Academic literature on the topic 'Suzuki-Miyaura'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Suzuki-Miyaura.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Suzuki-Miyaura"

1

Akkarasamiyo, Sunisa, Somsak Ruchirawat, Poonsaksi Ploypradith, and Joseph S. M. Samec. "Transition-Metal-Catalyzed Suzuki–Miyaura-Type Cross-Coupling Reactions of π-Activated Alcohols." Synthesis 52, no. 05 (January 7, 2020): 645–59. http://dx.doi.org/10.1055/s-0039-1690740.

Full text
Abstract:
The Suzuki–Miyaura reaction is one of the most powerful tools for the formation of carbon–carbon bonds in organic synthesis. The utilization of alcohols in this powerful reaction is a challenging task. This short review covers progress in the transition-metal-catalyzed Suzuki­–Miyaura-type cross-coupling reaction of π-activated alcohol, such as aryl, benzylic, allylic, propargylic and allenic alcohols, between 2000 and June 2019.1 Introduction2 Suzuki–Miyaura Cross-Coupling Reactions of Aryl Alcohols2.1 One-Pot Reactions with Pre-activation of the C–O Bond2.1.1 Palladium Catalysis2.1.2 Nickel Catalysis2.2 Direct Activation of the C–O Bond2.2.1 Nickel Catalysis3 Suzuki–Miyaura-Type Cross-Coupling Reactions of Benzylic Alcohols4 Suzuki–Miyaura-Type Cross-Coupling Reactions of Allylic Alcohols4.1 Rhodium Catalysis4.2 Palladium Catalysis4.3 Nickel Catalysis4.4 Stereospecific Reactions4.5 Stereoselective Reactions4.6 Domino Reactions5 Suzuki–Miyaura-Type Cross-Coupling Reactions of Propargylic Alcohols5.1 Palladium Catalysis5.2 Rhodium Catalysis6 Suzuki–Miyaura-Type Cross-Coupling Reactions of Allenic Alcohols6.1 Palladium Catalysis6.2 Rhodium Catalysis7 Conclusions
APA, Harvard, Vancouver, ISO, and other styles
2

Bhatt, Nikita, Smriti, Richa Khare, and Monika Kamboj. "Suzuki-Miyaura Cross Coupling Reaction in Various Green Media." Asian Journal of Chemistry 33, no. 9 (2021): 1976–84. http://dx.doi.org/10.14233/ajchem.2021.22584.

Full text
Abstract:
Suzuki-Miyaura cross-coupling reaction is an efficient and utilized method for the direct formation of carbon-carbon bonds. The effectiveness and efficiency of Suzuki-Miyaura cross-coupling reaction and its applications have been the topic of interest for synthetic chemists for the last few decades. Green chemistry is the area where we use eco-friendly products. Suzuki coupling includes palladium or nickel catalyzed coupling reaction, which involves ester of boric acids or simply boric acids with the organic halides or pseudohalide. In recent years, these catalytic systems have been developed in a green environment for Suzuki reaction (Suzuki-Miyaura cross-coupling reaction). This review epitomizes the Suzuki-Miyaura cross-coupling reaction using efficient catalysts in various green media.
APA, Harvard, Vancouver, ISO, and other styles
3

Çakır, Sinem, Serdar Batıkan Kavukcu, Hande Karabıyık, Senthil Rethinam, and Hayati Türkmen. "C(acyl)–C(sp2) and C(sp2)–C(sp2) Suzuki–Miyaura cross-coupling reactions using nitrile-functionalized NHC palladium complexes." RSC Advances 11, no. 60 (2021): 37684–99. http://dx.doi.org/10.1039/d1ra07231e.

Full text
Abstract:
Nitrile-functionalized Pd(ii) complexes have evaluated for the Suzuki–Miyaura cross-coupling reactions. The highest TON value was reached for the acylative Suzuki–Miyaura cross-coupling reaction of acyl chlorides with phenylboronic acids.
APA, Harvard, Vancouver, ISO, and other styles
4

Snieckus, Victor, and Claude Quesnelle. "The Directed ortho Metalation (DoM)–Cross-Coupling Connection: Synthesis of Polyfunctional Biaryls." Synthesis 50, no. 22 (October 5, 2018): 4413–28. http://dx.doi.org/10.1055/s-0037-1610273.

Full text
Abstract:
A comparative evaluation of the combined directed ortho metalation (DoM)–Suzuki–Miyaura and DoM–Negishi cross-coupling reactions with aryl triflates for the synthesis of substituted biaryls is described. Both ortho-zinc and ortho-boron aryl directed metalation group (DMG = CON(i-Pr)2, OCONEt2, OMOM, NHBoc) substrates were evaluated. The superiority of the DoM–Negishi over the DoM–Suzuki–Miyaura reaction in operational convenience and mild reaction conditions is noted. Orthogonal Negishi and Suzuki–Miyaura with Corriu–Kumada reactions for the synthesis of a teraryl derivative is also reported.
APA, Harvard, Vancouver, ISO, and other styles
5

Onnuch, Polpum, Kranthikumar Ramagonolla, and Richard Y. Liu. "Aminative Suzuki–Miyaura coupling." Science 383, no. 6686 (March 2024): 1019–24. http://dx.doi.org/10.1126/science.adl5359.

Full text
Abstract:
The Suzuki–Miyaura and Buchwald–Hartwig coupling reactions are widely used to form carbon-carbon (C–C) and carbon-nitrogen (C–N) bonds, respectively. We report the incorporation of a formal nitrene insertion process into the Suzuki–Miyaura reaction, altering the products from C–C–linked biaryls to C–N–C–linked diaryl amines and thereby joining the Suzuki–Miyaura and Buchwald–Hartwig coupling pathways to the same starting-material classes. A combination of a bulky ancillary phosphine ligand on palladium and a commercially available amination reagent enables efficient reactivity across aryl halides and pseudohalides, boronic acids and esters, and many functional groups and heterocycles. Mechanistic insights reveal flexibility on the order of bond-forming events, suggesting potential for expansion of the aminative cross-coupling concept to encompass diverse nucleophiles and electrophiles as well as four-component variants.
APA, Harvard, Vancouver, ISO, and other styles
6

Boruah, Preeti Rekha, Abdul Aziz Ali, Bishwajit Saikia, and Diganta Sarma. "A novel green protocol for ligand free Suzuki–Miyaura cross-coupling reactions in WEB at room temperature." Green Chemistry 17, no. 3 (2015): 1442–45. http://dx.doi.org/10.1039/c4gc02522a.

Full text
Abstract:
A highly efficient green protocol for palladium acetate-catalysed ligand-free Suzuki–Miyaura cross-coupling reactions in neat ‘water extract of banana (WEB)’ was developed. Suzuki–Miyaura reaction proceeds in WEB at very short reaction times under ‘ligand/external base/external promoters/organic medium’ free conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Barde, E., A. Guérinot, and J. Cossy. "α-Arylation of Amides from α-Halo Amides Using Metal-Catalyzed Cross-Coupling Reactions." Synthesis 51, no. 01 (December 7, 2018): 178–84. http://dx.doi.org/10.1055/s-0037-1611358.

Full text
Abstract:
Metal-catalyzed α-arylation of amides from α-halo amides with organometallic reagents is reviewed. The article includes Suzuki–Miyaura, Kumada–Corriu, Negishi, and Hiyama cross-coupling reactions.1 Introduction2 Suzuki–Miyaura Cross-Coupling2.1 Palladium Catalysis2.2 Nickel Catalysis3 Kumada–Corriu Cross-Coupling3.1 Nickel Catalysis3.2 Iron Catalysis3.3 Cobalt Catalysis4 Negishi Cross-Coupling5 Hiyama Cross-Coupling6 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
8

Brimble, Margaret A., and Fatiah Issa. "Reaction of Bromonaphthofurans with Bis(pinacolato)diboron." Australian Journal of Chemistry 52, no. 11 (1999): 1021. http://dx.doi.org/10.1071/ch99073.

Full text
Abstract:
The synthesis of a dimeric pyranonaphthoquinone (8) was investigated focusing on a late-stage biaryl coupling of suitably functionalized bromonaphthofurans by using Suzuki–Miyaura methodology. Bromonaphthofuran (16) underwent reaction with bis(pinacolato)diboron in the presence of PdCl2(dppf) to afford boronate ester (21) and furonaphthofuran (22). ‘In situ’coupling of the boronate ester (21) with aryl bromide (16) to the desired dimer (11) was not realized. Bromonaphthofuran (17), prepared by Diels–Alder/retro-Claisen reaction of bromonaphthoquinone (24) with diene (25), underwent Suzuki–Miyaura coupling to naphthofuran (27) and boronate ester (28). Numerous attempts to alter the reaction conditions to effect homocoupling of bromide (17) to biaryl (19) were unsuccessful. Bromopyranonaphthoquinone (18) prepared by oxidative rearrangement of (17) failed to undergo Suzuki–Miyaura coupling.
APA, Harvard, Vancouver, ISO, and other styles
9

Yamada, Kohei, Naoto Kamimura, and Munetaka Kunishima. "Development of a method for the synthesis of 2,4,5-trisubstituted oxazoles composed of carboxylic acid, amino acid, and boronic acid." Beilstein Journal of Organic Chemistry 13 (July 27, 2017): 1478–85. http://dx.doi.org/10.3762/bjoc.13.146.

Full text
Abstract:
A novel method for the synthesis of trisubstituted oxazoles via a one-pot oxazole synthesis/Suzuki–Miyaura coupling sequence has been developed. One-pot formation of 5-(triazinyloxy)oxazoles using carboxylic acids, amino acids and a dehydrative condensing reagent, DMT-MM, followed by Ni-catalyzed Suzuki–Miyaura coupling with boronic acids provided the corresponding 2,4,5-trisubstituted oxazoles in good yields.
APA, Harvard, Vancouver, ISO, and other styles
10

Khabiyev, A. T., and B. S. Selenova. "Palladium(II)-catalyzed Suzuki–Miyaura Reactions of Arylboronic Acid with Aryl Halide in the Presence of Aryl-Ferrocenyl-Phosphines." Eurasian Chemico-Technological Journal 16, no. 1 (December 22, 2013): 79. http://dx.doi.org/10.18321/ectj172.

Full text
Abstract:
<p>This study examined investigation of catalytic activity of aryl-ferrocenyl-phosphine (2-methoxyphenyl diferrocenyl phosphine (cat. 1), 2-tert-butyloxyphenyl diferrocenyl phosphine (cat. 2), 2-methoxynaphtyl diferrocenyl phosphine (cat. 3), 1,1’-bis(diphenylphosphino) ferrocene (cat. 4), phenyl diferrocenyl phosphine (cat. 5)) ligands with palladium salts as precursors in Suzuki–Miyaura reaction. Suzuki–Miyaura reaction is one of the important cross-coupling reactions and extremely powerful in forming C–C bonds. Aryl-ferrocenyl-phosphine ligands confer unprecedented activity for these processes, allowing reactions to be performed at low catalyst levels, to prepare extreme This study examined investigation of catalytic activity of aryl-ferrocenyl-phosphine (2-methoxyphenyl diferrocenyl phosphine (cat. 1), 2-tert-butyloxyphenyl diferrocenyl phosphine (cat. 2), 2-methoxynaphtyl diferrocenyl phosphine (cat. 3), 1,1’-bis(diphenylphosphino) ferrocene (cat. 4), phenyl diferrocenyl phosphine (cat. 5)) ligands with palladium salts as precursors in Suzuki–Miyaura reaction. Suzuki–Miyaura reaction is one of the important cross-coupling reactions and extremely powerful in forming C–C bonds. Aryl-ferrocenyl-phosphine ligands confer unprecedented activity for these processes, allowing reactions to be performed at low catalyst levels, to prepare extremely hindered biaryls and to be carried out, in general, also for reactions of aryl chlorides by temperature 100 ºC and pressure 1 atm. Sterically demanding and strongly Lewis-basic ferrocene-based phosphines are water- and oxygen-resistant. The Suzuki–Miyaura reaction is also an important reaction in the ground and fine organic synthesis, in the production of drugs and intermediates. To analyze the conversion of halogen aryl compounds the <sup>1</sup>H NMR spectroscopy was used. The advantage of Suzuki–Miyaura reaction in comparison with other cross-coupling reactions (Kumada-, Heck-, Heck-Carbonylation-, Murahashi-, Sonogashira-, Negishi-, Stille-reaktion, etc.) is in the usage of low toxic, water- and oxygen-insensitive thermostable organoboron compounds. As boronic acid was used phenylboronic acid and as weak base – potassium phosphate. Catalyst, precursor and weak base were dissolved in toluene. All reactions were performed under an atmosphere of nitrogen or argon. The catalytic cycle of Suzuki–Miyaura reaction typically includes three main steps: oxidative addition of the haloaromatic to catalytic active palladium (0) species, transmetalation, and reductive elimination of the product under back formation of catalytically active species. All used catalysts showed good activity with aryl bromides and weak activity with aryl chlorides.</p>
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Suzuki-Miyaura"

1

Saari, N. (Niko). "Mono- ja regioselektiivisyys Suzuki-Miyaura -ristiinkytkennöissä." Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201606032212.

Full text
Abstract:
Suzuki–Miyaura -ristiinkytkentä on yksi tänä päivänä eniten käytetyistä menetelmistä, joilla muodostaa uusia C–C -sidoksia eri yhdisteiden välille. Menetelmää käytetään paljon varsinkin hienokemikaalien ja lääkeaineiden valmistuksessa. Reaktion etuina ovat sivutuotteiden helppo poistettavuus sekä reaktion toimintavarmuus, vaikka reaktiossa olisi läsnä useita erilaisia funktionaalisia ryhmiä. Reaktiossa halogenoitu aryyli-/allyyliryhmä ja boorihappo-/boorihappoesteriryhmän sisältävä aryyli-/allyyliryhmä kytkeytyvät toisiinsa Pd-avusteisessa katalyyttisessa syklissä. Syklissä booriryhmä muodostaa suolan halogeenin kanssa ja syntyy uusi sidos orgaanisten ryhmien välille. Lisätty emäs sekä Pd:iin liittyvät ligandit ovat erittäin tärkeitä tekijöitä reaktion toiminnan kannalta. Menetelmää on tutkittu paljon, mutta reaktioiden mono- ja regioselektiivisyyttä ei pystytä vielä ennustamaan varmasti. Kytkennän paikka tiedetään, jos reaktiossa käytetään monohalogenoitua yhdistettä sekä boorihapporeagenssia. Tilanne kuitenkin vaikeutuu merkittävästi, jos reaktiossa käytetään polyhalogenoitua lähtöainetta. Tällaisessa tilanteessa selektiivisyyttä on lähes mahdoton ennustaa ilman kokeellisia tutkimuksia. Tässä pro gradu -tutkielmassa on selvitetty eri tekijöitä jotka vaikuttavat dihalogenoitujen yhdisteiden mono- ja regioselektiivisyyteen. Tämän lisäksi tutkielmassa käsitellään useita reaktioita, joissa mono- tai regioselektiivisyys on saavutettu reaktio-olosuhteita muuttamalla tai käyttämällä ohjaavia ryhmiä. Tutkielmassa käydään läpi myös reaktioita, joissa regioselektiivisyys on saavutettu molempiin halogenoituihin hiiliin muuttamalla reaktio-olosuhteita. Näiden reaktioiden pohjalta on esitetty tärkeimmät tekijät, joiden avulla kytkentöjen selektiivisyyttä voitaisiin mahdollisesti pystyä ohjaamaan haluttuun paikkaan.
APA, Harvard, Vancouver, ISO, and other styles
2

Hashimoto, Toru. "Development of Iron-Catalyzed Suzuki-Miyaura Coupling Reaction." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/159407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geogheghan, Katherine Jayne. "Boronic acid speciation in Suzuki-Miyaura cross-coupling." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33092.

Full text
Abstract:
Since its discovery in 1979, the Suzuki-Miyaura (SM) reaction has become one of the most widely utilised tools for carbon-carbon bond formation. The palladium catalysed coupling of an organoboron and organohalide compounds proceeds through a three-stage mechanism of oxidative addition, transmetalation and reductive elimination. The transmetalation of boronic acids to a palladium(II) complex has been widely studied. However, very little is known about the transmetalation of boronic esters, which are commonly used as an alternative to unstable boronic acids. Whether these species undergo direct transmetalation or prior hydrolysis to the boronic acid under SM conditions remains unknown. This research aimed to elucidate the mechanism of this cross-coupling process. Initial results under typical SM conditions created a biphasic reaction, promoted by the inorganic base and solvent composition, and showed that the boronic esters and corresponding boronic acid couple at the same absolute rate. This is thought to be a consequence of the formation of a biphasic mixture, rendering phase transfer the turnover-limiting step. The conditions were thus adapted to maintain a monophasic system using an organic soluble base, 2-tert-butyl-1,1,3,3-tetramethylguanidine, enabling the focus to be transmetalation as the turnover-limiting step. These new conditions show a significant difference in both reaction rate and induction period when using a boronic ester compared to the corresponding boronic acid. The use of guanidine was also shown to have an interesting effect on the boronic acid/ester species by 19F and 11B NMR. Further studies found the use of guanidine to create a boronate species, with this species being an aryl trihydroxyboronate or the hydroxyl"ate"-complex of the boronic ester, depending on the presence of diol in the system. Formation of a boronate species was found to be crucial for efficient cross-coupling. When testing weaker bases, unable to form a boronate species, poor SM cross-coupling conversion was found using the newly developed phosphine-free guanidine conditions, showing the importance of the boronate species under these conditions. The results suggest that depending on the strength of base used, the pathway of transmetalation pathway can be switched, between the boronate pathway and the oxo-palladium pathway, under the specific conditions developed.
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Duc Gaëtan. "Etude mécanistique de la réaction de Suzuki-Miyaura." Paris 6, 2011. http://www.theses.fr/2011PA066333.

Full text
Abstract:
La réaction de couplage croisé de Suzuki-Miyaura, catalysée par le palladium(0), entre un halogénure aromatique et un acide arylboronique, est l’une des réactions les plus utilisées pour la synthèse de biaryles. La particularité de cette réaction est qu’elle nécessite la présence d’une base. Le rôle de la base n’est pas bien défini dans la littérature où plusieurs hypothèses sont proposés, dans lesquelles la base jouerait un rôle dans l'étape de transmétallation. Nous avons étudié le rôle de la base (hydroxydes, carbonates, fluorures) dans l’étape de transmétallation grâce à des méthodes électrochimiques et spectroscopiques. Nous nous sommes également intéressés aux effets induits par les contre cations. Nous avons alors mis en évidence un quadruple rôle de la base. Elle¨permet la formation des complexes trans-ArPd(OH)(PPh3)2 (ou trans-ArPdF(PPh3)2) qui réagissent avec l'acide arylboronique et celle des ions arylborates à partir de l'acide arylboronique. Cet ion arylborate est non réactif vis-à-vis des complexes de palladium(II). Comme sa formation se fait au détriment d’une espèce active, ce deuxième effet de la base ralentit la réaction. La base est donc responsable de deux effets antagonistes dans l’étape de transmétallation. La base joue également un rôle accélérateur dans l’étape d’élimination réductrice, en favorisant la formation du complexe de Pd(0) et du produit de couplage. Le contre cation ralentit la réaction de transmétallation par complexation au ligand hydroxo des complexes trans-ArPd(OH)(PPh3)2. L’ensemble de nos résultats nous a permis d’élucider le mécanisme de la réaction de Suzuki-Miyaura
APA, Harvard, Vancouver, ISO, and other styles
5

Fyfe, James William Buchanan. "Chemoselective Suzuki-Miyaura cross-coupling enabled by speciation control." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27909.

Full text
Abstract:
Boronic acids and esters are one of the most widely used compound classes inorganic chemistry. Recently, diboron systems have emerged as a powerful approach towards complex molecule synthesis. Selectivity in these systems is typically achieved through the use of protecting group strategies in which one boron residue is rendered unreactive under the prevailing reaction conditions, allowing selective manipulation of an unprotected unit. However, while these methods offer excellent selectivity, they do have the drawback of requiring additional synthetic manipulations, i.e., removal of the protecting group to allow subsequent functionalisation, limiting the overall efficiency of these processes. Boronic acids and esters undergo complex equilibria in solution. We have shown that control of these equilibria has been leveraged during the Suzuki-Miyaura reaction to enable the formation of a new, reactive BP in ester without the need for additional protecting group manipulations. Extensive optimisation identified that the nature of the base and quantity of water in the reaction were key in controlling the speciation events in the reaction. This allowed the generation of a broad substrate scope of formally homologated BPin esters. These newly generated reactive boron species were then reacted in situ in an iterative process, forming either terminal triaryl or contolled homologation products. The reaction was also found to have a temperature dependence, where under identical controlled basic conditions either the homologated BPin or the cross-coupled BMIDA species could be obtained based purely upon the temperature of the reaction. A series of control reactions aided in identifying the key processes in the reaction and, more importantly, the order in which these processes must occur in order to achieve the desired reaction. This work led to the development of methods to enable chemoselective reactions within non-protected diboron systems. This demonstrated how chemoselective Suzuki-Miyaura cross-coupling can be achieved within boronic acid/BPin esterdiboron systems by exploiting kinetic control of transmetallation while maintaining control of solution speciation events. This allows the selective reaction of boronic acids in the presence of BPin esters again without the need for protecting group manipulations, as either additional synthetic steps or in situ. Chemoselective transmetallation was then combined with chemoselective oxidative addition in order to establish the first complete chemoselective control over two of the three key mechanistic processes of the Suzuki-Miyaura reaction. This enables a one-pot sequential chemoselective Suzuki-Miyaura reaction without the requirement for any in situ modification of the reaction conditions (temperature change, sequential addition) or reactants (protecting group removal, boron species interconversion).
APA, Harvard, Vancouver, ISO, and other styles
6

Andert, William D. "Palladium Catalyzed Suzuki-Miyaura Cross-Coupling of Axially Chiral Biaryls." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1367536419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Horhant, David. "Borylation pallado-catalysée et couplages de Suzuki-Miyaura boro-sélectifs." Rennes 1, 2005. http://www.theses.fr/2005REN1S079.

Full text
Abstract:
Ce mémoire traite de l'utilisation d'une réaction pallado-catalysée de borylation pour l'obtention d'organoboranes et leur implication dans la synthèse de molécules à haute valeur ajoutée ou d'intérêt synthétique. Cette réaction utilise un pourvoyeur de bore original, le (N,N-diisopropylamino)borane, dérivé de la famille des aminoboranes monomères. Dans un premier temps, la synthèse d'amino-oxazoles, précurseurs de biarylcyclopeptides, a été réalisée via une réaction multi-composants entre un aldéhyde à terminaison acide arylboronique et divers isocyanoacétamides. Les biaryles sont obtenus par macrocyclisation décrochante sur support solide ionique. Ensuite, la synthèse de triazènes arylboroniques, des molécules difonctionnelles polyvalentes, a été réalisé. Ces outils synthétiques ont été engagés avec succès dans des réactions de Suzuki-Miyaura, et plus particulièrement dans des couplages originaux boro-sélectifs. L'utilisation de ces triazènes boroniques a également permis de réaliser la synthèse de molécules complexes de type DiSpiro[Fluorène-Indénofluorène-Fluorène] (DSFIFs), précurseurs de matériaux conducteurs et luminescents.
APA, Harvard, Vancouver, ISO, and other styles
8

Bourouina, Amine. "Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1258.

Full text
Abstract:
L’état de l’art montre que l’utilisation de Pd supporté sans ligand est une idée séduisante car elle permet d’éviter les problèmes liés à la présence des ligands potentiellement coûteux et toxiques, et également de récupérer plus facilement le catalyseur en fin de réaction. Ainsi, il est plus aisé de respecter la réglementation fixant la teneur maximale de Pd dans les principes actifs pharmaceutiques (IPA) à une concentration inférieure à 10 ppm. Cependant, la présence des espèces (moléculaires ou nanoparticules) de Pd en solution lors de l’utilisation de catalyseurs solides a créé un débat important dans la bibliographie sur la vraie nature de la catalyse, hétérogène à la surface du Pd supporté ou homogène par l’intermédiaire d'espèces en solution. Dans ce travail la réaction de Suzuki-Miyaura (SM) a été choisie comme réaction cible. En absence d’étude cinétique globale dans la bibliographie une étude cinétique a été effectuée avec un catalyseur moléculaire afin d’obtenir une loi mécanistique qui représente la partie homogène de la réaction. Un test innovant a été proposé afin de bien distinguer entre les contributions homogène et hétérogène et de déterminer par la suite la nature des espèces qui catalysent la réaction. Ce test a été appliqué dans la réaction de différents iodo, bromo, et chloro aryles en utilisant plusieurs catalyseurs supportés tout en variant la nature du support et l’état d’oxydation du Pd (Pd(0) et Pd(II)) dans le précurseur initial. Enfin, un modèle de réacteur a permis de démontrer que pour le même iodoaryle, peu importe la nature du solide, le Pd supporté semble relarguer les mêmes espèces actives en solution qui catalysent la réaction SM avec des activités initiales de l’ordre de 500 000 h-1. Le « split flow reactor » est un nouveau test très simple à utiliser qui, accompagné de techniques d’analyses en ligne, peut permettre de suivre l’évolution des espèces catalytiques en temps réel, et d’étudier d’autres systèmes chimiques
The use of ligand-free supported Pd is an attractive idea because it avoids problems related to the presence of the ligands (cost and toxicity). Also the catalyst is easily recovered at the end of the reaction by conventional methods such as filtration or decantation. Thus, it is easier to meet regulations in Active Pharmaceutical Ingredients (<10 ppm). However, the presence of molecular or atomic Pd species in solution when using solid catalysts has created an important discussion on the true nature of catalysis. This last could be heterogeneous on the surface of the supported Pd or homogeneous via species in solution. In this work the Suzuki-Miyaura (SM) reaction was chosen as the target reaction. In the absence of an overall kinetic study in the literature, a kinetic study was carried out with a molecular catalyst. It provided a mechanistic law that represents the homogeneous part of the reaction. Furthermore, an innovative test (“split flow reactor”) has been proposed. It permits to distinguish between the homogeneous and heterogeneous contributions and to determine the nature of the species that catalyze the reaction. It was used in the reaction of different iodo, bromo, and chloro aryls. Several supported catalysts were used by varying the nature of the support and the oxidation state of Pd (Pd (0) and Pd (II)) in the initial precursor. Finally, a reactor model has shown that for the same iodoaryl, whatever the nature of the solid, the supported Pd seems to release the same active species in solution. These species catalyze the SM reaction with initial activities of the order of 500 000 h-1. The split flow reactor is a new, easy-to-use test. Accompanied with online analysis techniques, it can be used to track the evolution of catalytic species in real time and to study other chemical systems
APA, Harvard, Vancouver, ISO, and other styles
9

Requet, Alexandre. "Une catalyse vertueuse menant à des architectures moléculaires complexes." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0047/document.

Full text
Abstract:
Les travaux de recherche s'articulent autour de l'élaboration de nouveaux ligands à plateformepyridylméthylamine, de l'étude de leur activité catalytique, et de leur application potentiellepour la construction d'édifices hélicéniques. La première partie consiste en la synthèse denouveaux ligands pma. Un travail méthodologique a été effectué afin de trouver le meilleurcompromis entre un nombre d'étapes limitées, des conditions douces, un apport de chiralité etune possibilité d'apporter une importante diversité structurale. La deuxième partie de cemanuscrit concerne l'étude catalytique des ligands synthétisés dans diverses transformationscomme le couplage de Suzuki-Miyaura, le couplage oxydant au cuivre et l'additionnucléophile par un organozincique. Les premiers éléments d'une étude structure activité desligands pma appliqués aux couplages de Suzuki-Miyaura a été réalisée en solution grâce à laRMN 15N. La dernière partie repose sur la construction d'architectures moléculairescomplexes et la possibilité de gérer la chiralité axiale dans l'étape clé de leur synthèse
The manuscript is dealing with the development of new ligands pyridylmethylamine platformfor the study of their catalytic activity and potential application for the construction of helicalarchitectures. The first part describes the synthesis of new pma ligands. Attention has beenpaid to define the best compromise between a limited number of steps, mild conditions,introduction of chirality at key steps and opportunities to reach structural diversity. Thesecond part concerns the catalytic study of these ligands in various transformations such as Pdcatalysis in Suzuki-Miyaura coupling, Cu catalysis in oxidative coupling copper and Znpromoted nucleophilic addition. First lines of structure-activity relationships has been realizedusing 15N. Finally the last part is devoted to the construction of helical moleculararchitectures. Axial chirality is installed in key coupling step
APA, Harvard, Vancouver, ISO, and other styles
10

Baltus, Christine B. "Suzuki-Miyaura mediated biphenyl synthesis : a spotlight on the boronate coupling partner." Thesis, University of Greenwich, 2011. http://gala.gre.ac.uk/8038/.

Full text
Abstract:
The biaryl motif is found in many natural and synthetic products that display a wide range of biological activities. This explains why biphenyls are widely encountered in medicinal chemistry as a privileged scaffold. The palladium-catalysed Suzuki-Miyaura (SM) coupling is one of the most important and efficient strategies for the synthesis of symmetrical and unsymmetrical biaryl compounds; the arylboronic acid or ester is a key partner in this coupling reaction. This work presents the synthesis of a library of new molecules containing the biphenyl scaffold; o-, m- and p-(bromomethyl)phenylboronic acid pinacol esters, 2a-c, were selected as coupling partners. Nucleophilic substitution of the bromide was carried out with amine, thiol, alcohol or phenol nucleophiles. Supported reagents and microwave assisted organic synthesis conditions were employed to enhance this chemistry and made it amenable to parallel synthesis. The resulting arylboronates were used in SM coupling reactions in order to obtain a range of biphenyls. The use of Boc-piperazine as a nucleophile in the SN2 reaction, with 2a-c, and 1-bromo-, 2-, 3- or 4-nitrobenzene or 2-bromo-5-nitropyridine as aryl halides in the SM coupling reaction, allowed two other points of functionalisation to be added to the biaryl motif. The conditions for the SM coupling of mercaptomethylphenylboronic esters and orthosubstituted methylphenylboronic esters were optimised in order to broaden the scope of the biaryl library. Phosphines were found to be good nucleophiles in the SN2 reaction with 2a-c. A Wittig reaction was performed with the resulting phosphonium arylboronates in order to synthesise arylboronic esters containing an alkene function prior the reduction of the resulting double bond of the stilbene derivatives and realising a SM coupling to synthesise arylethylbiphenyls. The stilbene derivatives were also synthesised by using the olefin cross-metathesis reaction of 4-vinylphenylboronic acid pinacol ester. A solid state crystallographic study was undertaken on a small library of methylbiphenylamides to compare the crystal structures of isomers or biphenyls with different functional groups.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Suzuki-Miyaura"

1

Suzuki–Miyaura Cross-Coupling Reaction and Potential Applications. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-557-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Suzuki-Miyaura"

1

Li, Jie Jack. "Suzuki–Miyaura coupling." In Name Reactions, 593–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03979-4_269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Jie Jack. "Suzuki–Miyaura coupling." In Name Reactions, 536–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01053-8_250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jie Jack. "Suzuki–Miyaura Coupling." In Name Reactions, 530–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50865-4_147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Jie Jack. "Suzuki–Miyaura-Kupplung." In Namensreaktionen, 557–59. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52850-7_147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oishi, Tohru. "A Long Journey Toward Structure Revision and Total Synthesis of Amphidinol 3." In Modern Natural Product Synthesis, 55–81. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1619-7_3.

Full text
Abstract:
AbstractAmphidinol 3 (AM3) is a super-carbon-chain compound isolated from the dinoflagellate Amphidinium klebsii. Although the absolute configuration of AM3 was determined in 1999 by instrumental analysis in combination with degradation of the natural product, it was a daunting task because of its limited availability from natural sources and presence of around 70% of chiral centers on the acyclic carbon chain. During the course of our synthetic studies of AM3, the originally proposed structure was revised, which was confirmed by the first total synthesis of AM3 in 2020, more than 20 years since its first discovery. A highly convergent strategy via the fragment assembly using Suzuki–Miyaura coupling and Julia–Kocienski olefination led to the successful total synthesis; however, it was not an easy task to assemble large segments by the Suzuki–Miyaura coupling. A number of experiments optimizing the reaction conditions including model systems revealed that the concentration of the aqueous cesium carbonate is crucial for the key step Suzuki–Miyaura coupling to proceed effectively.
APA, Harvard, Vancouver, ISO, and other styles
6

Valente, Cory, and Michael G. Organ. "The Contemporary Suzuki-Miyaura Reaction." In Boronic Acids, 213–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639328.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ding, Yun. "On-DNA Suzuki-Miyaura Cross-Coupling." In Methods in Molecular Biology, 45–48. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2545-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

García Melchor, Max. "An Asymmetric Suzuki-Miyaura Reaction Mechanism." In A Theoretical Study of Pd-Catalyzed C-C Cross-Coupling Reactions, 113–33. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01490-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spicer, Christopher D., and Benjamin G. Davis. "Palladium-Mediated Site-Selective Suzuki-Miyaura Protein Modification." In Encyclopedia of Metalloproteins, 1656–63. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1533-6_575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Remi, Virinder S. Parmar, and Christophe Len. "Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flows." In Greener Synthesis of Organic Compounds, Drugs and Natural Products, 119–35. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003089162-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Suzuki-Miyaura"

1

Lee, Tae-Kyung, Bikashý Manandhar, and Jung-Mo Ahn. "Peptide Ligation via Suzuki-Miyaura Cross-Coupling Reaction." In The 24th American Peptide Symposium. Prompt Scientific Publishing, 2015. http://dx.doi.org/10.17952/24aps.2015.268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Jia-Zhe, and Xue-Feng Bai. "Ultrasonic Synthesis of Pd/SBA-15 Catalyst for Suzuki-Miyaura Coupling." In 2017 7th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icadme-17.2017.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Convenient and Efficient Suzuki Miyaura Coupling Reactions of Meso-Halogenated BODIPYs." In Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gomes, S. L. S., A. M. Costa, G. C. G. Militão, P. R. R. Costa, and A. J. M. da Silva. "Synthesis of Lapachol Analogues through Suzuki-Miyaura Cross-Coupling. Antitumoral Evaluation." In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0034-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Silva, Aires da Conceição, Jaqueline D. Senra, Lúcia C. S. Aguiar, Alessandro B. C. Simas, Andréa Luzia F. de Souza, and Luiz Fernando B. Malta. "Room-temperature Suzuki-Miyaura reactions mediated by native and derivatized b−cyclodextrins." In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0021-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lopes, Raquel de Oliveira, Benedikt Reichart, Toma Glasnov, C. Oliver Kappe, Wolfgang Kroutil, Leandro Soter de M. e. Miranda, Ivana Correa R. Leal, and Rodrigo O. M. A. de Souza. "Asymmetric enzymatic reduction and Suzuki-Miyaura coupling for the synthesis of odanacatib." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_201391717510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Tae-Kyung, Bikash Manandhar, and Jung-Mo Ahn. "Exploration of the Scope of Suzuki–Miyaura Cross-Coupling in Peptide Ligation." In The Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing, 2013. http://dx.doi.org/10.17952/23aps.2013.234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bayar, İrem, and Senem Akkoc. "Catalysis of NHC–Pd Complexes in the Suzuki–Miyaura Cross-Coupling Reaction." In International Electronic Conference on Processes. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thiemann, Thies, and Kyoko Yamamoto. "Suzuki-Miyaura cross-coupling and Heck reactions catalysed by Pd on carbon nanofibres." In The 13th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2009. http://dx.doi.org/10.3390/ecsoc-13-00173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Quinteros, Gisela J., and Sandra E. Martín. "Synthesis of biphenyl-based arsine ligands by microwaveassisted Suzuki-Miyaura coupling and their applications." In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0162-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography