Academic literature on the topic 'Swirl tube'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Swirl tube.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Swirl tube"
Huang, Wei Jun, and Qin Zhang. "Swirl-Based Non-Contact Method of Cell Orientation Control." Key Engineering Materials 609-610 (April 2014): 660–65. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.660.
Full textBrundrett, E. "Prediction of Airflow With Swirl in Perforated Polyethylene Tubes." Journal of Fluids Engineering 112, no. 4 (December 1, 1990): 447–54. http://dx.doi.org/10.1115/1.2909424.
Full textSparrow, E. M., N. T. Littlejohn, J. M. Gorman, and J. P. Abraham. "Mass Transfer and Particle Separation by Swirl-Chamber and Swirl-Tube Devices." Numerical Heat Transfer, Part A: Applications 64, no. 8 (October 15, 2013): 611–20. http://dx.doi.org/10.1080/10407782.2013.790276.
Full textShi, Hongbo, and Petr Nikrityuk. "The Influence of Inflow Swirl on Cavitating and Mixing Processes in a Venturi Tube." Fluids 5, no. 4 (September 30, 2020): 170. http://dx.doi.org/10.3390/fluids5040170.
Full textPeng, Weiming, Alex C. Hoffmann, and Huub Dries. "Separation characteristics of swirl-tube dust separators." AIChE Journal 50, no. 1 (January 2004): 87–96. http://dx.doi.org/10.1002/aic.10008.
Full textIsmail, Nurhasanah, Wirachman Wisnoe, and Muhammad Fairuz Remeli. "Experimental Investigation of Orifice Diameter, Swirl Generator and Conical Valve Shape to the Cooling Performance of Ranque-Hilsch Vortex Tube." Applied Mechanics and Materials 510 (February 2014): 174–78. http://dx.doi.org/10.4028/www.scientific.net/amm.510.174.
Full textGao, Guang Cai, Jian Jun Wang, and You Hai Jin. "Numerical Study of the Gas Flow in the Swirl Tube." Advanced Materials Research 550-553 (July 2012): 3194–200. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.3194.
Full textKim, Seung-Jun, Yong Cho, and Jin-Hyuk Kim. "Effect of Air Injection on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model." Processes 9, no. 7 (July 7, 2021): 1182. http://dx.doi.org/10.3390/pr9071182.
Full textWei, Hang Xin, and Hong Wang. "Structure Design of Swirl Flow Tool in the Natural Gas Well." Applied Mechanics and Materials 741 (March 2015): 563–66. http://dx.doi.org/10.4028/www.scientific.net/amm.741.563.
Full textEwart Brundrett and Peter T. Vermes. "Evaluation of Tube Diameter and Fan Induced Swirl in Polyethylene Ventilation Tubes." Transactions of the ASAE 30, no. 4 (1987): 1131–36. http://dx.doi.org/10.13031/2013.30532.
Full textDissertations / Theses on the topic "Swirl tube"
Novotny, Pavel [Verfasser]. "Stability of Swirl Tube Flow / Pavel Novotny." München : Verlag Dr. Hut, 2019. http://d-nb.info/1200755308/34.
Full textNovotny, Pavel [Verfasser], and Bernhard [Akademischer Betreuer] Weigand. "Stability of swirl tube flow / Pavel Novotny ; Betreuer: Bernhard Weigand." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1201646375/34.
Full textShukla, Shashank. "An investigation of effects of flow conditioning on straight tube Coriolis meter." Thesis, [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2807.
Full textRamalingam, Ammaiyappan Arul Kumaran. "Design and Development of a High Swirl Burner with Gaseous Fuel Injection through Porous Tubes." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511795499271833.
Full textKilian, Ondřej. "Vestavby v savce vírové turbiny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229741.
Full textMartins, Jason Alves. "Separador solido-liquido para operação em fundo de poços de petroleo." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264088.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-07T21:12:52Z (GMT). No. of bitstreams: 1 Martins_JasonAlves_M.pdf: 1693632 bytes, checksum: 9c8933692155bfbbb91d774a1f849391 (MD5) Previous issue date: 2006
Resumo: O presente trabalho investiga os mecanismos de separação sólido-líquido em separadores tubo-ciclônicos. O trabalho é desenvolvido a partir de testes experimentais e simulação numérica. A etapa experimental investiga a influência do aumento de viscosidade sobre a eficiência do separador. Através de uma análise dimensional, os dados experimentais são reduzidos em grupos adimensionais. Obtem-se uma correlação entre a eficiência de separação e os grupos adimensionais. Ela revela como a eficiência depende dos parâmetros geométricos e operacionais do separador. A correlação obtida possibilita dimensionar estes separadores para cenários com elevada viscosidade. As simulações numéricas são realizadas utilizando um método de volumes finitos. O processo de separação é estudado através do adimensional Stokes. São introduzidos os conceitos de superfície de captura e tempo de residência de partículas. Define -se um importante parâmetro do escoamento, o comprimento de decaimento. Propõe-se um modelo unidimensional para o separador. Realiza-se com base neste modelo uma análise comparativa entre dois separadores. Os resultados são coerentes com dados experimentais e indicam quais características geométricas melhoram a eficiência do separador
Abstract: This work investigates the solid-liquid separation mechanisms in swirl tubes through experimental and numerical analysis. In the experimental phase, it is analyzed the impact of the viscosity increase on the separation efficiency of swirl tubes. The experimental data are reduced using dimensional analysis. A functional relationship between the separation efficiency and the dimensionless groups is obtained, allowing to calculate the separation efficiency dependency on the liquid viscosity, flow rate, particle size, and other geometrical parameters of the separator. This relationship helps to design these desander devices to scenarios with high viscosity. Numerical simulations are carried out in a structured grid using a finite volume method. Separation process is studied through the Stokes number. The concepts of capture surface and residence time of particles are introduced and an important flow field parameter, the length of decay is defined. A one-dimensional model is proposed for the swirl tube. A comparative analysis between two separators is done based on the one-dimensional model. The results are in agreement with experimental data and indicate which geometrical features help to improve the separator efficiency
Mestrado
Termica e Fluidos
Mestre em Engenharia Mecânica
Vosáhlo, David. "Návrh vírových turbin pro MVE Vrchlabí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230792.
Full textŠuráň, David. "Vliv nastavitelných vestaveb v savce turbiny na charakteristiku a tlakové pulzace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444634.
Full textŠebela, Radek. "Návrh vírové turbiny pro konkrétní lokalitu ČEZ,a.s." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231293.
Full textHazucha, Jan. "Vliv otevření difuzoru na dynamické vlastnosti spirální vírové struktury." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401535.
Full textBooks on the topic "Swirl tube"
Hoffmann, Alex C., and Louis E. Stein. Gas Cyclones and Swirl Tubes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3.
Full textE, Stein Louis, ed. Gas cyclones and swirl tubes: Principles, design and operation. Berlin: Springer, 2002.
Find full textHoffmann, Alex C. Gas cyclones and swirl tubes: Principles, design, and operation. 2nd ed. Berlin: Springer, 2008.
Find full textGas Cyclones and Swirl Tubes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74696-6.
Full textHoffmann, Alex C., and Louis E. Stein. Gas Cyclones and Swirl Tubes. Springer, 2002.
Find full textHoffmann, Alex C., and Louis E. Stein. Gas Cyclones and Swirl Tubes: Principles, Design, and Operation. Springer, 2014.
Find full textHoffmann, Alex C. Gas cyclones and swirl tubes : principles, design and operation. Berlin : Springer, 2002, 2002.
Find full textBook chapters on the topic "Swirl tube"
Hoffmann, Alex C., and Louis E. Stein. "Introduction." In Gas Cyclones and Swirl Tubes, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_1.
Full textHoffmann, Alex C., and Louis E. Stein. "Measurement Techniques." In Gas Cyclones and Swirl Tubes, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_10.
Full textHoffmann, Alex C., and Louis E. Stein. "Underflow Configurations and Considerations." In Gas Cyclones and Swirl Tubes, 193–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_11.
Full textHoffmann, Alex C., and Louis E. Stein. "Some Special Topics." In Gas Cyclones and Swirl Tubes, 215–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_12.
Full textHoffmann, Alex C., and Louis E. Stein. "Demisting Cyclones." In Gas Cyclones and Swirl Tubes, 239–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_13.
Full textHoffmann, Alex C., and Louis E. Stein. "Foam-Breaking Cyclones." In Gas Cyclones and Swirl Tubes, 263–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_14.
Full textHoffmann, Alex C., and Louis E. Stein. "Design Aspects." In Gas Cyclones and Swirl Tubes, 277–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_15.
Full textHoffmann, Alex C., and Louis E. Stein. "Multicyclone Arrangements." In Gas Cyclones and Swirl Tubes, 299–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_16.
Full textHoffmann, Alex C., and Louis E. Stein. "Basic Ideas." In Gas Cyclones and Swirl Tubes, 15–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_2.
Full textHoffmann, Alex C., and Louis E. Stein. "How Cyclones Work." In Gas Cyclones and Swirl Tubes, 37–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-07377-3_3.
Full textConference papers on the topic "Swirl tube"
Anderson, Morris. "Shielded Swirl Versus Piccolo Tube Inlet Thermal Anti-Icing System." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90992.
Full textBouhairie, Salem. "Analysis of Swirl Flow by Tube Inserts for CFD Study." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52820.
Full textAnderson, Kyle, Ben Reinhardt, Walead Sultani, Hannah O' Hern, Xiang Zhang, and Bahman Abbasi. "A New Approach to Evaluate and Optimize Swirl Tube Demister Efficiency." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23623.
Full textChen, Changkun, Christophe Nicolet, Koichi Yonezawa, Mohamed Farhat, Francois Avellan, and Yoshinobu Tsujimoto. "One-Dimensional Analysis of Full Load Draft Tube Surge." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37304.
Full textChang, Tae-Hyun, Sang-Cheol Kil, Deog Hee Doh, and Sang youn Kim. "Experiments on Swirling Flow in a Vertical Circular Tube." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-31010.
Full textEiamsa-ard, Smith, Panida Seemawute, and Khwanchit Wongcharee. "Heat Transfer Enhancement in a Tube Fitted With Twisted Tape Swirl Generator." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22500.
Full textKhalatov, Artem A., Igor I. Borisov, Sergey D. Severin, Vyacheslav V. Romanov, Vladimir Y. Spitsyn, and Yuriy Y. Dashevskyy. "Heat Transfer, Hydrodynamics and Pressure Drop in the Model of a Blade Leading Edge Cyclone Cooling." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45150.
Full textKoyama, Masamichi, Hiroshi Fujiwara, Laurent Zimmer, and Shigeru Tachibana. "Effects of Swirl Combination and Mixing Tube Geometry on Combustion Instabilities in a Premixed Combustor." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90891.
Full textSofuoglu, Mehmet Alper, Murat Erbas, Ibrahim Uslan, and Atilla Biyikoglu. "Development of a Swirl Nozzle for Powder Technology." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66777.
Full textYadav, R. J., Sandeep Kore, and V. N. Riabhole. "Analytical Prediction of Heat Transfer in Tape Generated Swirl Flow." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71243.
Full text