Academic literature on the topic 'Symbolic dynamics. Topological dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symbolic dynamics. Topological dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Symbolic dynamics. Topological dynamics"
Morales, C. A., and Jumi Oh. "Symbolic topological dynamics in the circle." Proceedings of the American Mathematical Society 147, no. 8 (March 26, 2019): 3413–24. http://dx.doi.org/10.1090/proc/14472.
Full textGalias, Zbigniew. "Automatized Search for Complex Symbolic Dynamics with Applications in the Analysis of a Simple Memristor Circuit." International Journal of Bifurcation and Chaos 24, no. 07 (July 2014): 1450104. http://dx.doi.org/10.1142/s0218127414501041.
Full textCorreia Ramos, Carlos. "Kinematics in Biology: Symbolic Dynamics Approach." Mathematics 8, no. 3 (March 4, 2020): 339. http://dx.doi.org/10.3390/math8030339.
Full textXu, Haiyun, Fangyue Chen, and Weifeng Jin. "Topological Conjugacy Classification of Elementary Cellular Automata with Majority Memory." International Journal of Bifurcation and Chaos 27, no. 14 (December 30, 2017): 1750217. http://dx.doi.org/10.1142/s0218127417502170.
Full textRamos, Carlos. "Animal movement: symbolic dynamics and topological classification." Mathematical Biosciences and Engineering 16, no. 5 (2019): 5464–89. http://dx.doi.org/10.3934/mbe.2019272.
Full textPeng, Shou-Li, and Xu-Sheng Zhang. "Second topological conjugate transformation in symbolic dynamics." Physical Review E 57, no. 5 (May 1, 1998): 5311–24. http://dx.doi.org/10.1103/physreve.57.5311.
Full textPei, Yangjun, Qi Han, Chao Liu, Dedong Tang, and Junjian Huang. "Chaotic Behaviors of Symbolic Dynamics about Rule 58 in Cellular Automata." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/834268.
Full textChen, Fangyue, Bo Chen, Junbiao Guan, and Weifeng Jin. "A Symbolic Dynamics Perspective of Conway’s Game of Life." International Journal of Bifurcation and Chaos 26, no. 02 (February 2016): 1650035. http://dx.doi.org/10.1142/s0218127416500358.
Full textCOLLINS, PIETER. "SYMBOLIC DYNAMICS FROM HOMOCLINIC TANGLES." International Journal of Bifurcation and Chaos 12, no. 03 (March 2002): 605–17. http://dx.doi.org/10.1142/s0218127402004565.
Full textHOCHMAN, MICHAEL. "Genericity in topological dynamics." Ergodic Theory and Dynamical Systems 28, no. 1 (February 2008): 125–65. http://dx.doi.org/10.1017/s0143385707000521.
Full textDissertations / Theses on the topic "Symbolic dynamics. Topological dynamics"
Seward, Brandon Michael Gao Su. "On the density of minimal free subflows of general symbolic flows." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/permalink/meta-dc-11009.
Full textCecchi, Bernales Paulina Alejandra. "Invariant measures in symbolic dynamics : a topological, combinatorial and geometrical approach." Thesis, Sorbonne Paris Cité, 2019. https://theses.md.univ-paris-diderot.fr/CECCHI-BERNALES_Paulina_2_complete_20190626.pdf.
Full textIn this work we study some dynamical properties of symbolic dynamical systems, with particular emphasis on the role played by the invariant probability measures of such systems. We approach the study of the set of invariant measures from a topological, combinatorial and geometrical point of view. From a topological point of view, we focus on the problem of orbit equivalence and strong orbit equivalence between dynamical systems given by minimal actions of Z, through the study of an algebraic invariant, namely the dynamical dimension group. Our work presents a description of the dynamical dimension group for two particular classes of subshifts: S-adic subshifts and dendric subshifts. From a combinatorial point of view, we are interested in the problem of balance in minimal uniquely ergodic systems given by actions of Z. We investigate the behavior regarding balance for substitutive, S-adic and dendric subshifts. We give necessary conditions for a minimal substitutive system with rational frequencies to be balanced on its factors, obtaining as a corollary the unbalance in the factors of length at least 2 in the subshift generated by the Thue-Morse sequence. Finally, from the geometrical point of view, we investigate the problem of realization of Choquet simplices as sets of invariant probability measures associated to systems given by minimal actions of amenable groups on the Cantor set. We introduce the notion of congruent monotileable amenable group, we prove that every virtually nilpotent amenable group is congruent monotileable, and we show that for a discrete infinite group G with this property, every Choquet simplex can be obtained as the set of invariant measures of a minimal G-subshift
En este trabajo estudiamos algunas propiedades dinamicas de sistemas simbolicos, con especial enfasis en el rol que juegan las medidas de probabilidad invariantes de tales sistemas. Nuestra aproximacion al estudio de las medidas invariantes se realiza desde tres angulos: topologico, combinatorio y geometrico. Desde el punto de vista topologico, nos enfocamos en el problema de la equivalencia orbital y equivalencia orbital fuerte entre sistemas dinamicos dados por acciones minimales de Z, a traves del estudio de un invariante algebraico, a saber, el grupo de dimension dinamico. Nuestro trabajo presenta una descripcion del grupo de dimension dinamico para dos clases particulares de subshifts minimales: los subshifts S-adicos y los subshifts dendricos. Desde el punto de vista combinatorio, nos interesamos en el problema del equilibrio en subshifts minimales y unicamente ergodicos dados por acciones de Z. Investigamos el comportamiento en relacional equilibrio para subshifts substitutivos, S-adicos y dendricos. Establecemos condiciones necesarias para que un subshift substitutivo minimal con frecuencias racionales sea equilibrado en sus factores, obteniendo como corolario el desequilibrio en los factores de largo mayor o igual a 2 en el subshift generado por la substitucion de Thue–Morse. Finalmente, desde el punto de vista geometrico, investigamos la posibilidad de realizar sımplices de Choquet como conjuntos de medidas de probabilidad invariantes asociados a sistemas dados por acciones minimales de grupos promediables sobre el Cantor. Introducimos la nocion de grupo promediable congruente-monoembaldosable, probamos que todo grupo promediable virtualmente nilpotentees congruente-monoembaldosable, y mostramos que para un grupo discreto e infinito G con estapropiedad, todo sımplice de Choquet puede obtenerse como el conjunto de medidas invariantes de un G-subshift minimal
Alcaraz, Barrera Rafael. "Topological and symbolic dynamics of the doubling map with a hole." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/topological-and-symbolic-dynamics-of-the-doubling-map-with-a-hole(b6f17b43-5285-4e35-883a-baf4708993bc).html.
Full textPavlov, Ronald Lee. "Some results on recurrence and entropy." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180454690.
Full textSeward, Brandon Michael. "On the density of minimal free subflows of general symbolic flows." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc11009/.
Full textEpperlein, Jeremias. "Topological Conjugacies Between Cellular Automata." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-231823.
Full textDonoso, Sebastian Andres. "Contributions to ergodic theory and topological dynamics : cube structures and automorphisms." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1007/document.
Full textThis thesis is devoted to the study of different problems in ergodic theory and topological dynamics related to og cube structures fg. It consists of six chapters. In the General Presentation we review some general results in ergodic theory and topological dynamics associated in some way to cubes structures which motivates this thesis. We start by the cube structures introduced in ergodic theory by Host and Kra (2005) to prove the convergence in $L^2$ of multiple ergodic averages. Then we present its extension to topological dynamics developed by Host, Kra and Maass (2010), which gives tools to understand the topological structure of topological dynamical systems. Finally we present the main implications and extensions derived of studying these structures, we motivate the new objects introduced in the thesis and sketch out our contributions. In Chapter 1 we give a general background in ergodic theory and topological dynamics given emphasis to the treatment of special factors. % We give basic definitions and describe special factors associated to a From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is devoted to a different topic and related questions, both in ergodic theory and topological dynamics. Each one is associated to a scientific article. In Chapter 2 we introduce a novel cube structure to study the actions of two commuting transformations $S$ and $T$ on a compact metric space $X$. In the same chapter we study the topological and dynamical properties of such structure and we use it to characterize products systems and their factors. We also provide some applications, like the construction of special factors. In the same topic, in Chapter 3 we use the new cube structure to prove the pointwise convergence of a cubic average in a system with two commuting transformations. In Chapter 4, we study the enveloping semigroup of a very important class of dynamical systems, the nilsystems. We use cube structures to show connexions between algebraic properties of the enveloping semigroup and the geometry and dynamics of the system. In particular, we characterize nilsystems of order 2 by its enveloping semigroup. In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional symbolic spaces. First, we consider low complexity symbolic systems and use special factors, some related to the introduced cube structures, to study the group of automorphisms. Our main result states that for minimal systems with sublinear complexity such groups are spanned by the shift action and a finite set. Also, using factors associated to the cube structures introduced in Chapter 2 we study the automorphism group of a representative tiling system. The bibliography is defer to the end of this document
Kenny, Robert. "Orbit complexity and computable Markov partitions." University of Western Australia. School of Mathematics and Statistics, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0231.
Full textMaranhão, Dariel Mazzoni. "Estudo topológico de órbitas periódicas no circuito experimental de Chua." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24032007-174511/.
Full textWe have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.
Baptista, Diogo Pedro Ferreira Nascimento. "Iteradas de aplicações do plano no plano." Doctoral thesis, Universidade de Évora, 2008. http://hdl.handle.net/10174/12257.
Full textBooks on the topic "Symbolic dynamics. Topological dynamics"
Coornaert, M. Symbolic dynamcis [i.e. dynamics] and hyperbolic groups. Berlin: Springer-Verlag, 1993.
Find full textKitchens, Bruce P. Symbolic Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58822-8.
Full textDevaney, Robert L., Kit C. Chan, and P. B. Vinod Kumar, eds. Topological Dynamics and Topological Data Analysis. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0174-3.
Full textde Vries, J. Elements of Topological Dynamics. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8171-4.
Full textAkin, Ethan. Recurrence in Topological Dynamics. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2668-8.
Full textNerurkar, M. G., D. P. Dokken, and D. B. Ellis, eds. Topological Dynamics and Applications. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/conm/215.
Full textKolyada, Sergiy, Yuri Manin, and Thomas Ward, eds. Algebraic and Topological Dynamics. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/conm/385.
Full textVries, J. de. Elements of topological dynamics. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textJ. C. S. P. van der Woude. Topological dynamix. Amsterdam: Centre for Mathematics and Computer Science, 1986.
Find full textBook chapters on the topic "Symbolic dynamics. Topological dynamics"
Feng, Z., P. Gu, M. Zheng, X. Yan, and D. W. Bao. "Environmental Data-Driven Performance-Based Topological Optimisation for Morphology Evolution of Artificial Taihu Stone." In Proceedings of the 2021 DigitalFUTURES, 117–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_11.
Full textCoudène, Yves. "Topological Dynamics." In Universitext, 49–57. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7287-1_5.
Full textAkin, Ethan. "Topological Dynamics." In Mathematics of Complexity and Dynamical Systems, 1726–47. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_111.
Full textAkin, Ethan. "Topological Dynamics." In Encyclopedia of Complexity and Systems Science, 9224–46. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_555.
Full textBarreira, Luís, and Claudia Valls. "Topological Dynamics." In Dynamical Systems by Example, 15–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15915-3_2.
Full textBarreira, Luís, and Claudia Valls. "Topological Dynamics." In Dynamical Systems by Example, 95–114. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15915-3_8.
Full textGlasner, Eli. "Topological dynamics." In Mathematical Surveys and Monographs, 13–47. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/surv/101/01.
Full textBarreira, Luis, and Claudia Valls. "Topological Dynamics." In Dynamical Systems, 27–56. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7_3.
Full textKerr, David, and Hanfeng Li. "Topological Dynamics." In Springer Monographs in Mathematics, 163–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49847-8_7.
Full textTusset, Gianfranco. "Topological Dynamics." In From Galileo to Modern Economics, 131–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95612-1_7.
Full textConference papers on the topic "Symbolic dynamics. Topological dynamics"
Romano, Maria, Paolo Bifulco, Gianni Improta, Giuliana Faiella, Mario Cesarelli, Fabrizio Clemente, and Giovanni D'Addio. "Symbolic dynamics in cardiotocographic monitoring." In 2013 E-Health and Bioengineering Conference (EHB). IEEE, 2013. http://dx.doi.org/10.1109/ehb.2013.6707374.
Full textCaneco, Acilina, Clara Grácio, and J. Leonel Rocha. "Symbolic dynamics and chaotic synchronization." In Selected Papers from the 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010). WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350341_0015.
Full textLuo, C. W., H. J. Chen, H. J. Wang, S. A. Ku, K. H. Wu, T. M. Uen, J. Y. Juang, et al. "Ultrafast dynamics in topological insulators." In SPIE OPTO, edited by Markus Betz, Abdulhakem Y. Elezzabi, Jin-Joo Song, and Kong-Thon Tsen. SPIE, 2013. http://dx.doi.org/10.1117/12.2001954.
Full textKlaeui, M. "Dynamics of topological spin structures." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157622.
Full textWang, Yi, Fangyue Chen, and Yunfang Han. "Glider Dynamics and Topological Dynamics of Bernoulli-shift Rule 61." In 2010 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2010. http://dx.doi.org/10.1109/iwcfta.2010.36.
Full textSanjith, Bubathi Muruganatham M. A., C. Sujatha, and T. Jayakumar. "Symbolic dynamics based bearing fault detection." In 2012 IEEE 5th India International Conference on Power Electronics (IICPE). IEEE, 2012. http://dx.doi.org/10.1109/iicpe.2012.6450369.
Full textWang, Jun, and Jun Wu. "Symbolic Dynamics Analysis of Pathological Signals." In 2011 First International Workshop on Complexity and Data Mining (IWCDM). IEEE, 2011. http://dx.doi.org/10.1109/iwcdm.2011.37.
Full textSacramento, P. D. "Dynamics of Quenched Topological Edge Modes." In Symmetry and Structural Properties of Condensed Matter. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813234345_0006.
Full textThacker, Hank. "Topological Charge Membranes and Chiral Dynamics." In The 7th International Workshop on Chiral Dynamics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.172.0060.
Full textSounas, Dimitrios. "Oscillation dynamics in active topological metamaterials." In Active Photonic Platforms XIII, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2594971.
Full textReports on the topic "Symbolic dynamics. Topological dynamics"
Burton, Robert M., and Jr. Topics in Stochastics, Symbolic Dynamics and Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, December 1996. http://dx.doi.org/10.21236/ada336426.
Full textZurek, Wojciech H., and Adolfo Del Campo. Universality of phase transition dynamics: topological defects from symmetry breaking. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1120720.
Full textBhatia, Harsh, Attila Gyulassy, Mitchell Ong, Vincenzo Lordi, Erik Draeger, John Pask, Valerio Pascucci, and Peer Timo Bremer. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1331475.
Full textRechester, A. B., and R. B. White. Chaotic dynamics in plasma: Method of symbolic kinetic equation. Final technical report, September 30, 1991--April 30, 1995. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/279680.
Full text