Academic literature on the topic 'Sverdrup Balance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sverdrup Balance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sverdrup Balance"

1

Thomas, Matthew D., Agatha M. De Boer, Helen L. Johnson, and David P. Stevens. "Spatial and Temporal Scales of Sverdrup Balance*." Journal of Physical Oceanography 44, no. 10 (2014): 2644–60. http://dx.doi.org/10.1175/jpo-d-13-0192.1.

Full text
Abstract:
Abstract Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents a
APA, Harvard, Vancouver, ISO, and other styles
2

Wunsch, Carl, and Dean Roemmich. "Is the North Atlantic in Sverdrup Balance?" Journal of Physical Oceanography 15, no. 12 (1985): 1876–80. http://dx.doi.org/10.1175/1520-0485(1985)015<1876:itnais>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wunsch, Carl. "The decadal mean ocean circulation and Sverdrup balance." Journal of Marine Research 69, no. 2 (2011): 417–34. http://dx.doi.org/10.1357/002224011798765303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gray, Alison R., and Stephen C. Riser. "A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo." Journal of Physical Oceanography 44, no. 4 (2014): 1213–29. http://dx.doi.org/10.1175/jpo-d-12-0206.1.

Full text
Abstract:
Abstract Using observations from the Argo array of profiling floats, the large-scale circulation of the upper 2000 decibars (db) of the global ocean is computed for the period from December 2004 to November 2010. The geostrophic velocity relative to a reference level of 900 db is estimated from temperature and salinity profiles, and the absolute geostrophic velocity at the reference level is estimated from the trajectory data provided by the floats. Combining the two gives the absolute geostrophic velocity on 29 pressure surfaces spanning the upper 2000 db of the global ocean. These velocities
APA, Harvard, Vancouver, ISO, and other styles
5

Gray, Alison R., and Stephen C. Riser. "Reply to “Comments on ‘A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo’”." Journal of Physical Oceanography 45, no. 5 (2015): 1449–50. http://dx.doi.org/10.1175/jpo-d-14-0215.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Le Corre, Mathieu, Jonathan Gula, and Anne-Marie Tréguier. "Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model." Ocean Science 16, no. 2 (2020): 451–68. http://dx.doi.org/10.5194/os-16-451-2020.

Full text
Abstract:
Abstract. The circulation in the North Atlantic subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics are traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first-order balance between the planetary vorticity advection, the bottom pressure torque, and the wind stress curl. However, these dynamics have been studied mostly with non-eddy-resolving models and a crude representation of the bottom topography. Here we revisit the barotropic vorticity balance of the North Atlantic subpolar gyre using a new eddy-resolving sim
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Youyu, and Detlef Stammer. "Vorticity Balance in Coarse-Resolution Global Ocean Simulations." Journal of Physical Oceanography 34, no. 3 (2004): 605–22. http://dx.doi.org/10.1175/2504.1.

Full text
Abstract:
Abstract The vorticity budget of the vertically integrated circulation from two global ocean simulations is analyzed using a horizontal spacing of 2° × 2° in longitude/latitude. The two simulations differ in their initial hydrographic conditions and surface wind and buoyancy forcing. The constrained simulation obtains optimal initial condition and surface forcing through assimilating observational data using the model's adjoint, whereas the unconstrained simulation uses Levitus climatological conditions for initialization and is driven by NCEP–NCAR reanalysis forcing, plus restoring to the mon
APA, Harvard, Vancouver, ISO, and other styles
8

Hautala, Susan L., Dean H. Roemmich, and William J. Schmilz. "Is the North Pacific in Sverdrup balance along 24°N?" Journal of Geophysical Research 99, no. C8 (1994): 16041. http://dx.doi.org/10.1029/94jc01084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohshima, Kay I., Daisuke Simizu, Motoyo Itoh, et al. "Sverdrup Balance and the Cyclonic Gyre in the Sea of Okhotsk." Journal of Physical Oceanography 34, no. 2 (2004): 513–25. http://dx.doi.org/10.1175/1520-0485(2004)034<0513:sbatcg>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

NIILER, P. P., and C. J. KOBLINSKY. "A Local Time-Dependent Sverdrup Balance in the Eastern North Pacific Ocean." Science 229, no. 4715 (1985): 754–56. http://dx.doi.org/10.1126/science.229.4715.754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sverdrup Balance"

1

Thomas, Matthew. "Sverdrup balance and three dimensional variability of the meridional overturning circulation." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/48025/.

Full text
Abstract:
Two numerical models are used to gain an understanding of the spatial structure of Atlantic Meridional Overturning Circulation changes and the dynamical framework within which those changes occur. Sverdrup balance is studied using the 16 year ECCO-GODAE state estimation. It is shown to hold well in the interior subtropics when integrating to a mid-depth level and when considered at spatial scales larger than approximately 5◦. Outside of the subtropics, in western boundary currents and at short spatial scales, significant departures occur mostly due to a failure in the assumption that there is
APA, Harvard, Vancouver, ISO, and other styles
2

Cortés, Morales Diego. "Large-scale Vertical Velocities in the Global Open Ocean via Linear Vorticity Balance." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS061.

Full text
Abstract:
À l'échelle des bassins océaniques, les vitesses verticales présentent des valeurs nettement inférieures à celles des vitesses horizontales, imposant ainsi un défi considérable en ce qui concerne leur mesure directe dans l'océan. Par conséquent, leur évaluation nécessite une combinaison d'ensembles de données observationnelles et de considérations théoriques. Diverses méthodes ont été tentées, allant de celles qui se fondent sur la divergence du courant horizontal in situ à celles qui reposent sur des équations complexes de type oméga. Cependant, l'équilibre de Sverdrup a attiré l'attention de
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sverdrup Balance"

1

TOMCZAK, MATTHIAS, and J. STUART GODFREY. "Ekman layer transports, Ekman pumping and the Sverdrup balance." In Regional Oceanography. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-08-041021-0.50008-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murray, James W. "Overview of Ocean Distributions and Circulation." In Aquatic Geochemical Oceanography. Oxford University PressOxford, 2025. https://doi.org/10.1093/9780191853241.003.0002.

Full text
Abstract:
Abstract The goal of this chapter is to answer the questions, 1) where does the water go? and 2) why does it go there? The fundamental properties of the ocean (pressure, temperature, salinity and density) are described and methods to measure these properties are discussed. The superposition of forces (pressure gradient, wind, friction, Coriolis) on the density fields result in transports and currents. Sea surface height varies and the Geostrophic and Sverdrup balances result in patterns of major ocean circulation. Ekman Transport results from wind forcing on the surface of the ocean. Equatoria
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!