‐upapproach. Additionally, ESD processes are reinforced when they encompass not only education but also all the key areas of the university: research, management, and society outreach.This thesis is organised as follows. The introduction in chapter 1 is followed by the state of the art and literature review in competences that engineers should have when graduating in chapter 2. Chapter 3 introduces the pedagogical strategies for SD and develops a theoretical and methodological exploration ofthese strategies, which presents the pros & cons and learning outcomes of the most common pedagogical strategies in engineering. Chapter 4 describes the curriculum structures that catalyse the process of sustainable education. Chapter 5 presents the development of the conceptual research framework,propositions and case studies research methodologies. A comparative SD competence analysis of three European leading SD technological universities is presented in chapter 6. Chapter 7 introduces the methodology framework to evaluate the knowledge on SD acquired by students; this methodology is laterapplied in chapter 8 to 10 case studies related to SD courses taught in 5 European technological universities.From the results of the interviews with 45 experts from 17 European technological universities, chapter 9 analyses the best pedagogical practices for SD learning and chapter 10 analyses the curriculum structure thatmost facilitates the introduction of SD learning in technological universities. Chapter 11 compares the different cases analyzed and evaluates the propositions developed in chapter 1. Finally, in chapter 12 conclusions are drawn and recommendations for technological higher education institutions are provided.
Boldero, Christina, William Paton, and Charlotte Schou. "Community Mapping & Strategic Sustainable Development : Navigating Towards A Sustainable Future." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3137.
Full textManero, Ruz Alejandro. "Our Future Destinations: Backcasting for Sustainable Tourism." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353535.
Full textKnowles, Brandin. "Cyber-sustainability : towards a sustainable digital future." Thesis, Lancaster University, 2013. http://eprints.lancs.ac.uk/68468/.
Full textBernotat, Anke, Jürgen Bertling, Christiane English, and Judith Schanz. "Designing a Sustainable Future with Mental Models." Technische Universität Dresden, 2016. https://tud.qucosa.de/id/qucosa%3A29257.
Full textFitzgerald, Jared Berry. "Working Time, Inequality and a Sustainable Future:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108749.
Full textIn 2015, the United Nations implemented the Sustainable Development Goals (SDGs), which cover a wide range of social, economic and environmental issues. While there is a virtual international consensus regarding the importance of these goals, and reconsidering the ecological costs of human development, there are disagreements on the best approaches to actually achieving sustainability. Mainstream perspectives argue that the most feasible and effective path to sustainable development is to decouple economic growth from its environmental impacts, largely through the advancement and implementation of green technologies. In this framework, economic growth is seen as synonymous with development and a necessary prerequisite for improving human wellbeing. On the other hand, many scholars are critical of this approach to sustainable development and argue that economic growth is not only antithetical to achieving environmental sustainability, it also has limited appeal for improving social and economic wellbeing in developed countries. With this in mind, in this dissertation I examine alternative pathways to sustainable development that move beyond the growth-consensus. Previous studies argue that a working time reduction potentially represents a multi-dividend sustainability policy that could improve social, economic and environmental outcomes. Similarly, previous research also indicates that inequality is negatively associated with human wellbeing and can lead to increased environmental pressures. Across three empirical chapters, I investigate the effects of working hours and inequality, and their interaction, on measures of environmental and human wellbeing across US states over time. In the first chapter, I assess the relationship between average working hours and CO2 emissions from 2007 to 2013. This chapter is the first examination of this relationship at the US state level and finds that longer working hours are associated with increased emissions over time. The second empirical chapter takes this research one step further and examines how inequality shapes the relationship between working hours and emissions from 2005 to 2015. The results of these analyses again find that longer working hours are associated with increased emissions but that the relationship becomes more intense at higher levels of inequality. The third empirical chapter investigates the claim that a working time reduction could be a multi-dividend sustainability policy by examining the relationship between work hours and life expectancy from 2005 to 2015. I also examine how inequality shapes this relationship as well. Results indicate that longer working hours are associated with decreases in life expectancy, and that this effect is larger at higher levels of inequality. In all, these studies provide more evidence that reducing working hours could potentially be an effective sustainability policy that could contribute to achieving multiple sustainable development goals. Further, they show that inequality is an important factor shaping socio-environmental relationships and population health relationships
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Sociology
Louis, Rachel Annette. "Sustainable Bridges: Green Links to the Future." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274455847.
Full textBooks on the topic "Sustainable future"
Canada. Library of Parliament. Research Branch. Sustainable agriculture: Future dimensions. [Ottawa]: Library of Parliament, Research Branch, 1992.
Find full textCanada. Library of Parliament. Research Branch., ed. Sustainable agriculture: Future dimensions. Ottawa, Ont: Library of Parliament, Research Branch, 1992.
Find full textChugo, Daisuke, Mohammad Osman Tokhi, Manuel F. Silva, Taro Nakamura, and Khaled Goher, eds. Robotics for Sustainable Future. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86294-7.
Full textVárkonyi-Kóczy, Annamária R., ed. Engineering for Sustainable Future. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36841-8.
Full textModelling sustainable development: Transitions to a sustainable future. Cheltenham, UK: Edward Elgar, 2009.
Find full textMcEwen, Sandra. EcoLogic: Creating a sustainable future. Sydney [NSW]: Powerhouse Pub., 2004.
Find full textInternational Household & Family Research Conference (5th 2006 Savonlinna, Finland). Human perspectives on sustainable future. Joensuu: University of Joensuu, 2006.
Find full textMuseo, Suomen Rakennustaiteen, ed. Transformation - towards a sustainable future. Helsinki: Museum of Finnish Architecture, 2013.
Find full textBelmont, Helen. Planning for a sustainable future. North Mankato, MN: Smart Apple Media, 2007.
Find full textWater, CSIRO Land and. Science for a sustainable future. Edited by Griffiths Lynne. [Canberra]: CSIRO Land and Water Communication Group, 1999.
Find full textBook chapters on the topic "Sustainable future"
Jones, Christopher Burr. "Sustainable Future." In Encyclopedia of Sustainability in Higher Education, 1809–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11352-0_245.
Full textJones, Christopher Burr. "Sustainable Future." In Encyclopedia of Sustainability in Higher Education, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63951-2_245-1.
Full textIssa, Tomayess, and Pedro Isaias. "Future ICTs: Present Trends for Future Developments." In Sustainable Design, 165–77. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6753-2_8.
Full textMarriage, Guy. "Sustainable timber future." In Modern Apartment Design, 77–89. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003123873-7.
Full textCalthorpe, Peter. "A Sustainable Future." In Urbanism in the Age of Climate Change, 119–26. Washington, DC: Island Press/Center for Resource Economics, 2011. http://dx.doi.org/10.5822/978-1-61091-005-7_10.
Full textvon Uexkull, Jakob. "Future-Oriented Actions." In Sustainable Entrepreneurship, 271–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38753-1_22.
Full textTomalty, Ray, and Alan Mallach. "Growing Sustainable Suburbs." In America’s Urban Future, 196–222. Washington, DC: Island Press/Center for Resource Economics, 2015. http://dx.doi.org/10.5822/978-1-61091-597-7_10.
Full textWilliams, Katie, Carol Dair, and Morag Lindsay. "Neighbourhood Design and Sustainable Lifestyles." In Future City, 183–214. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8647-2_9.
Full textBorbye, Lisbeth. "Looking to the Future." In Sustainable Innovation, 53–55. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-02573-0_7.
Full textBoone, Christopher G. "Social Dynamics and Sustainable Urban Design." In Future City, 47–61. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5341-9_3.
Full textConference papers on the topic "Sustainable future"
Busse, Daniela K., Eli Blevis, Catherine Howard, Brinda Dalal, David Fore, and Lara Lee. "Designing for a sustainable future." In Proceeding of the seventh ACM conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1640233.1640373.
Full textBojić, Milorad. "Net sustainable buildings: Approaching future." In PROCEEDINGS OF THE SIXTH GLOBAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION. AIP, 2012. http://dx.doi.org/10.1063/1.4768970.
Full textHummel, M., and A. Windsperger. "Sustainable energy future for Austria." In RAVAGE OF THE PLANET 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/rav090271.
Full text"A Clean and Sustainable Future." In 2018 International Conference on Economics, Finance, Business, and Development. Francis Academic Press, 2018. http://dx.doi.org/10.25236/icefbd.18.051.
Full textBoras, Marinela. "SUSTAINABLE EDUCATION FOR FUTURE GENERATIONS." In 15th annual International Conference of Education, Research and Innovation. IATED, 2022. http://dx.doi.org/10.21125/iceri.2022.0710.
Full textKashuro, Irina, and Anna Markizova. "SUSTAINABLE DEVELOPMENT AS A CONDITION FOR A SUSTAINABLE FUTURE." In Globalistics-2020: Global issues and the future of humankind. Interregional Social Organization for Assistance of Studying and Promotion the Scientific Heritage of N.D. Kondratieff / ISOASPSH of N.D. Kondratieff, 2020. http://dx.doi.org/10.46865/978-5-901640-33-3-2020-50-54.
Full textCERRO, CAMILO. "THE FUTURE OF DWELLING: DENSITY." In SUSTAINABLE CITY 2019. Southampton UK: WIT Press, 2019. http://dx.doi.org/10.2495/sc190011.
Full textDivan, Deepak, and Frank Kreikebaum. "Challenges to Achieving a Sustainable Future." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781070.
Full textRobbins, Jeff. "Seven barriers to a sustainable future." In 2009 IEEE International Symposium on Technology and Society (ISTAS). IEEE, 2009. http://dx.doi.org/10.1109/istas.2009.5155907.
Full textHapp, Jurgen. "City design for a sustainable future." In 2012 IEEE Technology Time Machine (TTM). IEEE, 2012. http://dx.doi.org/10.1109/ttm.2012.6509048.
Full textReports on the topic "Sustainable future"
Schipper, L., and S. Meyers. World energy: Building a sustainable future. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/7165457.
Full textSchipper, L., and S. Meyers. World energy: Building a sustainable future. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10180551.
Full textPfrengle, Franz X. A Sustainable NATO/EU Partnership for the Future. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada478970.
Full textChatterjee, Mahalaya. Sprawling Kolkata's tall order for a sustainable future. Edited by Bharat Bhushan and Chris Bartlett. Monash University, January 2023. http://dx.doi.org/10.54377/2cdf-05c8.
Full textZhou, Dadi, Mark Levine, Yande Dai, Cong Yu, Yuan Guo, Jonathan E. Sinton, Joanna I. Lewis, and Yuezhong Zhu. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary). Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/882064.
Full textAuthor, Not Given. Planning for a Sustainable Future of the Cincinnati Union Terminal. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1064404.
Full textLonsdale, Whitney R., Wyatt F. Cross, Charles E. Dalby, Sara E. Meloy, and Ann C. Schwend. Evaluating Irrigation Efficiency: Toward a Sustainable Water Future for Montana. The Montana University System Water Center, November 2020. http://dx.doi.org/10.15788/mwc202011.
Full textShipley, Anna, Anne Hampson, Bruce Hedman, Patti Garland, and Paul Bautista. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/1218492.
Full textShipley, Ms Anna, Anne Hampson, Mr Bruce Hedman, Patricia W. Garland, and Paul Bautista. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/942240.
Full textAuthor, Not Given. National Renewable Energy Laboratory: Creating a Sustainable Energy Future (Revised) (Fact Sheet). Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/964606.
Full text