Academic literature on the topic 'Sweetening gas process'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sweetening gas process.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sweetening gas process"

1

Baiesu, Alina Simona, and Marian Popescu. "Advanced Control Solution for a Refinery Gas Sweetening Process." Revista de Chimie 68, no. 8 (2017): 1847–53. http://dx.doi.org/10.37358/rc.17.8.5778.

Full text
Abstract:
Gas sweetening unit, also known as acid gas removal unit, is a wide used unit in refineries and petrochemical plants and refers to a group of processes that use different amines such DiEthanolAmine (DEA) to remove the hydrogen sulfide (H2S) from gases, in order to use them as fuel to different furnaces from other processing units. If the hydrogen sulfide is not well removed, will lead to furnaces tubular corrosion and therefore will generate loss in refractory properties. Also, the emission values of the exhaust gases will not be in accordance with the environmental regulations. The paper outlines the main results obtained by authors concerning the advanced control solution for a refinery gas sweetening unit and contains three parts. The first part outlines the results of the dynamic gas sweetening process investigation using HYSYS� simulation software. The second part presents the proposed structure of the advanced control system and the third part outlines the results obtained using the control structure in order to remove as good as possible the H2S content from residual gases.
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Yunhan, and Xuezhong He. "Process Simulation and Cost Evaluation of Carbon Membranes for CO2 Removal from High-Pressure Natural Gas." Membranes 8, no. 4 (2018): 118. http://dx.doi.org/10.3390/membranes8040118.

Full text
Abstract:
Natural gas sweetening is required to remove the acid gas CO2 to meet gas grid specifications. Membrane technology has a great potential in this application compared to the state-of-the-art amine absorption technology. Carbon membranes are of particular interest due to their high CO2/CH4 selectivity of over 100. In order to document the advantages of carbon membranes for natural gas (NG) sweetening, HYSYS simulation and cost evaluation were conducted in this work. A two-stage carbon membrane process with recycling in the second stage was found to be technically feasible to achieve >98% CH4 with <2% CH4 loss. The specific natural gas processing cost of 1.122 × 10−2 $/m3 sweet NG was estimated at a feed pressure of 90 bar, which was significantly dependent on the capital-related cost. Future work on improving carbon membrane performance is required to increase the competitiveness of carbon membranes for natural gas sweetening.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghorbani, Asma, Behrouz Bayati, Teresa Poerio, et al. "Application of NF Polymeric Membranes for Removal of Multicomponent Heat-Stable Salts (HSS) Ions from Methyl Diethanolamine (MDEA) Solutions." Molecules 25, no. 21 (2020): 4911. http://dx.doi.org/10.3390/molecules25214911.

Full text
Abstract:
This study presents an efficient and scalable process for removing the heat-stable salts (HSS) ions from amine solution while recovering methyl diethanolamine (MDEA) solution for its reuse in gas sweetening plants. The presence of HSS in the amine solution causes the loss of solvent capacity, foaming, fouling, and corrosion in gas sweetening units so their removal is crucial for a more well-performing process. Furthermore, the recovery of the amine solution can make the sweetening step a more sustainable process. In this study, for the first time, the removal of a multicomponent mixture of HSS from MDEA solution was investigated via a nanofiltration process using flat-sheet NF-3 membranes. The impact of operating parameters on salts and amine rejection, and flux, including the operating pressure, HSS ions concentration, and MDEA concentration in the feed solution was investigated. Results based on the nanofiltration of an amine stream with the same composition (45 wt.% MDEA solution) as that circulating in a local gas refinery (Ilam Gas refinery), demonstrated a removal efficiency of HSS ions in the range from 75 to 80% and a MDEA rejection of 0% indicating the possibility of reusing this stream in the new step of gas sweetening.
APA, Harvard, Vancouver, ISO, and other styles
4

Mozafari, Ahmad, Mohammad Javad Azarhoosh, Seyed Ebrahim Mousavi, Tahereh Khaghazchi, and Maryam Takht Ravanchi. "Amine–membrane hybrid process economics for natural gas sweetening." Chemical Papers 73, no. 7 (2019): 1585–603. http://dx.doi.org/10.1007/s11696-019-00709-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abdulrahman, Ribwar K., and Mohammed H. S. Zangana. "The Effects of Amine Type and Lean Amine Temperature on Gas Sweetening Processes." ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 8, no. 2 (2020): 78–81. http://dx.doi.org/10.14500/aro.10738.

Full text
Abstract:
In the North Gas Company (NGC) in Kirkuk, Iraq, sour gas stream is loaded with considerable amounts of H2S and CO2 of 2.95% and 2.54%, respectively. A DEA amine system is currently used to reduce these sour component concentrations below 5 ppm and 2% for H2S and CO2, respectively. This study used Bryan Research and Engineering’s ProMax® process simulation software to optimize this amine sweetening system by adopting other amine types and blends, such as methyldiethanolamine (MDEA). It could be argued that a 50 wt% MDEA solution circulated at 414 m3/h was determined to be the optimum operating conditions. This design met sweet gas specifications and minimized the reboiler duty to 38 MW, 30.9% reduction in steam consumption. The experimental simulation work is also examined the effects of lean solvent temperature on the gas sweetening process efficiency and performance and find out that the lean amine temperature within the range of 43–48°C in all sceneries give acceptable sweetening results.
APA, Harvard, Vancouver, ISO, and other styles
6

Ochieng, Richard, Abdallah S. Berrouk, and Ali Elkamel. "Multiobjective Optimization of a Benfield HiPure Gas Sweetening Unit." Journal of Industrial Mathematics 2013 (October 27, 2013): 1–11. http://dx.doi.org/10.1155/2013/260918.

Full text
Abstract:
We show how a multiobjective bare-bones particle swarm optimization can be used for a process parameter tuning and performance enhancement of a natural gas sweetening unit. This has been made through maximization of hydrocarbon recovery and minimization of the total energy of the process as the two objectives of the optimization. A trade-off exists between these two objectives as illustrated by the Pareto front. This algorithm has been applied to a sweetening unit that uses the Benfield HiPure process. Detailed models of the natural gas unit are developed in ProMax process simulator and integrated to the multi-objective optimization developed in visual basic environment (VBA). In this study, the solvent circulation rates, stripper pressure and reboiler duties are considered as the decision variables while hydrogen sulfide and carbon dioxide concentrations in the sweetened gas are considered as process constraints. The upper and lower bounds of the decision variables are obtained through a parametric sensitivity analysis of the models. The Pareto sets show a significant improvement in hydrocarbon recovery and a decent reduction in the heat consumption of the process.
APA, Harvard, Vancouver, ISO, and other styles
7

Sharifi, Abdolkarim, and Elham Omidbakhsh Amiri. "Effect of the Tower Type on the Gas Sweetening Process." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 72, no. 4 (2017): 24. http://dx.doi.org/10.2516/ogst/2017018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berrouk, Abdallah Sofiane, and Richard Ochieng. "Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation." Fuel Processing Technology 127 (November 2014): 20–25. http://dx.doi.org/10.1016/j.fuproc.2014.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Weida, Yu Zhuang, Linlin Liu, Lei Zhang, and Jian Du. "Economic Evaluation and Environmental Assessment of the Shale Gas Sweetening Process." Chemical Engineering & Technology 42, no. 4 (2019): 753–60. http://dx.doi.org/10.1002/ceat.201800554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bae, Hyung Kun, Sung Young Kim, and Bomsock Lee. "Simulation of CO2 removal in a split-flow gas sweetening process." Korean Journal of Chemical Engineering 28, no. 3 (2011): 643–48. http://dx.doi.org/10.1007/s11814-010-0446-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sweetening gas process"

1

Brahem, Rim. "Étude de l'effet d'échelle sur les plateaux à clapets de colonnes d'absorption." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/10849/1/brahem.pdf.

Full text
Abstract:
Une demande mondiale grandissante en gaz naturel pousse à exploiter des ressources de plus en plus acides (concentration des gaz acides pouvant atteindre 20% en volume). Le procédé de traitement de gaz par des solutions d'amines, existant depuis plus de 50 ans, est le plus répandu pour éliminer les composants acides (CO2, H2S, mercaptans…). Ce procédé comporte deux unités principales : une colonne d'absorption gaz liquide à contre-courant pour la séparation des composants acides du gaz et une colonne de régénération du solvant chargé. On recherche une optimisation du design, en particulier de l'absorbeur, en vue de réduire les couts et d'augmenter l'efficacité. Dans la colonne d'absorption, le transfert de matière s'avère limitant par rapport à la thermodynamique. Ainsi l'optimisation du design de cette unité passe par une maitrise des paramètres hydrodynamiques et de transfert des contacteurs utilisés dans les colonnes. Plusieurs études existantes sur unités pilotes proposent des corrélations majoritairement empiriques pour les paramètres critiques de dimensionnement. Par ailleurs leur extrapolation à l'échelle industrielle montre une divergence importante entre les différentes corrélations. Une meilleure compréhension des phénomènes physiques ainsi qu'une identification des paramètres importants pour l'extrapolation est donc requise. Dans ce contexte, la présente thèse a comme objectif principal la compréhension de l'effet de changement d'échelle sur les paramètres hydrodynamiques et l'aire interfaciale d'échange dans le cas des plateaux à clapets. La méthodologie employée dans cette étude se base sur une complémentarité entre une étude expérimentale et le potentiel offert par les outils de simulation numérique. L'étude expérimentale s'est effectuée sur deux colonnes pilotes rectangulaires transparentes ayant deux longueurs de passe différentes. Des mesures de pertes de charge, de hauteur de l'émulsion, de rétention liquide et d'aire interfaciale d'échange ont été réalisées. Des mesures innovantes de profils de l'émulsion gaz-liquide sur un plateau sont également présentées. Les différents résultats expérimentaux ont permis la proposition d'un diagramme hydrodynamique ainsi qu'une compréhension et une analyse phénoménologique cohérente de l'écoulement sur une large gamme de vitesses liquide et gaz. La comparaison entre les deux colonnes a permis, en premier lieu, l'identification des vitesses liquide et gaz pertinentes pour l'extrapolation. Des similitudes de comportement ont été trouvées pour certains paramètres (rétention liquide moyenne, perte de charge clapets, aire interfaciale) offrant ainsi la possibilité de proposer des corrélations basées sur une description phénoménologique dépendant essentiellement de deux nombres adimensionnels que sont le nombre de Froude (comparant l’inertie gaz au poids liquide sur le plateau) et le paramètre de l’écoulement (comparant les deux inerties liquide et gaz). En revanche une influence notable de la longueur de passe est relevée. En particulier des profils de l'émulsion nettement différents entre la petite et la grande colonne ont été observés. Des risques d'extrapolation sont par conséquent pointés dans cette thèse notamment pour des paramètres tels que la hauteur de liquide clair ou la hauteur moyenne de l’émulsion. Dans une deuxième partie, l'intérêt a été porté sur la simulation numérique des écoulements sur les plateaux. L'importance et la complexité de la modélisation du terme d'interaction entre les deux phases sont soulignées. Une approche proposée dans la littérature a été testée et montre la possibilité de l'emploi des simulations CFD comme outil pour une meilleure compréhension des comportements locaux. En outre une approche de modélisation nouvelle est proposée dans une optique de valorisation des outils numériques pour l'extrapolation.
APA, Harvard, Vancouver, ISO, and other styles
2

Kheirinik, M., Nejat Rahmanian, M. Farsi, and M. Garmsiri. "Revamping of an acid gas absorption unit: An industrial case study." 2018. http://hdl.handle.net/10454/16223.

Full text
Abstract:
Yes
This work evaluates the efficiency of the aqueous mixture of Methyl Diethanolamine (MDEA) and Diethanolamine (DEA) at various mass concentrations to remove CO2 and H2S from natural gas in an industrial sweetening unit in Fajr Jam Gas Refining Company located in the south of Iran and gives recommendations for modifying the process. The sweetening unit includes absorber and desorption towers, flash drum, lean and rich amine exchanger, kettle type reboiler and a reflux drum. The considered process is simulated by Promax simulator (version 3.2) taking into account operational constraints and sustainability of the environment. The validity of simulation has been evaluated by comparison between simulation results and the plant data. The main objective of this work is the modification of natural gas sweetening unit to achieve lower energy consumption. Thus, the effect of amine circulating rate and MDEA to DEA ratio on steam consumption in the regeneration tower, CO2 and H2S concentration in the treated gas, and the acid gas loadings have been investigated. Therefore, substitution of DEA solvent in the unit with the aqueous mixture of DEA and MDEA is proposed. In the examined cases, the mass concentration of MDEA and DEA lies between 15 and 45 wt% and 0–30 wt%, respectively, with the reference cases having MDEA 0 wt% and DEA 31.6 wt%. The results show that in the proposed cases of alternative mixtures including cases 1 (MDEA15 wt% and DEA 30 wt%), 2 (MDEA 20 wt% and DEA 25 wt%), and 3 (MDEA 25 wt% and DEA 20 wt%) the amount of reduction in amine circulation rate are between 11.1%v/v and 19.4%v/v compared to the original amine circulation rate. Likewise, steam consumption decreases between 24.4 %wt/wt and 27 %wt/wt. Influence of anti-foam injection for the different cases were also studied and it was found that anti-foam with the concentration of 5000 ppmv is more suitable for the optimum operation and is a more cost effective.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sweetening gas process"

1

Tikadar, Debasish, Chandan Guria, and Ashish M. Gujarathi. "Simultaneous Optimization Aspects in Industrial Gas Sweetening Process for Sustainable Development." In Materials Physics and Chemistry. Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780367816094-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lock, Serene Sow Mun, Kok Keong Lau, Azmi Mohd Shariff, and Yin Fong Yeong. "Joule Thomson Effect in a Two-dimensional Multi-component Radial Crossflow Hollow Fiber Membrane Applied for CO2Capture in Natural Gas Sweetening." In Process Systems and Materials for CO2Capture. John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119106418.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Santiago, Jorge F. Palomeque, Diego Javier Guzmán Lucero, and Javier Guzmán Pantoja. "Effect of the Transport Properties on the Design of a Plant and on the Economy of the Sweetening Process of Natural Gas Using Membranes." In Membranes. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45315-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elms, René D. "Modeling of Sour Gas Sweetening With MDEA." In Chemical Engineering Process Simulation. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803782-9.00010-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Shuang, Yushi Deng, Kylie Webb, et al. "Sour Gas Sweetening Technologies for Distributed Resources – A Process Simulation Study." In Computer Aided Chemical Engineering. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-823377-1.50248-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Halder, Pobitra, Savankumar Patel, Sazal Kundu, Biplob Pramanik, Rajarathinam Parthasarathy, and Kalpit Shah. "Potential of ionic liquid applications in natural gas/biogas sweetening and liquid fuel cleaning process." In Bioenergy Resources and Technologies. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822525-7.00001-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Shivom, Gade Pandu Rangaiah, and François Maréchal. "Integrated Multi-Objective Differential Evolution and its Application to Amine Absorption Process for Natural Gas Sweetening." In Differential Evolution in Chemical Engineering. World Scientific, 2017. http://dx.doi.org/10.1142/9789813207523_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Shivom, Gade Pandu Rangaiah, and François Maréchal. "Multi-Objective Optimization Programs and their Application to Amine Absorption Process Design for Natural Gas Sweetening." In Multi-Objective Optimization. World Scientific, 2017. http://dx.doi.org/10.1142/9789813148239_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sweetening gas process"

1

Osman, Khaled W., and Manicka Vasagam. "Gas Sweetening Process - Problems And Remedial Measures." In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/78569-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pandey, Manoj. "Process Optimization in Gas Sweetening Unit - A Case Study." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2005. http://dx.doi.org/10.2523/iptc-10735-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Xiaohua, Kun Zhang, Haihong Tang, Tian Wang, and Liping Yang. "Dynamic Subspace Models for High-Sulfur Gas Sweetening Process Monitoring." In 2017 10th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2017. http://dx.doi.org/10.1109/iscid.2017.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhatia, Kishan, and Timothy M. Brown. "Examination of Field Data From a New Gas Sweetening Process." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/15456-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van Ham, N., J. Piket, and J. Scoli. "A Practical And Economic Implementation Of Solvent Gas Sweetening Process." In Technical Meeting / Petroleum Conference of The South Saskatchewan Section. Petroleum Society of Canada, 1995. http://dx.doi.org/10.2118/95-132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rafati, Navid. "A Novel Low-Cost Process for Sour Gas Sweetening and NGL Recovery." In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/197269-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oshinowo, Lanre, Faisal Said, Yahya Bokhedaim, Khalid Suwailem, Mishar Paul, and Abdulrahman Methn. "Multiphase Flow Simulation to Estimate Erosion/Corrosion Potential in Gas Sweetening Process Piping." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2020. http://dx.doi.org/10.2523/iptc-19681-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elias, Ramon, and Mason M. Medizade. "Optimization of Associated Gas Sweetening Process in a Steam Injection Project Using Fluid Simulation." In SPE Western Regional Meeting. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/180417-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdulrahman, R. K., M. H. S. Zangana, K. S. Ali, and J. C. Slagle. "Utilizing mixed amines in gas sweetening process: A Kirkuk field case study and simulation." In 2017 International Conference on Environmental Impacts of the Oil and Gas Industries: Kurdistan Region of Iraq as a Case Study (EIOGI). IEEE, 2017. http://dx.doi.org/10.1109/eiogi.2017.8267616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abdulrahman, R. K., and I. M. Sebastine. "Natural gas sweetening process simulation and optimization: a case study of the Khurmala field in Iraqi Kurdistan." In PETROLEUM 2012. WIT Press, 2012. http://dx.doi.org/10.2495/pmr120041.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sweetening gas process"

1

Skone, Timothy J. Natural Gas Sweetening, Amine Process Acid Gas Removal. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1509097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography