Journal articles on the topic 'Swirl combustor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Swirl combustor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pan, J. F., Z. Y. Hou, Y. X. Liu, A. K. Tang, J. Zhou, X. Shao, Z. H. Pan, and Q. Wang. "Design and working performance study of a novel micro parallel plate combustor with two nozzles for micro thermophotovotaic system." Thermal Science 19, no. 6 (2015): 2185–94. http://dx.doi.org/10.2298/tsci141109069p.
Full textDurbin, M. D., M. D. Vangsness, D. R. Ballal, and V. R. Katta. "Study of Flame Stability in a Step Swirl Combustor." Journal of Engineering for Gas Turbines and Power 118, no. 2 (April 1, 1996): 308–15. http://dx.doi.org/10.1115/1.2816592.
Full textBarmina, I., R. Valdmanis, and M. Zaķe. "Control of the Development of Swirling Airflow Dynamics and Its Impact on Biomass Combustion Characteristics." Latvian Journal of Physics and Technical Sciences 54, no. 3 (June 27, 2017): 30–39. http://dx.doi.org/10.1515/lpts-2017-0018.
Full textHwang, Donghyun, and Kyubok Ahn. "Experimental Study on Dynamic Combustion Characteristics in Swirl-Stabilized Combustors." Energies 14, no. 6 (March 14, 2021): 1609. http://dx.doi.org/10.3390/en14061609.
Full textSivasegaram, S., and J. H. Whitelaw. "Combustion Oscillations in Dump Combustors with a Constricted Exit." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 202, no. 3 (May 1988): 205–10. http://dx.doi.org/10.1243/pime_proc_1988_202_108_02.
Full textAnand, M. S., and F. C. Gouldin. "Combustion Efficiency of a Premixed Continuous Flow Combustor." Journal of Engineering for Gas Turbines and Power 107, no. 3 (July 1, 1985): 695–705. http://dx.doi.org/10.1115/1.3239791.
Full textYilmaz, Ilker, Harun Yilmaz, and Omer Cam. "An experimental study on premixed CNG/H2/CO2 mixture flames." Open Engineering 8, no. 1 (March 13, 2018): 32–40. http://dx.doi.org/10.1515/eng-2018-0003.
Full textSharma, N. Y., and S. K. Som. "Influence of fuel volatility on combustion and emission characteristics in a gas turbine combustor at different inlet pressures and swirl conditions." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 216, no. 3 (May 1, 2002): 257–68. http://dx.doi.org/10.1243/095765002320183577.
Full textMahjoub, Mustafa, Aleksandar Milivojevic, Vuk Adzic, Marija Zivkovic, Vasko Fotev, and Miroljub Adzic. "Numerical analysis of lean premixed combustor fueled by propane-hydrogen mixture." Thermal Science 21, no. 6 Part A (2017): 2599–608. http://dx.doi.org/10.2298/tsci160717131m.
Full textKang, D. M., F. E. C. Culick, and A. Ratner. "Combustion dynamics of a low-swirl combustor." Combustion and Flame 151, no. 3 (November 2007): 412–25. http://dx.doi.org/10.1016/j.combustflame.2007.07.017.
Full textKlose, G., R. Schmehl, R. Meier, G. Maier, R. Koch, S. Wittig, M. Hettel, W. Leuckel, and N. Zarzalis. "Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 817–23. http://dx.doi.org/10.1115/1.1377010.
Full textRan, Jing Yu, Li Juan Liu, Chai Zuo Li, and Li Zhang. "Numerical Study on Optimum Designing of the Air Distribution Structure of a New Cyclone Combustor." Advanced Materials Research 347-353 (October 2011): 3005–14. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3005.
Full textKasani, Adam, Mazlan Abdul Wahid, Ahmad Dairobi Ghazali, and Mohammed Bashir Abdulrahman. "The Effects of Multiple Swirl Generator Inlets Circumferential Distribution to a Liquid Fuelled Ultra-High Swirl Flameless Combustion Characteristics." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 76, no. 2 (October 23, 2020): 65–74. http://dx.doi.org/10.37934/arfmts.76.2.6574.
Full textGarland, R. V., and P. W. Pillsbury. "Status of Topping Combustor Development for Second-Generation Fluidized Bed Combined Cycles." Journal of Engineering for Gas Turbines and Power 114, no. 1 (January 1, 1992): 126–31. http://dx.doi.org/10.1115/1.2906294.
Full textHasini, Hasril, Norshah Hafeez Shuaib, and Wan Ahmad Fahmi Wan Abdullah. "CFD Analysis of Temperature Distribution in Can-Type Combustor Firing Synthetic Gas." Applied Mechanics and Materials 393 (September 2013): 741–46. http://dx.doi.org/10.4028/www.scientific.net/amm.393.741.
Full textJeong, Hwanghui, and Keeman Lee. "Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor." Journal of the Korean Society of Propulsion Engineers 20, no. 4 (August 1, 2016): 40–49. http://dx.doi.org/10.6108/kspe.2016.20.4.040.
Full textPopescu, F., R. A. Mahu, N. A. Antonescu, and I. V. Ion. "CFD prediction of combustion in a swirl combustor." IOP Conference Series: Materials Science and Engineering 444 (November 29, 2018): 082009. http://dx.doi.org/10.1088/1757-899x/444/8/082009.
Full textHuang, Ying, and Vigor Yang. "Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor." Proceedings of the Combustion Institute 30, no. 2 (January 2005): 1775–82. http://dx.doi.org/10.1016/j.proci.2004.08.237.
Full textYi, Tongxun, and Ephraim J. Gutmark. "Combustion Instabilities and Control of a Multiswirl Atmospheric Combustor." Journal of Engineering for Gas Turbines and Power 129, no. 1 (January 22, 2006): 31–37. http://dx.doi.org/10.1115/1.2181595.
Full textOnuma, Yoshiaki, Masaharu Morikawa, Junichi Kimura, Shigeto Nakagawa, and Tatsuya Ichihashi. "Fuel-Lean Premixed Combustion by a Swirl-Flow Combustor." Transactions of the Japan Society of Mechanical Engineers Series B 61, no. 584 (1995): 1534–39. http://dx.doi.org/10.1299/kikaib.61.1534.
Full textLiu, Yin Li, and Hao Tang. "Numerical Study on the Interaction Mechanism between Swirl and Reverse Flow Rate in a Twin Swirl Combustor." Advanced Materials Research 960-961 (June 2014): 341–48. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.341.
Full textYu, Han, Jianqin Suo, Pengfei Zhu, and Longxi Zheng. "The Characteristic of Flow Field and Emissions of a Concentric Staged Lean Direct Injection (LDI) Combustor." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 36, no. 5 (October 2018): 816–23. http://dx.doi.org/10.1051/jnwpu/20183650816.
Full textAoki, Katsumi, and Yasuki Nakayama. "Flow characteristics of swirl type combustor." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 7, no. 26 (1987): 363–66. http://dx.doi.org/10.3154/jvs1981.7.363.
Full textAoki, Katsumi, and Yasuki Nakayama. "Flow characteristics of swirl type combustor." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 7, Supplement (1987): 127–30. http://dx.doi.org/10.3154/jvs1981.7.supplement_127.
Full textGrinstein, Fernando F., Ted R. Young, Ephraim J. Gutmark, Guoqiang Li, George Hsiao, and Hukam C. Mongia. "Flow dynamics in a swirl combustor." Journal of Turbulence 3 (January 2002): N30. http://dx.doi.org/10.1088/1468-5248/3/1/030.
Full textDurbin, M. D., and D. R. Ballal. "Studies of Lean Blowout in a Step Swirl Combustor." Journal of Engineering for Gas Turbines and Power 118, no. 1 (January 1, 1996): 72–77. http://dx.doi.org/10.1115/1.2816552.
Full textGiani, Claudio, and Derek Dunn-Rankin. "Miniature Fuel Film Combustor: Swirl Vane Design and Combustor Characterization." Combustion Science and Technology 185, no. 10 (October 3, 2013): 1464–81. http://dx.doi.org/10.1080/00102202.2013.804181.
Full textFeitelberg, Alan S., Michael D. Starkey, Richard B. Schiefer, Roointon E. Pavri, Matt Bender, John L. Booth, and Gordon R. Schmidt. "Performance of a Reduced NOx Diffusion Flame Combustor for the MS5002 Gas Turbine." Journal of Engineering for Gas Turbines and Power 122, no. 2 (January 3, 2000): 301–6. http://dx.doi.org/10.1115/1.483217.
Full textKim, Jonghyun, and Jungsoo Park. "Conceptual Approach to Combustor Nozzle and Reformer Characteristics for Micro-Gas Turbine with an On-Board Reforming System: A Novel Thermal and Low Emission Cycle." Sustainability 12, no. 24 (December 17, 2020): 10558. http://dx.doi.org/10.3390/su122410558.
Full textStone, C., and S. Menon. "Swirl control of combustion instabilities in a gas turbine combustor." Proceedings of the Combustion Institute 29, no. 1 (January 2002): 155–60. http://dx.doi.org/10.1016/s1540-7489(02)80024-4.
Full textIkeda, Yuji, Naoki Yamada, Tsuyoshi Nakajima, Masataka Ohta, Mitsuru Inada, and Shigemi Nandai. "Spray combustion characteristics in a highly pressurized swirl-stabilized combustor." Proceedings of the Combustion Institute 29, no. 1 (January 2002): 853–59. http://dx.doi.org/10.1016/s1540-7489(02)80109-2.
Full textChoi, Jeongan, Rajavasanth Rajasegar, Qili Liu, Tonghun Lee, and Jihyung Yoo. "Jet A Combustion in a Mesoscale Swirl-Stabilized Combustor Array." Energy & Fuels 35, no. 13 (June 14, 2021): 10796–804. http://dx.doi.org/10.1021/acs.energyfuels.1c00707.
Full textKinoshita, Y., T. Oda, and J. Kitajima. "Research on a Methane-Fueled Low NOx Combustor for a Mach 3 Supersonic Transporter Turbojet Engine." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 787–95. http://dx.doi.org/10.1115/1.1377009.
Full textUmeh, Chukwueloka O. U., Zvi Rusak, and Ephraim Gutmark. "Vortex Breakdown in a Swirl-Stabilized Combustor." Journal of Propulsion and Power 28, no. 5 (September 2012): 1037–51. http://dx.doi.org/10.2514/1.b34377.
Full textSarkar, Soumalya, Satyanarayanan R. Chakravarthy, Vikram Ramanan, and Asok Ray. "Dynamic data-driven prediction of instability in a swirl-stabilized combustor." International Journal of Spray and Combustion Dynamics 8, no. 4 (July 8, 2016): 235–53. http://dx.doi.org/10.1177/1756827716642091.
Full textGHAFFARPOUR, Mohammad, and Alireza NOORPOOR. "Effects of Swirl Flow on Spray Characteristics in a Swirl-Stabilized Combustor." Journal of Fluid Science and Technology 3, no. 7 (2008): 906–20. http://dx.doi.org/10.1299/jfst.3.906.
Full textV., Kirubakaran, and David Bhatt. "Experimental and numerical prediction of lean blowout limits for micro gas turbine combustor." Aircraft Engineering and Aerospace Technology 93, no. 4 (April 8, 2021): 607–14. http://dx.doi.org/10.1108/aeat-04-2020-0066.
Full textSom, S. K., S. S. Mondal, and S. K. Dash. "Energy and Exergy Balance in the Process of Pulverized Coal Combustion in a Tubular Combustor." Journal of Heat Transfer 127, no. 12 (July 25, 2005): 1322–33. http://dx.doi.org/10.1115/1.2101860.
Full textKim, Jong-Chan, Won-Chul Jung, Ji-Seok Hong, and Hong-Gye Sung. "The Effects of Turbulent Burning Velocity Models in a Swirl-Stabilized Lean Premixed Combustor." International Journal of Turbo & Jet-Engines 35, no. 4 (December 19, 2018): 365–72. http://dx.doi.org/10.1515/tjj-2016-0053.
Full textV., Kirubakaran, and Naren Shankar R. "Prediction of lean blowout performance on variation of combustor inlet area ratio for micro gas turbine combustor." Aircraft Engineering and Aerospace Technology 93, no. 5 (July 9, 2021): 915–24. http://dx.doi.org/10.1108/aeat-02-2021-0042.
Full textAmmar, Nader R., and Ahmed I. Farag. "CFD Modeling of Syngas Combustion and Emissions for Marine Gas Turbine Applications." Polish Maritime Research 23, no. 3 (September 1, 2016): 39–49. http://dx.doi.org/10.1515/pomr-2016-0030.
Full textJang Munseok, 강기중, and 이용호. "A Study of Combustion Instability Mode in a Dual Swirl Combustor." Journal of the Korean Society of Mechanical Technology 19, no. 5 (October 2017): 592–99. http://dx.doi.org/10.17958/ksmt.19.5.201710.592.
Full textLee, J. K., C. G. Hu, Y. S. Shin, and H. S. Chun. "Combustion characteristics of a two-stage swirl-flow fluidized bed combustor." Canadian Journal of Chemical Engineering 68, no. 5 (October 1990): 824–30. http://dx.doi.org/10.1002/cjce.5450680513.
Full textPeng, Lei, and Jian Zhang. "Simulation of turbulent combustion and NO formation in a swirl combustor." Chemical Engineering Science 64, no. 12 (June 2009): 2903–14. http://dx.doi.org/10.1016/j.ces.2009.03.001.
Full textKim, Kyu Tae. "Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor." Combustion and Flame 171 (September 2016): 137–51. http://dx.doi.org/10.1016/j.combustflame.2016.06.003.
Full textAgwu, Ogbonnaya, and Agustin Valera-Medina. "Diesel/syngas co-combustion in a swirl-stabilised gas turbine combustor." International Journal of Thermofluids 3-4 (May 2020): 100026. http://dx.doi.org/10.1016/j.ijft.2020.100026.
Full textKurosaka, Takuya, Shinga Masuda, and Hiroshi Gotoda. "Attenuation of thermoacoustic combustion oscillations in a swirl-stabilized turbulent combustor." Chaos: An Interdisciplinary Journal of Nonlinear Science 31, no. 7 (July 1, 2021): 073121. http://dx.doi.org/10.1063/5.0045127.
Full textFooladgar, Ehsan, and C. K. Chan. "Large Eddy Simulation of a Swirl-Stabilized Pilot Combustor from Conventional to Flameless Mode." Journal of Combustion 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/8261560.
Full textVanoverberghe, K. P., E. V. Van den Bulck, M. J. Tummers, and W. A. Hu¨bner. "Multiflame Patterns in Swirl-Driven Partially Premixed Natural Gas Combustion." Journal of Engineering for Gas Turbines and Power 125, no. 1 (December 27, 2002): 40–45. http://dx.doi.org/10.1115/1.1520159.
Full textVengadesan, S., and C. Sony. "Enhanced vortex stability in trapped vortex combustor." Aeronautical Journal 114, no. 1155 (May 2010): 333–37. http://dx.doi.org/10.1017/s000192400000378x.
Full text