Dissertations / Theses on the topic 'SVM classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'SVM classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
MELONI, RAPHAEL BELO DA SILVA. "REMOTE SENSING IMAGE CLASSIFICATION USING SVM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31439@1.
Full textClassificação de imagens é o processo de extração de informação em imagens digitais para reconhecimento de padrões e objetos homogêneos, que em sensoriamento remoto propõe-se a encontrar padrões entre os pixels pertencentes a uma imagem digital e áreas da superfície terrestre, para uma análise posterior por um especialista. Nesta dissertação, utilizamos a metodologia de aprendizado de máquina support vector machines para o problema de classificação de imagens, devido a possibilidade de trabalhar com grande quantidades de características. Construímos classificadores para o problema, utilizando imagens distintas que contém as informações de espaços de cores RGB e HSB, dos valores altimétricos e do canal infravermelho de uma região. Os valores de relevo ou altimétricos contribuíram de forma excelente nos resultados, uma vez que esses valores são características fundamentais de uma região e os mesmos não tinham sido analisados em classificação de imagens de sensoriamento remoto. Destacamos o resultado final, do problema de classificação de imagens, para o problema de identificação de piscinas com vizinhança dois. Os resultados obtidos são 99 por cento de acurácia, 100 por cento de precisão, 93,75 por cento de recall, 96,77 por cento de F-Score e 96,18 por cento de índice Kappa.
Image Classification is an information extraction process in digital images for pattern and homogeneous objects recognition. In remote sensing it aims to find patterns from digital images pixels, covering an area of earth surface, for subsequent analysis by a specialist. In this dissertation, to this images classification problem we employ Support Vector Machines, a machine learning methodology, due the possibility of working with large quantities of features. We built classifiers to the problem using different image information, such as RGB and HSB color spaces, altimetric values and infrared channel of a region. The altimetric values contributed to excellent results, since these values are fundamental characteristics of a region and they were not previously considered in remote sensing images classification. We highlight the final result, for the identifying swimming pools problem, when neighborhood is two. The results have 99 percent accuracy, 100 percent precision, 93.75 percent of recall, 96.77 percent F-Score and 96.18 percent of Kappa index.
Jiang, Fuhua. "SVM-Based Negative Data Mining to Binary Classification." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/cs_diss/8.
Full textSeverini, Jérôme. "Estimation et Classification de Signaux Altimétriques." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0125/document.
Full textAfter having scanned the ocean levels during thirteen years, the french/american satelliteTopex-Poséidon disappeared in 2005. Topex-Poséidon was replaced by Jason-1 in december 2001 and a new satellit Jason-2 is waited for 2008. Several estimation methods have been developed for signals resulting from these satellites. In particular, estimators of the sea height and wave height have shown very good performance when they are applied on waveforms backscattered from ocean surfaces. However, it is a more challenging problem to extract relevant information from signals backscattered from non-oceanic surfaces such as inland waters, deserts or ices. This PhD thesis is divided into two parts : A first direction consists of developing classification methods for altimetric signals in order to recognize the type of surface affected by the radar waveform. In particular, a specific attention will be devoted to support vector machines (SVMs) and functional data analysis for this problem. The second part of this thesis consists of developing estimation algorithms appropriate to altimetric signals obtained after reflexion on non-oceanic surfaces. Bayesian algorithms are currently under investigation for this estimation problem. This PhD is co-supervised by the french society CLS (Collect Localisation Satellite) (seehttp://www.cls.fr/ for more details) which will in particular provide the real altimetric data necessary for this study
Almasiri, osamah A. "SKIN CANCER DETECTION USING SVM-BASED CLASSIFICATION AND PSO FOR SEGMENTATION." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5489.
Full textTarasova, Natalya. "Classification of Hate Tweets and Their Reasons using SVM." Thesis, Uppsala universitet, Avdelningen för datalogi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-275782.
Full textThis study focused on finding the hate tweets posted by the customers of three mobileoperators Verizon, AT&T and Sprint and identifying the reasons for their dissatisfaction. The timelines with a hate tweet were collected and studied for the presence of an explanation. A machine learning approach was employed using four categories: Hate, Reason, Explanatory and Other. The classication was conducted with one-versus-all approach using Support Vector Machines algorithm implemented in a LIBSVM tool. The study resulted in two methodologies: the Naive method (NM) and the Partial Time-line Method (PTM). The Naive Method relied only on the feature space consisting of the most representative words chosen with Akaike Information Criterion. PTM utilized the fact that the majority of the explanations were posted within a one-hour time window of the posting of a hate tweet. We found that the accuracy of PTM is higher than for NM. In addition, PTM saves time and memory by analysing fewer tweets. At the same time this implies a trade-off between relevance and completeness.
Opponent: Kristina Wettainen
Lekic, Sasa, and Kasper Liu. "Intent classification through conversational interfaces : Classification within a small domain." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257863.
Full textNatural language processing och maskininlärning är ämnen som forskas mycket om idag. Dessa områden fortsätter växa och blir allt mer sammanvävda, nu mer än någonsin. Ett område är textklassifikation som är en gren av maskininlärningsapplikationer (ML) inom Natural language processing (NLP).Även om dessa ämnen har utvecklats de senaste åren, finns det fortfarande problem att ha i å tanke. Vissa är relaterade till rå datakraft som krävs för dessa tekniker medans andra problem handlar om mängden data som krävs.Forskningsfrågan i denna avhandling handlar om kunskapsbrist inom maskininlärningtekniker som Word2vec, Bidirectional encoder representations from transformers (BERT) och Support vector machine(SVM) klassificierare kan användas som klassification, givet endast små träningsset. Fortsättningsvis, vet man inte om dessa metoder fungerar på vanliga datorer.För att lösa forskningsproblemet, huvudsyftet för denna avhandling var att utveckla två separata konversationsgränssnitt som använder textklassifikationstekniker. Dessa gränssnitt, give med data, kan känna igen syftet bakom det, med andra ord, klassificera given datamening inom ett litet set av fördefinierade kategorier. Först, utvecklades ett konversationsgränssnitt som använder Word2vec och SVM klassificerare. För det andra, utvecklades ett gränssnitt som använder BERT och SVM klassificerare. Målet med denna avhandling var att avgöra om ett litet dataset kan användas för syftesklassifikation och med vad för träffsäkerhet, och om det kan användas på vanliga datorer.Forskningen i denna avhandling följde en standard tillämpad forskningsmetod. Huvudsyftet uppnåddes och de två konversationsgränssnitten utvecklades. Angående konversationsgränssnittet som använde Word2vec förtränat dataset och SVM klassificerar, visade resultatet att det kan användas för syftesklassifikation till en träffsäkerhet på 60%, och fungerar på vanliga datorer. Angående konversationsgränssnittet som använde BERT och SVM klassificerare, visade resultatet att det inte går att köra det på vanliga datorer. Träningen kördes i över 24 timmar och kraschade efter det.Resultatet visade att det är möjligt att skapa ett konversationsgränssnitt som kan klassificera syften, givet endast ett litet träningsset. Däremot, på grund av det begränsade träningssetet, och konsekvent låg träffsäkerhet, är denna konversationsgränssnitt inte lämplig för viktiga uppgifter, men kan användas för icke kritiska klassifikationsuppdrag.
LI, YUANXUN. "SVM Object Based Classification Using Dense Satellite Imagery Time Series." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233340.
Full textLiu, Wen. "Incremental Learning and Online-Style SVM for Traffic Light Classification." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1216.
Full textNordström, Jesper. "Automated classification of bibliographic data using SVM and Naive Bayes." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-75167.
Full textShaik, Abdul Ameer Basha. "SVM Classification and Analysis of Margin Distance on Microarray Data." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1302618924.
Full textTerrones, Michael. "A precise robotic arm positioning using an SVM classification algorithm." Diss., Online access via UMI:, 2007.
Find full textIncludes bibliographical references.
Wang, Wenjuan. "Optimization algorithms for SVM classification : Applications to geometrical chromosome analysis." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30111/document.
Full textThe genome is highly organized within the cell nucleus. This organization, in particular the localization and dynamics of genes and chromosomes, is known to contribute to gene expression and cell differentiation in normal and pathological contexts. The exploration of this organization may help to diagnose disease and to identify new therapeutic targets. Conformation of chromosomes can be analyzed by distance measurements of distinct fluorescently labeled DNA sites. In this context, the spatial organization of yeast chromosome III was shown to differ between two cell types, MATa and MATa. However, imaging data are subject to noise, due to microscope resolution and the living state of yeast cells. In this thesis, the aim is to develop new classification methods to discriminate two mating types of yeast cells based on distance measurements between three loci on chromosome III aided by estimation the bound of the perturbations. We first address the issue of solving large scale SVM binary classification problems and review state of the art first order optimization stochastic algorithms. To deal with uncertainty, we propose a learning model that adjusts its robustness to noise. The method avoids over conservative situations that can be encountered with worst case robust support vector machine formulations. The magnitude of the noise perturbations that is incorporated in the model is controlled by optimizing a generalization error. No assumption on the distribution of noise is taken. Only rough estimates of perturbations bounds are required. The resulting problem is a large scale bi-level program. To solve it, we propose a bi-level algorithm that performs very cheap stochastic gradient moves and is therefore well suited to large datasets. The convergence is proven for a class of general problems. We present encouraging experimental results confirming that the technique outperforms robust second order cone programming formulations on public datasets. The experiments also show that the extra nonlinearity generated by the uncertainty in the data penalizes the classification of chromosome data and advocates for further research on nonlinear robust models. Additionally, we provide the experimenting results of the bilevel stochastic algorithm used to perform automatic selection of the penalty parameter in linear and non-linear support vector machines. This approach avoids expensive computations that usually arise in k-fold cross validation
Yao, Xiaojun. "Méthodes Non-linéaires (ANNs, SVMs) : applications à la Classification et à la Corrélation des Propriétés Physicochimiques et Biologiques." Paris 7, 2004. http://www.theses.fr/2004PA077182.
Full textHess, Eric. "Ramp Loss SVM with L1-Norm Regularizaion." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3538.
Full textLEITE, VANESSA RODRIGUES COELHO. "AN ANALYSIS OF LITHOLOGY CLASSIFICATION USING SVM, MLP AND ENSEMBLE METHODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21205@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A classificação de litologias e uma tarefa importante na caracterização de reservatorios de petróleo. Um de seus principais objetivos e dar suporte ao planejamento e as atividades de perfuracao de poços. Dessa forma, quanto mais rapidos e eficazes sejam os algoritmos de classificacao, mais confiavel ser a as decisoes tomadas pelos geologos e geofısicos. Esta dissertação analisa os metodos ensemble aplicados a classificacao automática de litologias. Para isso, foi realizada uma comparação entre classificadores individuais (Support Vector Machine e Multilayer Perceptron) e estes mesmos classificadores com métodos Ensemble (Bagging e Adaboost). Assim, concluımos com uma avaliação comparativa entre as técnicas, bem como apresentamos o trade-off em utilizar métodos Ensemble em substituição aos classificadores individuais.
Lithology classification is an important task in oil reservoir characterization, one of its major purposes is to support well planning and drilling activities. Therefore, faster and more effective classification algorithms will increase the speed and reliability of decisions made by geologists and geophysicists. This work analises ensemble methods applied to automatic lithology classification. For this, we performed a comparison between single classifiers (Support Vector Machine and Multilayer Perceptron) and these classifiers with ensemble methods (Bagging and Boost). Thus, we conclude with a comparative evaluation of techniques and present the trade-off in using Ensemble methods to replace single classifiers.
Gidudu, Anthony. "Land cover mapping through optimizing remote sensing data for SVM classification." Doctoral thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/5599.
Full textSupport Vector Machines (SVMs) are a new supervised classification technique that has its roots in statistical learning theory. It has gained popularity in fields such as machine vision, artificial intelligence, digital image processing and more recently remote sensing. The three commonly used SVMs include linear, polynomial and radial basis function (i.e. Gaussian) classifiers.
Johnson, Kurt Eugene. "A NEW CENTROID BASED ALGORITHM FOR HIGH SPEED BINARY CLASSIFICATION." Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1102089037.
Full textCHAVES, ADRIANA DA COSTA FERREIRA. "FUZZY RULES EXTRACTION FROM SUPPORT VECTOR MACHINES (SVM) FOR MULTI-CLASS CLASSIFICATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9191@1.
Full textEste trabalho apresenta a proposta de um novo método para a extração de regras fuzzy de máquinas de vetor suporte (SVMs) treinadas para problemas de classificação. SVMs são sistemas de aprendizado baseados na teoria estatística do aprendizado e apresentam boa habilidade de generalização em conjuntos de dados reais. Estes sistemas obtiveram sucesso em vários tipos de problemas. Entretanto, as SVMs, da mesma forma que redes neurais (RN), geram um modelo caixa preta, isto é, um modelo que não explica o processo pelo qual sua saída é obtida. Alguns métodos propostos para reduzir ou eliminar essa limitação já foram desenvolvidos para o caso de classificação binária, embora sejam restritos à extração de regras simbólicas, isto é, contêm funções ou intervalos nos antecedentes das regras. No entanto, a interpretabilidade de regras simbólicas ainda é reduzida. Deste modo, propõe-se, neste trabalho, uma técnica para a extração de regras fuzzy de SVMs treinadas, com o objetivo de aumentar a interpretabilidade do conhecimento gerado. Além disso, o modelo proposto foi desenvolvido para classificação em múltiplas classes, o que ainda não havia sido abordado até agora. As regras fuzzy obtidas são do tipo se x1 pertence ao conjunto fuzzy C1, x2 pertence ao conjunto fuzzy C2,..., xn pertence ao conjunto fuzzy Cn, então o ponto x = (x1,...,xn) é da classe A. Para testar o modelo foram realizados estudos de caso detalhados com quatro bancos de dados: Íris, Wine, Bupa Liver Disorders e Winconsin Breast Cancer. A cobertura das regras resultantes da aplicação desse modelo nos testes realizados mostrou-se muito boa, atingindo 100% no caso da Íris. Após a geração das regras, foi feita uma avaliação das mesmas, usando dois critérios, a abrangência e a acurácia fuzzy. Além dos testes acima mencionados foi comparado o desempenho dos métodos de classificação em múltiplas classes usados no trabalho.
This text proposes a new method for fuzzy rule extraction from support vector machines (SVMs) trained to solve classification problems. SVMs are learning systems based on statistical learning theory and present good ability of generalization in real data base sets. These systems have been successfully applied to a wide variety of application. However SVMs, as well as neural networks, generates a black box model, i.e., a model which does not explain the process used in order to obtain its result. Some considered methods to reduce this limitation already has been proposed for the binary classification case, although they are restricted to symbolic rules extraction, and they have, in their antecedents, functions or intervals. However, the interpretability of the symbolic generated rules is small. Hence, to increase the linguistic interpretability of the generating rules, we propose a new technique for extracting fuzzy rules of a trained SVM. Moreover, the proposed model was developed for classification in multiple classes, which was not introduced till now. Fuzzy rules obtained are presented in the format if x1 belongs to the fuzzy set C1, x2 belongs to the fuzzy set C2 , … , xn belongs to the fuzzy set Cn , then the point x=(x1, x2, …xn) belongs to class A. For testing this new model, we performed detailed researches on four data bases: Iris, Wine, Bupa Liver Disorders and Wisconsin Breast Cancer. The rules´ coverage resultant of the application of this method was quite good, reaching 100% in Iris case. After the rules generation, its evaluation was performed using two criteria: coverage and accuracy. Besides the testing above, the performance of the methods for multi-class SVM described in this work was evaluated.
Synek, Radovan. "Klasifikace textu pomocí metody SVM." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237229.
Full textViau, Claude. "Multispectral Image Analysis for Object Recognition and Classification." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34532.
Full textVieux, Rémi. "Extraction de Descripteurs Pertinents et Classification pour le Problème de Recherche des Images par le Contenu." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14244/document.
Full textThe explosive development of affordable, high quality image acquisition deviceshas made available a tremendous amount of digital content. Large industrial companies arein need of efficient methods to exploit this content and transform it into valuable knowledge.This PhD has been accomplished in the context of the X-MEDIA project, a large Europeanproject with two major industrial partners, FIAT for the automotive industry andRolls-Royce plc. for the aircraft industry. The project has been the trigger for research linkedwith strong industrial requirements. Although those user requirements can be very specific,they covered more generic research topics. Hence, we bring several contributions in thegeneral context of Content-Based Image Retrieval (CBIR), Indexing and Classification.In the first part of the manuscript we propose contributions based on the extraction ofglobal image descriptors. We rely on well known descriptors from the literature to proposemodels for the indexing of image databases, and the approximation of a user defined categorisation.Additionally, we propose a new descriptor for a CBIR system which has toprocess a very specific image modality, for which traditional descriptors are irrelevant. Inthe second part of the manuscript, we focus on the task of image classification. Industrialrequirements on this topic go beyond the task of global image classification. We developedtwo methods to localize and classify the local content of images, i.e. image regions, usingsupervised machine learning algorithms (Support Vector Machines). In the last part of themanuscript, we propose a model for Content-Based Image Retrieval based on the constructionof a visual dictionary of image regions. We extensively experiment the model in orderto identify the most influential parameters in the retrieval efficiency
Severini, Jerome, Corinne Mailhes, and Jean-Yves Tourneret. "Estimation et Classification des Signaux Altimétriques." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2010. http://tel.archives-ouvertes.fr/tel-00526100.
Full textLecomte, Sébastien. "Classification partiellement supervisée par SVM : application à la détection d’événements en surveillance audio." Thesis, Troyes, 2013. http://www.theses.fr/2013TROY0031/document.
Full textThis thesis addresses partially supervised Support Vector Machines for novelty detection (One-Class SVM). These have been studied to design abnormal audio events detection for supervision of public infrastructures, in particular public transportation systems. In this context, the null hypothesis (“normal” audio signals) is relatively well known (even though corresponding signals can be notably non stationary). Conversely, every “abnormal” signal should be detected and, if possible, clustered with similar signals. Thus, a reference system based on a single model of normal signals is presented, then we propose to use several concurrent One-Class SVM to cluster new data. Regarding the amount of data to process, special solvers have been studied. The proposed algorithms must be real time. This is the reason why we have also investigated algorithms with warm start capabilities. By the study of these algorithms, we have proposed a unified framework for One Class and Binary SVMs, with and without bias. The proposed approach has been validated on a database of real signals. The whole process applied to the monitoring of a subway station has been presented during the final review of the European Project VANAHEIM
Wang, Rui. "Comparisons of Classification Methods in Efficiency and Robustness." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345564802.
Full textAlvarez, Manuela. "Mapping forest habitats in protected areas by integrating LiDAR and SPOT Multispectral Data." Thesis, KTH, Geoinformatik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189199.
Full textMathieu, Bérangère. "Segmentation interactive multiclasse d'images par classification de superpixels et optimisation dans un graphe de facteurs." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30290/document.
Full textImage segmentation is one of the main research topics in image analysis. It is the task of researching a partition into regions, i.e., into sets of connected pixels, meeting a given uniformity criterion. The goal of image segmentation is to find regions corresponding to the objects or the object parts appearing in the image. The choice of what objects are relevant depends on the application context. Manually locating these objects is a tedious but quite simple task. Designing an automatic algorithm able to achieve the same result is, on the contrary, a difficult problem. Interactive segmentation methods are semi-automatic approaches where a user guide the search of a specific segmentation of an image by giving some indications. There are two kinds of methods : boundary-based and region-based interactive segmentation methods. Boundary-based methods extract a single object corresponding to a unique region without any holes. The user guides the method by selecting some boundary points of the object. The algorithm search for a curve linking all the points given by the user, following the boundary of the object and having some intrinsic properties (regular curves are encouraged). Region-based methods group the pixels of an image into sets, by maximizing the similarity of pixels inside each set and the dissimilarity between pixels belonging to different sets. Each set can be composed of one or several connected components and can contain holes. The user guides the method by drawing colored strokes, giving, for each set, some pixels belonging to it. If the majority of region-based methods extract a single object from the background, some algorithms, proposed during the last decade, are able to solve multi-class interactive segmentation problems, i.e., to extract more than two sets of pixels. The main contribution of this work is the design of a new multi-class interactive segmentation method. This algorithm is based on the minimization of a cost function that can be represented by a factor graph. It integrates a supervised learning classification method checking that the produced segmentation is consistent with the indications given by the user, a new regularization term, and a preprocessing step grouping pixels into small homogeneous regions called superpixels. The use of an over-segmentation method to produce these superpixels is a key step in the proposed interactive segmentation method : it significantly reduces the computational complexity and handles the segmentation of images containing several millions of pixels, by keeping the execution time small enough to ensure comfortable use of the method. The second contribution of our work is an evaluation of over-segmentation algorithms. We provide a new dataset, with images of different sizes with a majority of big images. This review has also allowed us to design a new over-segmentation algorithm and to evaluate it
Shantilal. "SUPPORT VECTOR MACHINE FOR HIGH THROUGHPUT RODENT SLEEP BEHAVIOR CLASSIFICATION." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/506.
Full textHersén, Nicklas, and Axel Kennedal. "The Effect of Audio Snippet Locations and Durations on Genre Classification Accuracy Using SVM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228841.
Full textGenre-klassificering baserad på maskininlärning har en mängd användningsområden, exempelvis rekommendationer i streaming- och distributionsplattformar och automatisk taggning av musikbibliotek. På grund av att det inte existerar några exakta objektiva definitioner av specifika genrer är denna typ av automatiskklassificering en subjektiv uppgift. Klassificering med hjälp av maskininlärning försöker att klassificera låtar genom att jämföra så kallade feature vectors. De features som används har en stor påverkan på precisionen av klassificeringen. Denna rapport undersöker om det finns något samband mellan startpositionen och längden av utvalda ljudklipp på precisionen. Flera experiment genomfördes på sex olika musikgenrer, fyra olika startpositioner och åtta längder för ljudklipp. Resultaten visar att startpositionen och längden har en signifikant påverkan på klassificeringsprecisionen.
Rogers, Spencer David. "Support Vector Machines for Classification and Imputation." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3215.
Full textJabali, Aghyad, and Husein Abdelkadir Mohammedbrhan. "Tyre sound classification with machine learning." Thesis, Högskolan i Gävle, Datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36209.
Full textLopez, Marcano Juan L. "Classification of ADHD and non-ADHD Using AR Models and Machine Learning Algorithms." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/73688.
Full textMaster of Science
Huss, Jakob. "Cross Site Product Page Classification with Supervised Machine Learning." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189555.
Full textMoulis, Armand. "Automatic Detection and Classification of Permanent and Non-Permanent Skin Marks." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138132.
Full textNär forensiker försöker identifiera förövaren till ett brott använder de individuella ansiktsmärken när de jämför den misstänkta med förövaren. Dessa ansiktsmärken identifieras och lokaliseras oftast manuellt idag. För att effektivisera denna process, är det önskvärt att detektera ansiktsmärken automatiskt. I rapporten beskrivs en framtagen metod som möjliggör automatiskt detektion och separation av permanenta och icke-permanenta ansiktsmärken. Metoden som är framtagen använder en snabb radial symmetri algoritm som en huvuddel i detektorn. När kandidater av ansiktsmärken har tagits, elimineras alla falska detektioner utifrån deras storlek, form och hårinnehåll. Utifrån studiens resultat visar sig detektorn ha en god känslighet men dålig precision. Eliminationsmetoderna av falska detektioner analyserades och olika attribut användes till klassificeraren. I rapporten kan det fastställas att färgskiftningar på ansiktsmärkena har en större inverkan än formen när det gäller att sortera dem i permanenta och icke-permanenta märken.
Al-Insaif, Sadiq. "Shearlet-Based Descriptors and Deep Learning Approaches for Medical Image Classification." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42258.
Full textŠtechr, Vladislav. "Využití SVM v prostředí finančních trhů." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2016. http://www.nusl.cz/ntk/nusl-241651.
Full textGuernine, Taoufik. "Classification hiérarchique floue basée sur le SVM et son application pour la catégorisation des documents." Mémoire, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/4838.
Full textLin, Tsu-Hui Angel. "Detection of mental task related EEG for brain computer interface implementation (using SVM classification approach)." Master's thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/5182.
Full textBrain computer interface (BCI) technology provides a method of communication and control for people with severe motor disabilities. This thesis explores the application of a Fast Fourier transform and support vector machine (FFT-SVM) to the problem of mental task detection in EEG-based brain computer interface implementation.
TU, SHANSHAN. "Case Influence and Model Complexity in Regression and Classification." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563324139376977.
Full textDanielsson, Benjamin. "A Study on Text Classification Methods and Text Features." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159992.
Full textPouteau, Robin Sylvain. "Étude de la phytogéographie des îles hautes de Polynésie française par classification SVM d'images multi-sources." Polynésie française, 2011. http://www.theses.fr/2011POLF0005.
Full textThe floristic composition of French Polynesian high volcanic islands are characterized by a great spatial heterogeneity. The existing remote sensing-based mapping methods are hardly suitable for such a complexity level. This study aims to adapt these methods in order to yield maps with a maximum accuracy. First, SVM (Support Vector Machines, a promising machine learning algorithm) classification accuracy is compared to classification accuracy of a range of other algorithms to complement the literature. Then, a ground data collection methodology that takes account of the SVM paradigm is described. We distinguish two study models requiring the same tools but dissimilar methodologies to be mapped: dominant species with a characteristic spectral response for which all available source images (multispectral, synthetic aperture RaDAR, environmental proxies) can be merged. For this purpose, we define a selective classification scheme that considers the discriminative properties of each species; And (ii) species found in the forest subcanopy or rare species which cannot be remote sensed. In this case, remote sensing data are used a priori to produce a canopy map that is subsequently staked with a set of environmental proxies to be integrated by a SVM in order to model the ecological niche of species. These methods can lead to a more accurate knowledge of plant distribution across montane tropical forest landscapes
Diddikadi, Abhishek. "Multi Criteria Mapping Based on SVM and Clustering Methods." Master's thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-187132.
Full textWestlinder, Simon. "Video Traffic Classification : A Machine Learning approach with Packet Based Features using Support Vector Machine." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-43011.
Full textHITS, 4707
Morin, Eugène. "Étude de précision et de performance du processus de classification d'images de phytoplancton à l'aide de machines à vecteurs de support." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5405.
Full textLi, Sichu. "Application of Machine Learning Techniques for Real-time Classification of Sensor Array Data." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/913.
Full textZhao, Haitao. "Analyzing TCGA Genomic and Expression Data Using SVM with Embedded Parameter Tuning." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1415629295.
Full textPlis, Kevin A. "The Effects of Novel Feature Vectors on Metagenomic Classification." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1399578867.
Full textAnne, Chaitanya. "Advanced Text Analytics and Machine Learning Approach for Document Classification." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2292.
Full textDo, Cao Tri. "Apprentissage de métrique temporelle multi-modale et multi-échelle pour la classification robuste de séries temporelles par plus proches voisins." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM028/document.
Full textThe definition of a metric between time series is inherent to several data analysis and mining tasks, including clustering, classification or forecasting. Time series data present naturally several characteristics, called modalities, covering their amplitude, behavior or frequential spectrum, that may be expressed with varying delays and at different temporal granularity and localization - exhibited globally or locally. Combining several modalities at multiple temporal scales to learn a holistic metric is a key challenge for many real temporal data applications. This PhD proposes a Multi-modal and Multi-scale Temporal Metric Learning (M2TML) approach for robust time series nearest neighbors classification. The solution is based on the embedding of pairs of time series into a pairwise dissimilarity space, in which a large margin optimization process is performed to learn the metric. The M2TML solution is proposed for both linear and non linear contexts, and is studied for different regularizers. A sparse and interpretable variant of the solution shows the ability of the learned temporal metric to localize accurately discriminative modalities as well as their temporal scales.A wide range of 30 public and challenging datasets, encompassing images, traces and ECG data, that are linearly or non linearly separable, are used to show the efficiency and the potential of M2TML for time series nearest neighbors classification
Lardeux, Cédric. "Apport des données radar polarimétriques pour la cartographie en milieu tropical." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00481850.
Full textFernquist, Johan. "Detection of deceptive reviews : using classification and natural language processing features." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-306956.
Full text