Academic literature on the topic 'SVM classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SVM classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SVM classification"
Wang, Bo, Yu Kai Yao, Xiao Ping Wang, and Xiao Yun Chen. "PB-SVM Ensemble: A SVM Ensemble Algorithm Based on SVM." Applied Mechanics and Materials 701-702 (December 2014): 58–62. http://dx.doi.org/10.4028/www.scientific.net/amm.701-702.58.
Full textSubha, R., and M. Pushpa Rani. "SVM based Iris Classification." International Journal of Computer Sciences and Engineering 6, no. 2 (February 28, 2018): 321–23. http://dx.doi.org/10.26438/ijcse/v6i2.321323.
Full textVaidya, Jaideep, Hwanjo Yu, and Xiaoqian Jiang. "Privacy-preserving SVM classification." Knowledge and Information Systems 14, no. 2 (March 24, 2007): 161–78. http://dx.doi.org/10.1007/s10115-007-0073-7.
Full textGu, Suicheng, and Yuhong Guo. "Learning SVM Classifiers with Indefinite Kernels." Proceedings of the AAAI Conference on Artificial Intelligence 26, no. 1 (September 20, 2021): 942–48. http://dx.doi.org/10.1609/aaai.v26i1.8293.
Full textBansal, Esha, and Anupam Bhatia. "Kernel’s Impact on SVM Classification." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 5 (May 30, 2017): 359–62. http://dx.doi.org/10.23956/ijarcsse/sv7i5/0238.
Full textAl-Khalidy, Joanne H., and Raid R. Al-Ne’ma. "Breast Tumor Classification Using SVM." Tikrit Journal of Engineering Sciences 21, no. 1 (July 18, 2013): 43–49. http://dx.doi.org/10.25130/tjes.21.1.06.
Full textIvanova, Vanya, Tasho Tashev, and Ivo Draganov. "DDoS Attacks Classification using SVM." WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 19 (February 9, 2022): 1–11. http://dx.doi.org/10.37394/23209.2022.19.1.
Full textReynolds, Evan, Brian Callaghan, and Mousumi Banerjee. "SVM–CART for disease classification." Journal of Applied Statistics 46, no. 16 (June 7, 2019): 2987–3007. http://dx.doi.org/10.1080/02664763.2019.1625876.
Full textSujitha, R., and B. Paramasivan. "Distributed Healthcare Framework Using MMSM-SVM and P-SVM Classification." Computers, Materials & Continua 70, no. 1 (2022): 1557–72. http://dx.doi.org/10.32604/cmc.2022.019323.
Full textHuang, Mei-Ling, Yung-Hsiang Hung, W. M. Lee, R. K. Li, and Bo-Ru Jiang. "SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier." Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/795624.
Full textDissertations / Theses on the topic "SVM classification"
MELONI, RAPHAEL BELO DA SILVA. "REMOTE SENSING IMAGE CLASSIFICATION USING SVM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31439@1.
Full textClassificação de imagens é o processo de extração de informação em imagens digitais para reconhecimento de padrões e objetos homogêneos, que em sensoriamento remoto propõe-se a encontrar padrões entre os pixels pertencentes a uma imagem digital e áreas da superfície terrestre, para uma análise posterior por um especialista. Nesta dissertação, utilizamos a metodologia de aprendizado de máquina support vector machines para o problema de classificação de imagens, devido a possibilidade de trabalhar com grande quantidades de características. Construímos classificadores para o problema, utilizando imagens distintas que contém as informações de espaços de cores RGB e HSB, dos valores altimétricos e do canal infravermelho de uma região. Os valores de relevo ou altimétricos contribuíram de forma excelente nos resultados, uma vez que esses valores são características fundamentais de uma região e os mesmos não tinham sido analisados em classificação de imagens de sensoriamento remoto. Destacamos o resultado final, do problema de classificação de imagens, para o problema de identificação de piscinas com vizinhança dois. Os resultados obtidos são 99 por cento de acurácia, 100 por cento de precisão, 93,75 por cento de recall, 96,77 por cento de F-Score e 96,18 por cento de índice Kappa.
Image Classification is an information extraction process in digital images for pattern and homogeneous objects recognition. In remote sensing it aims to find patterns from digital images pixels, covering an area of earth surface, for subsequent analysis by a specialist. In this dissertation, to this images classification problem we employ Support Vector Machines, a machine learning methodology, due the possibility of working with large quantities of features. We built classifiers to the problem using different image information, such as RGB and HSB color spaces, altimetric values and infrared channel of a region. The altimetric values contributed to excellent results, since these values are fundamental characteristics of a region and they were not previously considered in remote sensing images classification. We highlight the final result, for the identifying swimming pools problem, when neighborhood is two. The results have 99 percent accuracy, 100 percent precision, 93.75 percent of recall, 96.77 percent F-Score and 96.18 percent of Kappa index.
Jiang, Fuhua. "SVM-Based Negative Data Mining to Binary Classification." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/cs_diss/8.
Full textSeverini, Jérôme. "Estimation et Classification de Signaux Altimétriques." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0125/document.
Full textAfter having scanned the ocean levels during thirteen years, the french/american satelliteTopex-Poséidon disappeared in 2005. Topex-Poséidon was replaced by Jason-1 in december 2001 and a new satellit Jason-2 is waited for 2008. Several estimation methods have been developed for signals resulting from these satellites. In particular, estimators of the sea height and wave height have shown very good performance when they are applied on waveforms backscattered from ocean surfaces. However, it is a more challenging problem to extract relevant information from signals backscattered from non-oceanic surfaces such as inland waters, deserts or ices. This PhD thesis is divided into two parts : A first direction consists of developing classification methods for altimetric signals in order to recognize the type of surface affected by the radar waveform. In particular, a specific attention will be devoted to support vector machines (SVMs) and functional data analysis for this problem. The second part of this thesis consists of developing estimation algorithms appropriate to altimetric signals obtained after reflexion on non-oceanic surfaces. Bayesian algorithms are currently under investigation for this estimation problem. This PhD is co-supervised by the french society CLS (Collect Localisation Satellite) (seehttp://www.cls.fr/ for more details) which will in particular provide the real altimetric data necessary for this study
Almasiri, osamah A. "SKIN CANCER DETECTION USING SVM-BASED CLASSIFICATION AND PSO FOR SEGMENTATION." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5489.
Full textTarasova, Natalya. "Classification of Hate Tweets and Their Reasons using SVM." Thesis, Uppsala universitet, Avdelningen för datalogi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-275782.
Full textThis study focused on finding the hate tweets posted by the customers of three mobileoperators Verizon, AT&T and Sprint and identifying the reasons for their dissatisfaction. The timelines with a hate tweet were collected and studied for the presence of an explanation. A machine learning approach was employed using four categories: Hate, Reason, Explanatory and Other. The classication was conducted with one-versus-all approach using Support Vector Machines algorithm implemented in a LIBSVM tool. The study resulted in two methodologies: the Naive method (NM) and the Partial Time-line Method (PTM). The Naive Method relied only on the feature space consisting of the most representative words chosen with Akaike Information Criterion. PTM utilized the fact that the majority of the explanations were posted within a one-hour time window of the posting of a hate tweet. We found that the accuracy of PTM is higher than for NM. In addition, PTM saves time and memory by analysing fewer tweets. At the same time this implies a trade-off between relevance and completeness.
Opponent: Kristina Wettainen
Lekic, Sasa, and Kasper Liu. "Intent classification through conversational interfaces : Classification within a small domain." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257863.
Full textNatural language processing och maskininlärning är ämnen som forskas mycket om idag. Dessa områden fortsätter växa och blir allt mer sammanvävda, nu mer än någonsin. Ett område är textklassifikation som är en gren av maskininlärningsapplikationer (ML) inom Natural language processing (NLP).Även om dessa ämnen har utvecklats de senaste åren, finns det fortfarande problem att ha i å tanke. Vissa är relaterade till rå datakraft som krävs för dessa tekniker medans andra problem handlar om mängden data som krävs.Forskningsfrågan i denna avhandling handlar om kunskapsbrist inom maskininlärningtekniker som Word2vec, Bidirectional encoder representations from transformers (BERT) och Support vector machine(SVM) klassificierare kan användas som klassification, givet endast små träningsset. Fortsättningsvis, vet man inte om dessa metoder fungerar på vanliga datorer.För att lösa forskningsproblemet, huvudsyftet för denna avhandling var att utveckla två separata konversationsgränssnitt som använder textklassifikationstekniker. Dessa gränssnitt, give med data, kan känna igen syftet bakom det, med andra ord, klassificera given datamening inom ett litet set av fördefinierade kategorier. Först, utvecklades ett konversationsgränssnitt som använder Word2vec och SVM klassificerare. För det andra, utvecklades ett gränssnitt som använder BERT och SVM klassificerare. Målet med denna avhandling var att avgöra om ett litet dataset kan användas för syftesklassifikation och med vad för träffsäkerhet, och om det kan användas på vanliga datorer.Forskningen i denna avhandling följde en standard tillämpad forskningsmetod. Huvudsyftet uppnåddes och de två konversationsgränssnitten utvecklades. Angående konversationsgränssnittet som använde Word2vec förtränat dataset och SVM klassificerar, visade resultatet att det kan användas för syftesklassifikation till en träffsäkerhet på 60%, och fungerar på vanliga datorer. Angående konversationsgränssnittet som använde BERT och SVM klassificerare, visade resultatet att det inte går att köra det på vanliga datorer. Träningen kördes i över 24 timmar och kraschade efter det.Resultatet visade att det är möjligt att skapa ett konversationsgränssnitt som kan klassificera syften, givet endast ett litet träningsset. Däremot, på grund av det begränsade träningssetet, och konsekvent låg träffsäkerhet, är denna konversationsgränssnitt inte lämplig för viktiga uppgifter, men kan användas för icke kritiska klassifikationsuppdrag.
LI, YUANXUN. "SVM Object Based Classification Using Dense Satellite Imagery Time Series." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233340.
Full textLiu, Wen. "Incremental Learning and Online-Style SVM for Traffic Light Classification." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1216.
Full textNordström, Jesper. "Automated classification of bibliographic data using SVM and Naive Bayes." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-75167.
Full textShaik, Abdul Ameer Basha. "SVM Classification and Analysis of Margin Distance on Microarray Data." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1302618924.
Full textBooks on the topic "SVM classification"
Kornevye paraziticheskie nematody sem. Tylenchorhynchidae mirovoĭ fauny. Vladivostok: Dalʹnauka, 1993.
Find full textEhrenberg, Maria. Sagans förvandlingar: Eva Wigström som sagosamlare och sagoförfattare. Stockholm: ETC förlag, 2003.
Find full textKurchenko, E. I. Rod polevit︠s︡a (Agrostis L., sem. Poaceae) Rossii i sopredelʹnykh stran: Morfologii︠a︡, sistematika i ėvoli︠u︡t︠s︡ionnye otnoshenii︠a︡ = Genus Agrostis L. (Poaceae) of Russia and neighbouring countries : Morphology, taxonomy and evolution relations. Moskva: Prometeĭ, 2010.
Find full textM. W. S. J. M. van Slageren. A taxonomic monograph of the genera Brachiolejeunea and Frullanoides (Hepaticae), with a sem analysis of the sporophyte in the Ptychanthoideae. [Utrecht: Botanisch Museum en Herbarium van de Rijksuniversiteit te Utrecht], 1985.
Find full textStannius, Birgitte. UDK som fælles klassifikationssystem i danske forskningsbiblioteker: En analyse af Roskilde Universitetsbiblioteks brug af UDK i lyset af 1970ernes fællesklassifikationsdebat. København: Danmarks biblioteksskole, 1985.
Find full textSundland, Egil. Det var en gang--et menneske: Tolkninger av Asbjørnsen og Moes undereventyr som allegorier på menneskelig innsikt og erkjennelse. [Oslo]: Cappelen, 1995.
Find full textMiao, Chuxiong, and Ming Zuo. A Support Vector Machine Model for Pipe Crack Size Classification: Reseach on SVM Classification. VDM Verlag Dr. Müller, 2010.
Find full textVasilʹevich, Kucherov Evgeniĭ, Muldashev A. A, Alekseev I͡U︡ E, and Institut biologii (Akademii͡a︡ nauk SSSR. Bashkirskiĭ nauchnyĭ t͡s︡entr), eds. Opredelitelʹ vysshikh rasteniĭ Bashkirskoĭ ASSR. Sem. Onocleacea-Fumariaceae. Moskva: "Nauka", 1988.
Find full textKatritsis, Demosthenes G., Bernard J. Gersh, and A. John Camm. Epidemiology, presentation, and therapy of supraventricular tachycardias. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199685288.003.1095_update_001.
Full textBisen, S. S. Identification and Classification of Indian Bamboos ; SEM Atlas of Epidermis. Bishen Singh Mahendra Pal Singh, 1999.
Find full textBook chapters on the topic "SVM classification"
Zhu, Yanwei. "SVM Classification Algorithm in ECG Classification." In Communications in Computer and Information Science, 797–803. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34041-3_110.
Full textOrchel, Marcin. "Incorporating Detractors into SVM Classification." In Man-Machine Interactions, 361–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00563-3_38.
Full textChen, Mu-Song, Chipan Hwang, and Tze-Yee Ho. "Terrain Image Classification with SVM." In Lecture Notes in Computer Science, 89–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38715-9_11.
Full textFrossyniotis, Dimitrios S., and Andreas Stafylopatis. "A Multi-SVM Classification System." In Multiple Classifier Systems, 198–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-48219-9_20.
Full textImam, Tasadduq, Kai Ming Ting, and Joarder Kamruzzaman. "z-SVM: An SVM for Improved Classification of Imbalanced Data." In Lecture Notes in Computer Science, 264–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11941439_30.
Full textKrey, Sebastian, and Uwe Ligges. "SVM Based Instrument and Timbre Classification." In Studies in Classification, Data Analysis, and Knowledge Organization, 759–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10745-0_84.
Full textBehera, Sandhyalati, and Mihir Narayan Mohanty. "Classification of EEG Signal Using SVM." In Advances in Electrical Control and Signal Systems, 859–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5262-5_65.
Full textYu, Hwanjo, and Sungchul Kim. "SVM Tutorial — Classification, Regression and Ranking." In Handbook of Natural Computing, 479–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-92910-9_15.
Full textLi, Zhanchuang, Jianmin Jiang, and Guoqiang Xiao. "SVM-Based Classification of Moving Objects." In Communications in Computer and Information Science, 37–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10512-8_5.
Full textHuerta, Ramón, Shankar Vembu, Mehmet K. Muezzinoglu, and Alexander Vergara. "Dynamical SVM for Time Series Classification." In Lecture Notes in Computer Science, 216–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32717-9_22.
Full textConference papers on the topic "SVM classification"
Mandava, Mani Swetha, Devika Jadhav, and Roshan Ramakrishna Naik. "Fault classification using SVM." In 2015 IEEE International Circuits and Systems Symposium (ICSyS). IEEE, 2015. http://dx.doi.org/10.1109/circuitsandsystems.2015.7394056.
Full textCai, Hong, and Yufeng Wang. "Transcriptomic analysis using SVD clustering and SVM classification." In 2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2011. http://dx.doi.org/10.1109/gensips.2011.6169476.
Full textPatil, B., S. Nandyal, and A. Pattanshetty. "Plant classification using SVM classifier." In Third International Conference on Computational Intelligence and Information Technology (CIIT 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.2639.
Full textAlzu’bi, Reem, A. Anushya, Ebtisam Hamed, Eng Abdelnour Al Sha’ar, and B. S. Angela Vincy. "Dates fruits classification using SVM." In INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, MATERIALS AND APPLIED SCIENCE. Author(s), 2018. http://dx.doi.org/10.1063/1.5032040.
Full textDilrukshi, Inoshika, Kasun De Zoysa, and Amitha Caldera. "Twitter news classification using SVM." In 2013 8th International Conference on Computer Science & Education (ICCSE). IEEE, 2013. http://dx.doi.org/10.1109/iccse.2013.6553926.
Full textKadir, Md Eusha, Pritom Saha Akash, Amin Ahsan Ali, Mohammad Shoyaib, and Zerina Begum. "Evidential SVM for binary classification." In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, 2019. http://dx.doi.org/10.1109/icasert.2019.8934772.
Full textEste, Alice, Francesco Gringoli, and Luca Salgarelli. "On-line SVM traffic classification." In 2011 7th International Wireless Communications and Mobile Computing Conference (IWCMC 2011). IEEE, 2011. http://dx.doi.org/10.1109/iwcmc.2011.5982804.
Full textNiaf, Emilie, Remi Flamary, Carole Lartizien, and Stephane Canu. "Handling uncertainties in SVM classification." In 2011 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2011. http://dx.doi.org/10.1109/ssp.2011.5967814.
Full textFrolov, Igor, and Rauf Sadykhov. "Pyramidal algorithm for SVM-classification." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486329.
Full textPatle, A., and D. S. Chouhan. "SVM kernel functions for classification." In 2013 International Conference on Advances in Technology and Engineering (ICATE 2013). IEEE, 2013. http://dx.doi.org/10.1109/icadte.2013.6524743.
Full textReports on the topic "SVM classification"
Carin, Lawrence. ICA Feature Extraction and SVM Classification of FLIR Imagery. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada441506.
Full textMorris, Brendan, David W. Aha, Bryan Auslander, and Kalyan Gupta. Learning and Leveraging Context for Maritime Threat Analysis: Vessel Classification using Exemplar-SVM. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574666.
Full text